A high-order partitioned solver for general multiphysics problems and its applications in optimization

Daniel Z. Huang
Stanford University

Collaborators: Per-Olof Persson (UCB), Matthew J. Zahr (ND)

2019 AIAA SciTech Forum
MDO-16/SD-16. Multidisciplinary Optimization and Sensitivity Analysis with Aeroelasticity and FSI II
Introduction

- Multiphysics problems

Figure: Mars landing Micro-aerial vehicle Energy harvesting

Peng and Zhu (2009)
Optimizations for multiphysics problems

Figure: Mars landing Micro-aerial vehicle Energy harvesting

- Is there a design to reduce the von-Mises stress?
- What is the energetically-optimal flapping motion?
- How to harvest more wind energy?
Problem formulation

- **Governing multiphysics equations**

\[
\begin{align*}
\partial_t u^i &= \mathcal{L}_i(u^i, c^i, x, t), \quad x \in \Omega^i, \quad t \in (0, T) \\
c^i &= c^i(u^1, \ldots, u^m, x, t),
\end{align*}
\]

for \(i = 1, \ldots, m \)

- **Objective function**

\[
\mathcal{J}(u^1, \ldots, u^m, x, \mu, T) = \int_0^T j(u^1(\tau), \ldots, u^m(\tau), \mu, \tau)\,d\tau
\]
Solution strategies

- Time-dependent multiphysics optimization problem
 - Stability of the multiphysics solver
 - High order accuracy of the objective function and its gradient
 - Efficient multiple queries

- Implicit scheme vs Explicit scheme
- Monolithic procedure vs Partitioned procedure
- Adjoint method vs Direct sensitivity method vs Finite difference
Solution strategies

- Time-dependent multiphysics optimization problem
 - Stability of the multiphysics solver
 - High order accuracy of the objective function and its gradient
 - Efficient multiple queries

- Implicit scheme vs Explicit scheme
- Monolithic procedure vs Partitioned procedure
- Adjoint method vs Direct sensitivity method vs Finite difference
Solution strategies

- Time-dependent multiphysics optimization problem
 - Stability of the multiphysics solver
 - High order accuracy of the objective function and its gradient
 - Efficient multiple queries

- Implicit scheme vs Explicit scheme
- Monolithic procedure vs Partitioned procedure
- Adjoint method vs Direct sensitivity method vs Finite difference
Solution strategies

- Time-dependent multiphysics optimization problem
 - Stability of the multiphysics solver
 - High order accuracy of the objective function and its gradient
 - Efficient multiple queries

- Implicit scheme vs Explicit scheme
- Monolithic procedure vs Partitioned procedure
- Adjoint method vs Direct sensitivity method vs Finite difference
Governing mutiphysics equations and semi-discretization

- Implicit solver

\[M \dot{u} = r(u, c(u, t), t), \quad t \in (0, T) \]

- Partitioned Approach: lag one step, solve \(M \dot{u} = r(u, \tilde{c}(u, t), t) \)
 - Facilitates software modularity and mathematical modeling
 - Often low-order accurate\(^1\) (second order accuracy) and suffer from lack of stability\(^2\)

Governing multiphysics equations and semi-discretization

- Implicit solver

\[M \dot{u} = r(u, c(u, t), t), \quad t \in (0, T) \]

- Partitioned Approach: lag one step, solve \(M \dot{u} = r(u, \tilde{c}(u, t), t) \)
 - 😊 facilitates software modularity and mathematical modeling
 - 😞 often low-order accurate\(^1\) (second order accuracy) and suffer from lack of stability\(^2\)

⇒ Can we do better, how stable or how accurate can a partitioned solver be?

IMEX scheme I

- Implicit-explicit Runge Kutta (IMEX) schemes

\[M \dot{u} = f(u, t) + g(u, t) \]

The non-stiff \(f \) part and stiff \(g \) part are integrated with \(s \)-stage explicit/implicit RK schemes separately.

Table: Butcher Tableau for \(s \)-stage IMEX scheme

- **Explicit RK coefficients**
 - \(\hat{c}_0 \) 0
 - \(\hat{c}_2 \) \(\hat{a}_{21} \)
 - \(\hat{c}_3 \) \(\hat{a}_{31} \) \(\hat{a}_{32} \)
 - \(\vdots \) \(\vdots \) \(\ddots \)
 - \(\hat{c}_s \) \(\hat{a}_{s1} \) \(\hat{a}_{s2} \) \(\ldots \) \(\hat{a}_{ss-1} \)
 - \(\hat{b}_1 \) \(\hat{b}_2 \) \(\ldots \) \(\hat{b}_{s-1} \) \(\hat{b}_s \)

- **Implicit RK coefficients**
 - \(\hat{c}_1 \) \(a_{11} \) \(a_{12} \)
 - \(\hat{c}_2 \) \(a_{21} \) \(a_{22} \)
 - \(\hat{c}_3 \) \(a_{31} \) \(a_{32} \) \(a_{33} \)
 - \(\vdots \) \(\vdots \) \(\ddots \)
 - \(\hat{c}_s \) \(a_{s1} \) \(a_{s2} \) \(\ldots \) \(a_{ss-1} \) \(a_{ss} \)
 - \(\hat{b}_1 \) \(\hat{b}_2 \) \(\ldots \) \(\hat{b}_{s-1} \) \(\hat{b}_s \)
Algorithm 1 Implicit-Explicit Runge-Kutta scheme

1: for stages $j = 1, \ldots, s$ do

2: Define stage solution: $u_{n,j} = u_{n-1} + \sum_{p=1}^{j-1} \hat{a}_{jp} \hat{k}_{n,p} + \sum_{p=1}^{j} a_{jp} k_{n,p}$

3: Implicit solve for $k_{n,j}$: $M k_{n,j} = \Delta t_n g(u_{n,j}, t_{n-1} + c_j \Delta t_n)$

4: Explicit solve for $\hat{k}_{n,j}$: $M \hat{k}_{n,j} = \Delta t_n f(u_{n,j}, t_{n-1} + \hat{c}_j \Delta t_n)$

5: end for

6: Set $u_n = u_{n-1} + \sum_{p=1}^{s} \hat{b}_p \hat{k}_{n,p} + \sum_{p=1}^{s} b_p k_{n,p}$

Computational expense: solve $\frac{\partial g}{\partial u}$

IMEX scheme based solver

- Semi-discretized equations

\[M \dot{u} = r(u, c(u, t), t) = f(u, \tilde{c}, t) + g(u, \tilde{c}, t) \]

where \(\tilde{c} \) is an approximation, or predictor, of the coupling term \(c(u, t) \) and the terms are defined as

\[f(u, \tilde{c}, t) = r(u, c(u, t), t) - r(u, \tilde{c}, t) \]
\[g(u, \tilde{c}, t) = r(u, \tilde{c}, t) \]

The Jacobian of the implicit part

\[D_{ug} = \frac{\partial r}{\partial u} + \frac{\partial r}{\partial \tilde{c}} \frac{\partial \tilde{c}}{\partial u} \]
IMEX scheme based partitioned solver

- General partitioned solver
 \[Ax = b \Rightarrow A \text{ is diagonal or triangular} \]

- IMEX scheme based partitioned solver
 \[D_u g = \frac{\partial r}{\partial u} + \frac{\partial r}{\partial \tilde{c}} \frac{\partial \tilde{c}}{\partial u} \text{ is diagonal or triangular} \]

\[
\begin{align*}
\frac{\partial r}{\partial u} &= \begin{bmatrix} \frac{\partial r_1}{\partial u_1} & \cdots & \frac{\partial r_m}{\partial u_m} \end{bmatrix} \\
\frac{\partial r}{\partial c} &= \begin{bmatrix} \frac{\partial r_1}{\partial c_1} & \cdots & \frac{\partial r_m}{\partial c_m} \end{bmatrix} \\
\frac{\partial \tilde{c}}{\partial u} &= \begin{bmatrix} \frac{\partial \tilde{c}_1}{\partial u_1} & \cdots & \frac{\partial \tilde{c}_m}{\partial u_m} \end{bmatrix}
\end{align*}
\]

\[\Rightarrow \frac{\partial \tilde{c}}{\partial u} \text{ is diagonal or triangular} \]
Weakly coupled Gauss-Seidel-type predictor

- Predictor at fully discrete level at stage j
 \[
 \tilde{c}^i(u_{n,j}, u_{n-1}, t) = c(u_{n,j}^1, \ldots, u_{n,j}^{i-1}, u_{n-1}^i, \ldots, u_{n-1}^m)
 \]

- The implicit part Jacobian $D_{u}g$ is block lower triangular
 \[
 D_{u}g^i = \begin{cases}
 \frac{\partial r^i}{\partial u^i} & i = j \\
 \frac{\partial r^i}{\partial c^i} \frac{\partial c^i}{\partial u^j} & i > j \\
 0 & i < j.
 \end{cases}
 \]

Weakly coupled Gauss-Seidel-type predictor

Algorithm 2 IMEX partitioned multiphysics scheme: weak Gauss-Seidel predictor

1: for stages \(j = 1, \ldots, s \) do
2: for physical systems \(i = 1, \ldots, m \) do
3: Define stage solution: \(u_{n,j}^i = u_{n-1}^i + \sum_{p=1}^{j-1} \hat{a}_{jp} \hat{k}_{n,p}^i + \sum_{p=1}^{j} a_{jp} k_{n,p}^i \)
4: Implicit solve for \(k_{n,j}^i \): \(M_{i} k_{n,j}^i = \Delta t_n g^i (u_{n,j}^i, c^i (u_{1,n,j}^i, \ldots, u_{n-1,n,j}^i, u_{n-1,n,j}^i, \ldots, u_{m,n,j}^i, t_n, j)) \)
5: Explicit solve for \(\hat{k}_{n,j}^i \): \(M_{i} \hat{k}_{n,j}^i = \Delta t_n f^i (u_{n,j}^i, c^i (u_{1,n,j}^i, \ldots, u_{n-1,n,j}^i, u_{n-1,n,j}^i, \ldots, u_{m,n,j}^i, t_n, j)) \)
6: end for
7: end for
8: Set \(u_n = u_{n-1} + \sum_{p=1}^{s} \hat{b}_p \hat{k}_{n,p} + \sum_{p=1}^{s} b_p k_{n,p} \)

❌ solved serially

😊 fewer implementation efforts, only the diagonal \(\frac{Dg^i}{Du^i} = \frac{\partial r^i}{\partial u^i} \) of the monolithic implicit Jacobian is required

😊 better stability.
Accuracy analysis

- Order conditions\(^6\)\(^7\) are based on Taylor expansion, local truncation error of \(O(\Delta t^{p+1})\) during one time step.
- Chosen predictors have an interpretation at the semi-discrete level.
- Any of the four proposed predictors for a \(p\)th order IMEX-RK schemes leads to the same \(O(\Delta t^{p+1})\) local truncation error and the same \(O(\Delta t^p)\) global temporal error.

Model problem

\begin{align*}
\partial_t u^1 &= \lambda_1 (u^1 + u^2) \\
\partial_t u^2 &= \lambda_2 (u^1 + u^2)
\end{align*}

where $\lambda_1 < 0$ and $\lambda_2 < 0$. The coupling terms are chosen as $c^1 = u^2$, $c^2 = u^1$.

Stability analysis

- More general linear system of ODEs
 \[
 \frac{du}{dt} = A u
 \]
 where \(A = \mathcal{L} + \mathcal{D} + \mathcal{U} \) is an \(n \times n \) matrix, the coupling term is taken as \(c(u) = (\mathcal{L} + \mathcal{U})u \).

- If \(A \) is diagonally dominant with negative diagonal entries, the Gauss-Seidel predictor is unconditionally stable for the forward-backward Euler IMEX scheme.
Fully discrete adjoint method

- Solver-consistent discretization of quantities of interest
 \[J(u_0, \ldots, u_{N_t}, k_{1,1}, \ldots, k_{N_t,s}, \hat{k}_{1,1}, \ldots, \hat{k}_{N_t,s}, \mu) \]

- Auxiliary PDE-constraints
 \[
 \tilde{r}_0 = u^i_0 - \bar{u}^i(\mu) \\
 q^i_{n,j} = u^i_{n,j} - u^i_{n-1} - \sum_{p=1}^{j-1} \hat{a}_{jp} \hat{k}^i_{n,p} - \sum_{p=1}^{j} a_{jp} k^i_{n,p}, \\
 R^i_{n,j} = M k^i_{n,j} - \Delta t_n g(u^i_{n,j}, \tilde{c}^i_{n,j}, \mu) \\
 \hat{R}^i_{n,j} = M \hat{k}^i_{n,j} - \Delta t_n f(u^i_{n,j}, \tilde{c}^i_{n,j}, \mu) \\
 \tilde{r}^i_n = u^i_n - u^i_{n-1} - \sum_{j=1}^{s} b_j k^i_{n,j} - \sum_{j=1}^{s} \hat{b}_j \hat{k}^i_{n,j} \\
 p^i_{n,j} = \tilde{c}^i_{n,j} - c^i(u^1_{n,j}, \ldots, u^{i-1}_{n,j}, u^i_{n,j}, \ldots, u^m_{n-1}, t_{n,j}, \mu)
 \]
PDE optimization requires repeated queries to primal and dual solvers.

- Primal solver
- Dual solver
- Optimizer
PDE optimization requires repeated queries to primal and dual solvers.
Optimization workflow

- PDE optimization requires repeated queries to primal and dual solvers

\[\mu, u_1, u_2, \ldots, u_{N_t}, \lambda_{N_t}, \lambda_{N_t-1}, \ldots, \lambda_1 \]

\[\frac{\partial J}{\partial \mu} \]
PDE optimization requires repeated queries to primal and dual solvers.
PDE optimization requires repeated queries to primal and dual solvers.

![Optimization workflow diagram]

- Optimization workflow
 - PDE optimization requires repeated queries to primal and dual solvers
 - optimizer
 - primal solver
 - dual solver
 - $u_1, u_2, \ldots, u_{N_t}$
 - $\lambda_{N_t}, \lambda_{N_t-1}, \ldots, \lambda_1$
Define Lagrangian

\[L = J - \sum_{n=0}^{N_t} \sum_{i=1}^{m} \lambda_n^i \tilde{r}_n^i - \sum_{n=1}^{N_t} \sum_{j=1}^{s} \sum_{i=1}^{m} \kappa_{n,j}^i R_{n,j}^i - \sum_{n=1}^{N_t} \sum_{j=1}^{s} \sum_{i=1}^{m} \hat{\kappa}_{n,j}^i \hat{R}_{n,j}^i \]

\[\quad - \sum_{n=1}^{N_t} \sum_{j=1}^{s} \sum_{i=1}^{m} \tau_{n,j}^i q_{n,j}^i - \sum_{n=1}^{N_t} \sum_{j=1}^{s} \sum_{i=1}^{m} \sigma_{n,j}^i p_{n,j}^i \]

The Lagrangian duality is given by the Karush-Kuhn-Tucker (KKT) system

\[\frac{\partial L}{u_n^i} = 0, \quad \frac{\partial L}{k_{n,j}^i} = 0, \quad \frac{\partial L}{\hat{k}_{n,j}^i} = 0, \quad \frac{\partial L}{u_{n,j}^i} = 0, \quad \frac{\partial L}{\tilde{c}_{n,j}^i} = 0. \]
Dual PDE solver I

- Primal states/stages required at each state/stage of dual problem
- Linear evolution equations solved backwardly in a partitioned way

\[\lambda^i_{N_t} = 0 \]

\[\lambda^i_{n-1} = \lambda^i_n + \sum_{j=1}^{s} \tau_{n,j}^i + \sum_{j=1}^{s} \sum_{p=1}^{i} \frac{\partial c^p_{n,j}}{\partial u_{n-1}^i} T^p \sigma_{n,j}^p \]

\[M^i T \kappa_{n,j}^i = b_j \lambda^i_n + \sum_{p=j}^{s} a_{p,j} \tau_{n,p}^i \]

\[M^i T \hat{\kappa}_{n,j}^i = \hat{b}_j \lambda^i_n + \sum_{p=j+1}^{s} \hat{a}_{p,j} \tau_{n,p}^i \]

\[\tau_{n,j}^i = \frac{\partial J}{\partial u_{n,j}^i} + \Delta t_n \frac{\partial g_{n,j}^i}{\partial u_{n,j}^i} T \kappa_{n,j}^i + \Delta t_n \sum_{k=1}^{m} \frac{\partial f_{n,j}^k}{\partial u_{n,j}^i} T^k \hat{\kappa}_{n,j}^k + \sum_{p=i+1}^{m} \frac{\partial c^p_{n,j}}{\partial u_{n,j}^i} T^p \sigma_{n,j}^p \]

\[\sigma_{n,j}^i = \Delta t_n \frac{\partial g_{n,j}^i}{\partial \tilde{c}_{n,j}^i} T \kappa_{n,j}^i + \Delta t_n \frac{\partial f_{n,j}^i}{\partial \tilde{c}_{n,j}^i} T \hat{\kappa}_{n,j}^i \]
Gradient reconstruction via dual variables

\[
\frac{dJ}{d\mu} = \frac{\partial J}{\partial \mu} + \sum_{i=1}^{m} \lambda_i \frac{\partial \tilde{u}^i}{\partial \mu} + \sum_{n=1}^{N_t} \sum_{i=1}^{m} \sum_{j=1}^{s} \Delta t_n \frac{\partial g_{n,j}^i}{\partial \mu} T \kappa_{n,j}^i \\
+ \sum_{n=1}^{N_t} \sum_{i=1}^{m} \sum_{j=1}^{s} \Delta t_n \frac{\partial f_{n,j}^i}{\partial \mu} T \hat{\kappa}_{n,j}^i + \sum_{n=1}^{N_t} \sum_{i=1}^{m} \sum_{j=1}^{s} \frac{\partial c_{n,j}^i}{\partial \mu} T \sigma_{n,j}^i
\]
Application: fluid structure interaction problems (FSI)

- Fluid governing equations

\[
\frac{\partial U}{\partial t} + \nabla \cdot \mathbf{F}^{\text{inv}}(U) + \nabla \cdot \mathbf{F}^{\text{vis}}(U, \nabla U) = 0 \quad \text{in} \quad \Omega(t)
\]

- Transformation to reference domain\(^7\)

\[
U_X = gU \\
\nabla_X U_X = g \nabla U_X \cdot G + g^{-1} U_X \frac{\partial g}{\partial X}
\]

- Transformed conservation law

\[
\frac{\partial U_X}{\partial t} + \nabla_X \cdot \mathbf{F}^{\text{inv}}_X(U_X) + \nabla_X \cdot \mathbf{F}^{\text{vis}}_X(U_X, \nabla_X U_X) = 0 \quad \text{in} \quad \Omega_0
\]

Application: fluid structure interaction problems (FSI)

- Simple structure model mass-spring-damper systems that can directly be written as a second-order system of ODEs

\[m_s \ddot{u}_s + c_s \dot{u}_s + k_s u_s = f_{ext}(t) \]

- Deformation of the fluid domain
 - Pseudo-structure
 - Parametrized mapping such as radial basis functions
Application: fluid structure interaction problems (FSI)

- Three-field and two-field fluid-structure coupling
 - three-field FSI setting
 \[
 M^s \dot{u}^s = r^s(u^s, c^s), \quad M^x \dot{u}^x = r^x(u^x, c^x), \quad M^f \dot{u}^f = r^f(u^f, c^f)
 \]
 coupling terms
 \[
 c^s = c^s(u^s, u^x, u^f), \quad c^x = c^x(u^s), \quad c^f = c^f(u^s, u^x)
 \]
 - two-field FSI setting
 \[
 M^s \dot{u}^s = r^s(u^s, c^s), \quad M^f \dot{u}^f = r^f(u^f, c^f)
 \]
 coupling terms
 \[
 c^s = c^s(u^s, u^f), \quad c^f = c^f(u^s)
 \]
Application: fluid structure interaction problems (FSI)

- 1D three-field coupling piston problem

![One-dimensional piston system](image)

Figure: One-dimensional piston system

- Fluid equation: Eulerian equation + FVM
- Deformation of the fluid mesh: linear, isotropic constitutive law and infinitesimal strains assumed

\[
\rho_m \ddot{u}_x = E_m \frac{\partial^2 u_x}{\partial X^2} - c_m \dot{u}_x
\]
Convergence of the IMEX2 (---), IMEX3 (---), and IMEX4 (---) with the **weak** Gauss-Seidel predictor.
Objective function $\mathcal{J} = \int_0^T u_s^2 \, dt$.

Parameter: the stiffness of the piston μ_k, with constraint $0 \leq \mu_k \leq 10$.

<table>
<thead>
<tr>
<th>Scheme</th>
<th>\mathcal{J}</th>
<th>FD</th>
<th>Direct</th>
<th>Adjoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMEX1</td>
<td>5.24027644581e-03</td>
<td>-6.40416043546e-04</td>
<td>-6.40416045418e-04</td>
<td>-6.40416045418e-04</td>
</tr>
<tr>
<td>IMEX2</td>
<td>5.01357571586e-03</td>
<td>-5.75379291520e-04</td>
<td>-5.75379340362e-04</td>
<td>-5.75379340362e-04</td>
</tr>
<tr>
<td>IMEX3</td>
<td>5.01291619482e-03</td>
<td>-5.75053709945e-04</td>
<td>-5.75053861151e-04</td>
<td>-5.75053861151e-04</td>
</tr>
<tr>
<td>IMEX4</td>
<td>5.01291415604e-03</td>
<td>-5.75054676186e-04</td>
<td>-5.75054797593e-04</td>
<td>-5.75054797593e-04</td>
</tr>
</tbody>
</table>

Table: 1D piston problem: the objective function value and its gradients.
Application: fluid structure interaction problems (FSI)

- Objective function $J = \int_0^T u_s^2 dt$.
- Parameter: the stiffness of the piston μ_k, with constraint $0 \leq \mu_k \leq 10$.

![Graphs of J and μ_k vs. iteration]

Figure: Convergence of the optimizer with IMEX1 (---), IMEX2 (---), IMEX3 (---), and IMEX4 (---).
Application: fluid structure interaction problems (FSI)

- 2D two-field energy harvesting model problem

\[\theta(t) = \begin{cases}
\mu_A \cos\left(\frac{2t}{T} (\pi + \mu_\phi)\right), & t < \frac{T}{2} \\
\mu_A \cos\left(2\pi ft + \mu_\phi\right), & t \geq \frac{T}{2}
\end{cases} \]

Figure: Foil-damper system

- Fluid equation: isentropic Navier-Stokes equations + DG(p=3)
 \[s = \frac{p}{\rho^\gamma} \]

- Deformation of the fluid mesh: blending maps
Application: fluid structure interaction problems (FSI)

Convergence of the IMEX2 (---), IMEX3 (--), and IMEX4 (---) with weak Gauss-Seidel type predictors.

Figure: weak Gauss-Seidel predictor
Objective function $J = \frac{1}{T} \int_T^{2T} c_s \dot{u}_s^2 \, dt$.

Parameters: $-55^\circ \leq \mu_{\text{init}}^A \leq 55^\circ$, $-\frac{\pi}{2} \leq \mu_\phi < \frac{\pi}{2}$, and $E_\theta = -\frac{1}{T} \int_T^{2T} M_z \dot{\theta} \, dt \geq -0.15 \times 10^{-2}$

Figure: Convergence of the optimizer for the NACA harvesting problem.
Application: fluid structure interaction problems (FSI)

- Objective function \(J = \frac{1}{T} \int_T^{2T} c_s \dot{u}_s^2 dt \).
- Parameters:
 - \(-55^\circ \leq \mu_A^{\text{init}} \leq 55^\circ\),
 - \(-\frac{\pi}{2} < \mu_\phi < \frac{\pi}{2}\), and
 - \(E_\theta = -\frac{1}{T} \int_T^{2T} M_z \dot{\theta} dt \geq -0.15 \).
Summary

- Introduced a framework for constructing high-order, linearly stable, partitioned solvers for general multiphysics problems
- Derived its corresponding adjoint optimization framework
- Demonstrated on an energy harvesting model problem
- Will do more challenging optimization problems in the future
Acknowledgements

This work was supported in part by the Luis W. Alvarez Postdoctoral Fellowship (MZ), by the Director, Office of Science, Office of Advanced Scientific Computing Research, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (MZ, PP), by the NASA National Aeronautics and Space Administration under grant number NNX16AP15A (MZ, PP), by the Jet Propulsion Laboratory (JPL) under Contract JPL-RSA No. 1590208 (DH), and by the National Aeronautics and Space Administration (NASA) under Early Stage Innovations (ESI) Grant NASA-NNX17AD02G (DH). The content of this publication does not necessarily reflect the position or policy of any of these supporters, and no official endorsement should be inferred.