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Lecture 1

Dinakar Ramakrishnan

0.1 The terms

Enzyme: Catalyst; one aiding (or initiating) the action without
being changed by it
(like Mercutio in Romeo and Juliet)
from the German word Enzym, derived from the Greek word
Enzumos, meaning “leavened”:
En: Within, zume: leaven

Kinetics: Relating to motion
(eg., of a particle in Physics, of a product in a Chemical reaction)
from the Greek word(s)
Kinetikos, meaning “moving”
kinein: , to move kinetos: moved
(kinema: cinema, moving pictures)
In Chemistry: signifies rate of change in a reaction

Mathematics: Science of formal systems (modern definition)
from the Greek word(s)
Mathema, meaning science, knowledge;
a lesson that is learnt (modern Gr); what one learns (ancient Gr)
mathematike, mathematikos: fond of learning
Aristotle: Ta Mathematika: All things mathematical (384-322 BC)

In North America, Mathematics is abbreviated as Math, though it is in
the plural. In England and other Commonwealth countries, the abbreviation
is “Maths.”
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0.2 Mathematical modeling

Given a real world problem, perform the following steps:

(i) Look for patterns, and a possible structure

(ii) Isolate the mathematical aspect, or part, of the problem

(iii) What are the variables (dependent and independent) ?

(iv) Determine the type of math which may be useful
- differential equations, statistics, discrete math, . . .

(v) Understand the basic laws (or principles) governing the situation

(vi) Make a toy model, under very simplified assumptions:
Come up with a mathematical equation expressing the dependent vari-
ables in terms of independent ones

(vii) If successful, expand and incorporate further subtleties

(viii) Use approximations which lead to a solution

(ix) Check the validity of results/predicitons obtained with data
- experimental or numerical

(x) Make corrections in the model, which may lead to further complexity

(xi) Determine when exact solutions may be obtained, equilibria, and sta-
bility

(xii) Estimate those quantities which cannot be calculated explicitly or mea-
sured in an experiment.

0.3 An Example from Population Dynamics

Consider the following problem:

Suppose the population of a region is P0 at the start of a measurement, say
at t = t0, and it increases at a constant rate of k per unit time. What is the
population P (t) at time t = T?
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Since it involves the rate of change, it is natural to consider the derivative.
We are given that P ′(t) = k. The simplest model we could have is to integrate
this and obtain

P (t) = kt+ P0,

which shows P (t) changes linearly. Plugging in t = T gives the answer
searched for.

But this is too simple, since it does not count the number of deaths in
that period. A reasonable assumption is that the number of dead is a fixed
fraction of the population per unit time So the differential equation providing
a better model for the problem is

P ′(t) = k − rP (t),

for a fixed (non-zero) “rate” r. This ODE can also be solved, though not so
simply. Experience tells one to look for a solution of the form

P (t) = Ae−rt +B,

which reduces t the simple case when r = 0. Then

P ′(t) = −rAe−rt = −r(P (t)−B),

which implies
B = k/r.

Moreover,
P0 = P (0) = A+B = A+ k/r,

yielding the solution

P (t) =

(
P0 −

k

r

)
e−rt +

k

r
.

Note that as t → ∞, e−rt → 0 since r is positive (by hypothesis), implying
that the solution P (t) for very large time t approaches k/r.

Of course even this refined model gives only an approximate solution,
since the rate r is usually time dependent as well, as is k, but there are no
simple formulas for them as a function of time.

4



0.4 The Law of Mass Action

In many instances, for example in enzyme kinetics, we will rely, for the
mathematical model, the following “law,” or principle:

The rate of a single step reaction is proportional to the product of the con-
centrations of the reactants.

In other words if we have a reaction in which A1, a2, . . . , Arm combine to
produce a product P , denoted symbolically as

A1 + A2 + · · ·+ Am −→ P,

then for a constant k, called the rate constant, one should have the differential
equation

p′(t) = ka1a2 . . . am,

where the lower case letters such as p, aj, denote the concentrations of the
(corresponding upper case terms) P,Aj, for j = 1, 2, . . . ,m. This can be
extended to the case where there are several products.

One often denotes p′(t) (= dp
dt
) by v, the “velocity.”

Here is the heuristic reasoning to justify assuming this principle:

At any time t, the number of possible reactions is measured by the prob-
ability of collisions of molecules. Suppose (i) there are large numbers of
molecules, and (ii) all collisions are equally probable. Then the probability of
a collision should be proportional to the product of the concentrations of the
reactants, when they are measured in molarity.

0.5 DiffEQs for Reversible Reactions

A single step reaction

A1 + A2
k1−→ B

(with rate constant k1) is often reversible to obtain

A1 + A2
k2←− B,

for a rate constant k2. Sometimes we will combine the two and write

A1 + A2 ↔ B.
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Applying the Law of Mass Action, we get the differential equations

a′j(t) k2b− k1a1a2, for j = 1, 2,

and
b′(t) = −k2b+ k1a1a2.

These equations are called ordinary since they do not involve any partial
derivatives, which is because they all depend on just one independent vari-
able, namely t. They are of first order because the highest order of the deriva-
tives which occur is 1. They are non-linear because of the degree 2 term a1a2.
(A monomial xn1

1 xn2
2 . . . xnm

m is said to be of degree n = n1+n2+. . . nm, which
is linear if, and only if, n = 1.)

Some prefer to write k−1 for k2 to indicate that it is the constant for the
reaction in the reverse direction.

We will write ODE to signify Ordinary Differential Equation.

Note that by adding the differential equations above, we obtain, for each
j ≤ 2,

a′j(t) + b′(t) = 0.

In other words, aj + b is independent of time, and so must equal the initial
value at t = t0, i.e., at any time t,

aj(t) + b(t) = aj,0 + b0.

0.6 A simplistic model of enzyme kinetics

The presence of enzymes speed up biochemical reactions, and lead to prod-
uct(s) from substrate(s). Substrates are molecules on which an enzyme acts.)
There are many examples of enzymes, and a simple one is amylase, an enzyme
found in human saliva, which turns the substrate maltose into the product
glucose syrup. Another one is caralase which breaks down the substrate
hydrogen peroxide (= H2O2), which is a harmful chemical found in cells.
Enzymes are usually proteins, but not always, since there are rybozymes,
which are RNA-based. Conversely, there are (many) proteins which are not
catalytic, and so not enzymes, such as hormones and transporters.

The single step reaction expressing the action of an enzyme E acting on
a substrate S to produce a product P , with E unaffected, is

S + E −→ P + E,
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which, by the Law of Mass Action, leads to the ODE:

v(t) = p′(t) = k1se,

where (again) the lower case letters denote the concentrations of the upper
case quantities. This simple minded model leads to the formal solution (with
p0 = p(t0)):

p(t) = p0 + k1

∫ t

t0

s(t)e(t)dt,

which can be integrated if se is a simple function of t.
This model does not lead to a satisfactory result, for the equation for the

rate v of the product implies that if e is fixed constant, v is proportional
to s, which implies that we can in particular make v0 as large as we want
by increasing s0. This does not agree with experiments, as saturating the
reaction with substrate does not result in a higher v0.

0.7 A better model

To take care of the problem above, one introduces an intermediate compound
(or complex) C, which first reaches an equilibrium with S + E, and then
slowly decomposes, producing the desired product P and E back again like
the Phoenix in Greek mythology. Taking also into account that the first
reaction is to a degree reversible, one is led to the schematic

S + E ↔ C → P + E,

with rate constants k1 for S + E → C, k2 for C → S + E, and k3 for
C → P + E.

Applying the Law of Mass Action, we are led to the following system of
coupled, first order, non-linear ODEs:

(1)
ds

dt
= −k1se+ k2c

(2)
dc

dt
= k1se− (k2 + k3)c

(3)
de

dt
= −k1se+ (k2 + k3)c
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(4) v =
dp

dt
= k3c

It is not easy to just write down a solution analytically, due to the non-
linearity. Numerical solutions are possible, and also possible are recursive
solutions. We will investigate them in more detail in this course.

Adding equations (3) and (4), we see that the derivative of e+ c is zero,
leading to the result (for all t)

c(t) + e(t) = e0;

c0 = 0 as there was no intermediate complex C initially. As e(t) goes to e0
as t → ∞, c(t) starts off at 0 but then increases, taking the value e0 − e(t)
at time t, the slowly falling to 0 as t goes to ∞.

When we combine this observation on c with equation (4), we see that
the rate v of production of the product P starts at 0, steadily increases, and
then falls to 0 at very large time. Since the onject is to produce as much P
as possible, it is of great interest to know vmax, the maximum value taken by
v in the time interval [0,∞). Equally, we want to know the “peak time(s)”
tmax when v = vmax. The best situation is tmax is close enough to the starting
point.

Finally, note that if we add equations (1), (2) and (4) together, we get

s′(t) + c′(t) + p′(t) = 0,

implying that at any time t,

s(t) + c(t) + p(t) = s0.
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