
Chapter 8

Change of Variables, Parametrizations, Surface
Integrals

§0. The transformation formula

In evaluating any integral, if the integral depends on an auxiliary function of the
variables involved, it is often a good idea to change variables and try to simplify the
integral. The formula which allows one to pass from the original integral to the new
one is called the transformation formula (or change of variables formula). It
should be noted that certain conditions need to be met before one can achieve this,
and we begin by reviewing the one variable situation.

LetD be an open interval, say (a, b), in R , and let ϕ : D → R be a 1-1 , C1 mapping
(function) such that ϕ′ 6= 0 on D. Put D∗ = ϕ(D). By the hypothesis on ϕ, it’s either
increasing or decreasing everywhere on D. In the former case D∗ = (ϕ(a), ϕ(b)), and
in the latter case, D∗ = (ϕ(b), ϕ(a)). Now suppose we have to evaluate the integral

I =

b∫

a

f(ϕ(u))ϕ′(u) du,

for a nice function f. Now put x = ϕ(u), so that dx = ϕ′(u) du. This change of
variable allows us to express the integral as

I =

ϕ(b)∫

ϕ(a)

f(x) dx = sgn(ϕ′)
∫

D∗
f(x) dx,

where sgn(ϕ′) denotes the sign of ϕ′ on D. We then get the transformation formula

∫

D

f(ϕ(u))|ϕ′(u)| du =

∫

D∗
f(x) dx

This generalizes to higher dimensions as follows:

Theorem Let D be a bounded open set in Rn, ϕ : D → Rn a C1, 1-1 mapping
whose Jacobian determinant det(Dϕ) is everywhere non-vanishing on D, D∗ = ϕ(D),
and f an integrable function on D∗. Then we have the transformation formula

∫
· · ·

∫

D

f(ϕ(u))| det Dϕ(u)| du1... dun =

∫
· · ·

∫

D∗
f(x) dx1... dxn.
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Of course, when n = 1, det Dϕ(u) is simply ϕ′(u), and we recover the old formula.
This theorem is quite hard to prove, and we will discuss the 2-dimensional case in
detail in §1. In any case, this is one of the most useful things one can learn in Calculus,
and one should feel free to (properly) use it as much as possible.

It is helpful to note that if ϕ is linear, i.e., given by a linear transformation
with associated matrix M , then Dϕ(u) is just M . In other words, the Jacobian
determinant is constant in this case. Note also that ϕ is C1, even C∞, in this case,
and moreover ϕ is 1− 1 iff M is invertible, i.e., has non-zero determinant. Hence ϕ is
1− 1 iff det Dϕ(u) 6= 0. But this is special to the linear situation. Many of the cases
where change of variables is used to perform integration are when ϕ is not linear.

§1. The formula in the plane

LetD be an open set in R2. We will call a mapping ϕ : D → R2 as above primitive
if it is either of the form

(P1) (u, v) → (u, g(u, v))

or of the form

(P2) (u, v) → (h(u, v), v),

with ∂g/∂v, ∂h/∂u nowhere vanishing on D. (If ∂g/∂v or ∂h/∂u vanishes at a finite
set of points, the argument below can be easily extended.)

We will now prove the transformation formula when ϕ is a composition of two
primitive transformations, one of type (P1) and the other of type (P2).

For simplicity, let us assume that the functions ∂g/∂v(u, v) and ∂h/∂u(u, v) are
always positive. (If either of them is negative, it is elementary to modify the argu-
ment.) Put D1 = {(h(u, v), v)|(u, v) ∈ D} and D∗ = {(x, g(x, v))|(x, v) ∈ D1}. By
hypothesis, D∗ = ϕ(D).

Enclose D1 in a closed rectangle R, and look at the intersection P of D1 with a
partition of R, which is bounded by the lines x = xm,m = 1, 2, ..., and v = vr, r =
1, 2, ..., with the subrectangles Rmr being of sides 4x = l and 4v = k. Let R∗,
respectively R∗

mr, denote the image of R, respectively Rmr, under (u, v) → (u, g(u, v)).
Then each R∗

mr is bounded by the parallel lines x = xm and x = xm + l and by the
arcs of the two curves y = g(x, vr) and y = g(x, vr + k). Then we have

area(R∗
mr) =

xm+l∫

xm

(g(x, vr + k)− g(x, vr)) dx.

By the mean value theorem of 1-variable integral calculus, we can write

area(R∗
mr) = l[g(x′m, vr + k)− g(x′m, vr)],

2



for some point x′m in (xm, xm+l). By the mean value theorem of 1-variable differential
calculus, we get

area(R∗
mr) = lk

∂g

∂v
(x′m, v′r),

for some x′m ∈ (xm, xm + l) and v′r ∈ (vr, vr + k). So, for any function f which is
integrable on D∗, we obtain

∫∫

D∗
f(x, y) dx dy = lim

P

∑
m,r

klf(x′m, g(x′m, v′r))
∂g

∂v
(x′m, v′r).

The expression on the right tends to the integral
∫∫
D1

f(x, g(x, v))∂g
∂v

(x, v) dx dv. Thus

we get the identity

∫∫
D∗

f(x, y) dx dy =
∫∫
D1

f(x, g(x, v))∂g
∂v

(x, v) dx dv

By applying the same argument, with the roles of x, y (respectively g, h) switched,
we obtain

∫∫
D1

f(x, g(x, v))∂g
∂v

(x, v) dx dy =
∫∫
D

f(h(u, v), g(h(u, v), v))∂g
∂v

(h(u, v), v)∂h
∂u

(u, v) du dv

Since ϕ = g ◦ h we get by chain rule that

det Dϕ(u, v) =
∂h

∂u
(u, v)

∂g

∂v
(h(u, v), v),

which is by hypothesis > 0. Thus we get

∫∫
D∗

f(x, y) dx dy =
∫∫
D

f(ϕ(u, v))| det Dϕ(u, v)| du dv

as asserted in the Theorem.
How to do the general case of ϕ? The fact is, we can subdivide D into a finite union

of subregions, on each of which ϕ can be realized as a composition of primitive trans-
formations. We refer the interested reader to chapter 3, volume 2, of ”Introduction
to Calculus and Analysis” by R. Courant and F. John.

§2. Examples
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(1) Let Φ = {(x, y) ∈ R2|x2+y2 ≤ a2}, with a > 0. We know that A = area(Φ) = πa2.
But let us now do this by using polar coordinates. Put

D = {(r, θ) ∈ R2|0 < r < a, 0 < θ < 2π},

and define ϕ : D → Φ by
ϕ(r, θ) = (r cos θ, r sin θ).

Then D is a connected, bounded open set, and ϕ is C1, with image D∗ which is the
complement of a negligible set in Φ; hence any integration over D∗ will be the same
as doing it over Φ. Moreover,

∂ϕ

∂r
= (cos θ, sin θ) and

∂ϕ

∂θ
= (−r sin θ, r cos θ).

Hence

det(Dϕ) = det

(
cos θ −r sin θ
sin θ r cos θ

)
= r,

which is positive on D. So ϕ is 1− 1.
By the transformation formula, we get

A =

∫∫

Φ

dx dy =

∫∫

D

| det Dϕ(r, θ)| dr dθ =

a∫

0

2π∫

0

r dr dθ =

=

a∫

0

r dr

2π∫

0

dθ = 2π

a∫

0

r dr = 2π
r2

2

]a

0

= πa2.

We can justify the iterated integration above by noting that the coordinate func-
tion (r, θ) → r on the open rectangular region D is continuous, thus allowing us to
use Fubini.

(2) Compute the integral I =
∫ ∫

R
xdxdy where R is the region {(r, φ) | 1 ≤ r ≤

2, 0 ≤ φ ≤ π/4}.

We have I =
∫ 2

1

∫ π/4

0
r cos(φ)rdrdφ = sin(φ)]π/4

0 · r3

3

]2

1
=

√
2

2
(8/3− 1/3) = 7

√
2

6
.

(3) Let Φ be the region inside the parallelogram bounded by y = 2x, y = 2x−2, y =
x and y = x + 1. Evaluate I =

∫∫
Φ

xy dx dy.

The parallelogram is spanned by the vectors (1, 2) and (2, 2), so it seems reasonable
to make the linear change of variable

(
x
y

)
=

(
1 2
2 2

)(
u
v

)
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since then we’ll have to integrate over the box [0, 1]× [0, 1] in the u− v-region. The
Jacobian matrix of this transformation is of course constant and has determinant −2.
So we get

I =

∫ 1

0

∫ 1

0

(u + 2v)(2u + 2v)| − 2|dudv = 2

∫ 1

0

∫ 1

0

(2u2 + 6uv + 4v2)dudv

= 2

∫ 1

0

2u3/3 + 3u2v + 4v2u
]1

0
dv = 2

∫ 1

0

(2/3 + 3v + 4v2)dv

= 2(2v/3 + 3v2/2 + 4v3/3
]1

0
) = 2(2/3 + 3/2 + 4/3) = 7.

(4) Find the volume of the cylindrical region in R3 defined by

W = {(x, y, z)|x2 + y2 ≤ a2, 0 ≤ z ≤ h},

where a, h are positive real numbers. We need to compute

I = vol(W ) =

∫∫∫

W

dx dy dz.

It is convenient here to introduce the cylindrical coordinates given by the trans-
formation

ϕ : D → R3

given by

ϕ(r, θ, z) = (r cos θ, r sin θ, z), where D = {0 < r < a, 0 < θ < 2π, 0 < z < h}.

It is easy to see ϕ is 1-1, C1 and onto the interior D∗ of W. Again, since the boundary
of W is negligible, we may just integrate over D∗. Moreover,

| det Dϕ| = | det




cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1


 | = r

By the transformation formula,
Since the function (r, θ, z) → r is continuous on D, we may apply Fubini and

obtain

I =

h∫

0

a∫

0

2π∫

0

r dr dθ dz = πa2h,

which is what we expected.

(5) Let W be the unit ball B0(1) in R3 with center at the origin and radius 1.
Evaluate
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I =

∫∫∫

W

e(x2+y2+z2)3/2

dx dy dz.

Here it is best to use the spherical coordinates given by the transformation

ψ : D → R3, (ρ, θ, φ) → (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ),

where D = {0 < ρ < 1, 0 < θ < 2π, 0 < φ < π}. Then ψ is C1, 1-1 and onto W minus
a negligible set (which we can ignore for integration). Moreover

det(Dψ) = det




sin φ cos θ −ρ sin φ sin θ ρ cos φ cos θ
sin φ sin θ ρ sin φ cos θ ρ cos φ sin θ

cos φ 0 −ρ sin φ


 =

= cos φ det

(−ρ sin φ sin θ ρ cos φ cos θ
ρ sin φ cos θ ρ cos φ sin θ

)
− ρ sin φ det

(
sin φ cos θ −ρ sin φ sin θ
sin φ sin θ ρ sin φ cos θ

)
=

= −ρ2(cos φ)2 sin φ− ρ2(sin φ)3 = −ρ2 sin φ.

Note that sin φ is > 0 on (0, π). Hence | det(Dψ)| = ρ2 sin φ, and we get (by the
transformation formula):

I =

1∫

0

π∫

0

2π∫

0

eρ3

ρ2 sin φ dρ dφ dθ =

1∫

0

eρ3

ρ2 dρ

π∫

0

sin φ dφ

2π∫

0

dθ =

The function (ρ, θ, φ) → eρ3
ρ2 sin φ is continuous on D, and so we may apply

Fubini and perform ietrated integration (on D). We obtain

= 2π

1∫

0

eρ3

ρ2 dρ (− cos φ)|π0 =
4π

3

1∫

0

eu du,

where u = ρ3

=
4π

3
eu

]1

0

=
4π

3
(e− 1).

§3. Parametrizations

Let n, k be positive integers with k ≤ n. A subset Φ of Rn is called a parametrized
k-fold iff there exist a connected region T in Rk together with a C1, 1-1 mapping

ϕ : T → Rn, u → (x1(u), x2(u), ..., xn(u)),

such that ϕ(T ) = Φ.
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It is called a parametrized surface when k = 2, and a parametrized curve when
k = 1.
Example: Let T = {(u, v) ∈ R2|0 ≤ u < 2π,−π

2
≤ v < π

2
}. Fix a positive number

a, and define
ϕ : T → R3 by ϕ(u, v) = (x(u, v), y(u, v), z(u, v)),

where

x(u, v) = a cos u cos v, y(u, v) = a sin u cos v, and z(u, v) = a sin v.

Then

x(u, v)2 + y(u, v)2 + z(u, v)2 = a2(cos2 u cos2 v + sin2 u cosv + sin2 v) =

= a2(cos2 v + sin2 v) = a2.

Also, given (x, y, z) ∈ R3 such that x2 + y2 + z2 = a2 and (x, y, z) 6= (0, 0,±1), we
can find u, v ∈ T such that x = x(u, v), y = y(u, v) and z = z(u, v). So we see that
ϕ is C1, 1-1 mapping onto the standard sphere S0(a) of radius a in R3, minus 2
points. If we want to integrate over the sphere, removing those two points doesn’t
make a difference because they form a set of content zero.

§4. Surface integrals in R3

Let Φ be a parametrized surface in R3, given by a C1, 1− 1 mapping

ϕ : T → R3, T ⊂ R2, ϕ(u, v) = (x(u, v), y(u, v), z(u, v)).

(When we say ϕ ∈ C1, we mean that it is so on an open set containing T.) Let
ξ = (x, y, z) be a point on Φ. Consider the curve C1 on Φ passing through ξ on which
v is constant. Then the tangent vector to C1 at ξ is simply given by ∂ϕ

∂u
(ξ). Similarly,

we may consider the curve C2 on Φ passing through ξ on which u is constant. Then
the tangent vector to C2 at ξ is given by ∂ϕ

∂v
(ξ). So the surface Φ has a tangent

plane JΦ(ξ) at ξ iff ∂ϕ
∂u

and ∂ϕ
∂v

are linearly independent there. From now on we will
assume this to be the case (see also the discussion of tangent spaces in Ch. 4 of the
class notes). When this happens at every point, we call Φ smooth. (In fact, for
integration purposes, it suffices to know that ∂ϕ

∂u
and ∂ϕ

∂v
are independent except at a

set {ϕ(u, v)} of content zero.)
By the definition of the cross product, there is a natural choice for a normal

vector to Φ at ξ given by:

∂ϕ

∂u
(ξ)× ∂ϕ

∂v
(ξ).

Definition : Let f be a bounded scalar field on the parametrized surface Φ. The
surface integral of f over Φ, denoted

∫∫
Φ

f dS, is given by the formula

∫∫

Φ

f dS =

∫∫

T

f(ϕ(u, v))||∂ϕ

∂u
(ξ)× ∂ϕ

∂v
(ξ)|| du dv.
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We say that f is integrable on Φ if this integral converges. An important special
case is when f = 1. In this case, we get

area(Φ) =
∫∫
T

||∂ϕ
∂u

(ξ)× ∂ϕ
∂v

(ξ)|| du dv

Note that this formula is similar to that for a line integral in that we have to put in
a scaling factor which measures how the parametrization changes the (infinitesimal)
length of the curve (resp. area of the surface). Note also that unlike the case of curves
this formula only covers the case of surfaces in R3 rather than in a general Rn.

Example: Find the area of the standard sphere S = S0(a) in R3 given by
x2 + y2 + z3 = a2, with a > 0. Recall the parametrization of S from above given by

ϕ : T → R3 , ϕ(u, v) = (x(u, v), y(u, v), z(u, v)),

T = {(u, v) ∈ R2|0 ≤ u < 2π,−π

2
≤ v <

π

2
},

x(u, v) = a cos u cos v, y(u, v) = a sin u cos v, z(u, v) = a sin v.

So we have

∂ϕ

∂u
= (−a sin u cos v, a cos u cos v, 0) and

∂ϕ

∂v
= (−a cos u sin v,−a sin u sin v, a cos v).

⇒ ∂ϕ

∂u
× ∂ϕ

∂v
= det




i j k
−a sin u cos v a cos u cos v 0
−a cos u sin v −a sin u sin v a cos v


 =

= det

(
a cos u cos v 0
−a sin u sin v a cos v

)
i− det

(−a sin u cos v 0
−a cos u sin v a cos v

)
j+

+ det

(−a sin u cos v a cos u cos v
−a cos u sin v −a sin u sin v

)
k =

= a2 cos u cos2 vi + a sin u cos2 vj + a2(sin2 u sin v cos v + cos2 u sin v cos v)k =

= a2 cos u cos2 vi + a sin u cos2 vj + a2 sin v cos vk.

⇒ ||∂ϕ

∂u
× ∂ϕ

∂v
|| = a2(cos2 u cos4 v + sin2 u cos4 v + sin2 v cosv)1/2 =

= a2(cos4 v + sin2 v cos2 v)1/2 = a2| cos v|.
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⇒ area(S) = a2

2π∫

0

du

π/2∫

−π/2

| cos v| dv = 2πa2

π/2∫

−π/2

cos v dv

⇒ area(S) = 4πa2.

Here is a useful result:

Proposition: Let Φ be a surface in R3 parametrized by a C1, 1-1 function

ϕ : T → R3 of the form ϕ(u, v) = (u, v, h(u, v)).

In other words, Φ is the graph of z = h(x, y). Then for any integrable scalar field f
on Φ, we have

∫∫

Φ

f dS =

∫∫

T

f(u, v, h(u, v))

√
(
∂h

∂u
)2 + (

∂h

∂v
)2 + 1 du dv.

Proof.

∂ϕ

∂u
= (1, 0,

∂h

∂u
) and

∂ϕ

∂v
= (0, 1,

∂h

∂v
).

⇒ ∂ϕ

∂u
× ∂ϕ

∂v
= det




i j k
1 0 ∂h

∂u

0 1 ∂h
∂v


 = −∂h

∂u
i− ∂h

∂v
j + k.

⇒ ||∂ϕ

∂u
× ∂ϕ

∂v
|| =

√
(
∂h

∂u
)2 + (

∂h

∂v
)2 + 1.

Now the assertion follows by the definition of
∫∫
Φ

f dS.

Example. Let Φ be the surface in R3 bounded by the triangle with vertices (1,0,0),
(0,1,0) and (0,0,1). Evaluate the surface integral

∫∫
Φ

x dS.

Note that Φ is a triangular piece of the plane x + y + z = 1. Hence Φ is parametrized
by

ϕ : T → R3 , ϕ(u, v) = (u, v, h(u, v)),

where h(u, v) = 1− u− v, and T = {0 ≤ v ≤ 1− u, 0 ≤ u ≤ 1}.

∂h

∂u
= −1 ,

∂h

∂v
= −1, and

√
(
∂h

∂u
)2 + (

∂h

∂v
)2 + 1 =

√
1 + 1 + 1 =

√
3.
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By the Proposition above, we have:

∫∫

Φ

x dS =
√

3

1∫

0

1−u∫

0

u du dv =
√

3

1∫

0

u(1− u) du =

√
3

6
.

There is also a notion of an integral of a vector field over a surface. As in the
case of line integrals this is in fact obtained by integrating a suitable projection of
the vector field (which is then a scalar field) over the surface. Whereas for curves the
natural direction to project on is the tangent direction, for a surface in R3 one uses
the normal direction to the surface.

Note that a unit normal vector to Φ at ξ = ϕ(u, v) is given by

n =
∂ϕ
∂u

(ξ)× ∂ϕ
∂v

(ξ)

||∂ϕ
∂u

(ξ)× ∂ϕ
∂v

(ξ)||

and that n = n(u, v) varies with (u, v) ∈ T . This defines a unit vector field on Φ
called the unit normal field.

Definition: Let F be a vector field on Φ. Then the surface integral of F over
Φ, denoted

∫∫
Φ

F · n ds, is defined by

∫∫

Φ

F · n dS =

∫∫

T

F (ϕ(u, v)) · n(u, v)||∂ϕ

∂u
× ∂ϕ

∂v
|| du dv.

Again, we say that F is integrable over Φ if this integral converges.

By the definition of n, we have:

∫∫

Φ

F · n dS =

∫∫

T

F (ϕ(u, v)) · (∂ϕ

∂u
× ∂ϕ

∂v
) du dv.

As in the case of the line integral there is a notation for this integral which doesn’t
make explicit reference to the parametrization ϕ but only to the coordinates (x, y, z)
of the ambient space. If F = (P,Q, R) we write

∫∫

Φ

F · n dS =

∫∫

Φ

Pdy ∧ dz + Qdz ∧ dx + Rdx ∧ dy. (1)

Here the notation v ∧ w indicates a product of vectors which is bilinear (i.e.
(λ1v1 + λ2v2) ∧ w = λ1(v1 ∧ w) + λ2(v1 ∧ w) and similarly in the other variable) and
antisymmetric (i.e. v∧w = −w∧v, in particular v∧v = 0). In this sense ∧ is similar
to × on R3 except that v ∧ w does not lie in the same space where v and w lie. On
the positive side v∧w can be defined for vectors v, w in any vector space. After these
lengthy remarks let’s see how this formalism works out in practice. If the surface Φ is
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parametrized by a function ϕ(u, v) = (x(u, v), y(u, v), z(u, v)) then dy = ∂y
∂u

du + ∂y
∂v

dv
and by the properties of ∧ outlined above we have

dy ∧ dz = (
∂y

∂u

∂z

∂v
− ∂y

∂v

∂z

∂u
)du ∧ dv

which is the x-coordinate of ∂ϕ
∂u
× ∂ϕ

∂v
. So the equation (1) does indeed hold if we

interpret an integral
∫

T
fdu ∧ dv (over some region T in R2) as an ordinary double

integral
∫

T
fdudv whereas

∫
T

fdv ∧ du equals − ∫
T

fdudv. All of this suggests that
one should give meaning to dx, dy, dz as elements of some vector space (instead of
being pure formal as in the definition of multiple integrals). This can be done and is
in fact necessary to a complete development of integration in higher dimensions and
on spaces more general than Rn.
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