CHAPTER 7

DIV, GRAD, AND CURL

1. THE OPERATOR V AND THE GRADIENT:

Recall that the gradient of a differentiable scalar field ¢ on an open
set D in R" is given by the formula:

) Vo= (32 g ).

Oxy Oxs’ 7 Oz,

It is often convenient to define formally the differential operator in
vector form as:

2) v:(a o i).

Oxy Oxs’ 7 Oz,

Then we may view the gradient of ¢, as the notation V¢ suggests,
as the result of multiplying the vector V by the scalar field . Note
that the order of multiplication matters, i.e., 22 is not go%.

> Oz :
Let us now review a couple of facts about the gradient. For any
j<n, % is identically zero on D iff p(z1,xs, ..., x,) is independent
J

of z;. Consequently,

(3) Vo=0onD <« ¢ = constant.

Moreover, for any scalar ¢, we have:

(4) Vi is normal to the level set L.(p).

Thus V¢ gives the direction of steepest change of ¢.

2. DIVERGENCE

Let F': D — R", D C R", be a differentiable vector field. (Note that
both spaces are n-dimensional.) Let Fy, Fy, ..., F, be the component

(scalar) fields of f. The divergence of F is defined to be
1
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(5) div(F) =V -F =) =2
This can be reexpressed symbolically in terms of the dot product as

0 0
F=(—,...,=—) (F1,..., F,).
(6) \Y (axla 781'“) ( 1, ) n)
Note that div(F) is a scalar field.

Given any n X n matrix A = (a;;), its trace is defined to be:

tI‘(A) = i (0778
i=1

Then it is easy to see that, if DF' denotes the Jacobian matrix of F,
i.e., the n x n-matrix (0F;/0x;), 1 <1i,j <n, then

(7) V. F =tr(DF).

Let ¢ be a twice differentiable scalar field. Then its Laplacian is
defined to be

(8) Vip =V (V).
It follows from (1),(5),(6) that

One says that ¢ is harmonic iff VZp = 0. Note that we can formally
consider the dot product

000 0 o
Ox," " O0x, “Ox; " Oz, — 0x?

(10) V-V =(
Then we have

(11) Vip = (V- V).
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Examples of harmonic functions:
(i) D =R? p(z,y) = e cosy.

Then a_<p = e” cosy, g_<p = —e”siny,

and S5 = e*cosy, g2f = —e%cosy. So, Vip =
(ii) D =R* - {0}. p(z,y) = log(lf +y?) = 2log(r). o

Then 8—5 = —wzz_fym g_;j = 22_fy2a 3552 = 2z (—ig-cgﬁy—f);c(%) = _(igﬁ_y_;;Z)a and
o _ 2a”+y?)—2y(2y) _ 2(a®—y?) 2
W= e e 50 VY

iii) D = R* — {0}. o(x1, 29, ....xn) = (22 + 22+ -+ 22)¥2 = ro for
( ) 2 ) ) 9 1 2 n
some fixed a € R.

Then 22 = aro 1% = qr~2z, and

ox; r
25 o2 v+ ar 1
Hence V2 =30 (ala—2)r* 2 + ar* %) = ala — 2+ n)r* 2.
So¢isharmonicfora:00ra:2—n( = —1 for n =3).

3. CROSS PRODUCT IN R3

The three-dimensional space is very special in that it admits a vec-
tor product, often called the cross product. Let i,j.k denote the
standard basis of R3. Then, for all pairs of vectors v = zi + yj + 2k
and v' = 2'i + ¢/j + 2'k, the cross product is defined by

n R

(12) vxv' = det (iﬂ/ 31/ /) = (y2'—y'2)i— (22 —2'2)j+ (zy — 2"y)k.

I\

Lemma 1. (a) v x v/ = —v' X v (anti-commutativity)
(b)ixj=k jx k=i kxi—j
(c)v-(vxv)=0v-(vxv)=0.

Corollary: v x v = 0.
Proof of Lemma (a) v' X v is obtained by interchanging the second
and third rows of the matrix whose determinant gives v x v’. Thus
vV xv=—vxv.

(b) i x j = det <é é 15), which is k as asserted. The other two iden-
tities are similar.

(c)v-(vxv') =x(yz' —y'z)—y(zz —2'z)+2z(zy —2'y) = 0. Similarly
for v’ - (v x V).

[e=]

Geometrically, v x v' can, thanks to the Lemma, be interpreted as
follows. Consider the plane P in R? defined by v,»’. Then v x v/ will
lie along the normal to this plane at the origin, and its orientation is
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given as follows. Imagine a corkscrew perpendicular to P with its tip
at the origin, such that it turns clockwise when we rotate the line Ov
towards Ov’ in the plane P. Then v x v will point in the direction in
which the corkscrew moves perpendicular to P.

Finally the length ||v x ¢/|| is equal to the area of the parallelogram
spanned by v and v’. Indeed this area is equal to the volume of the
parallelepiped spanned by v, v’ and a unit vector u = (uy, uy, u,) or-
thogonal to v and v'. We can take u = v xv'/||v x ¢|| and the (signed)

volume equals
Uy Uy Uy
det [ z v 2z | =u.(yz' —y'2) —uy(xz' — 2'2) + u(ay’ — 2'y)
:L,/ y/ Z/

=|lv x V|| - (Ul + ul +uZ) = [Jvx V.

4. CURL OF VECTOR FIELDS IN R3

Let F: D — R3, D C R? be a differentiable vector field. Denote by
P,Q,R its coordinate scalar fields, so that F' = Pi+ )j + Rk. Then
the curl of F is defined to be:

i j k
(13) CUI"I(F)ZVXF:det<££J§’z).
P Q R

Note that it makes sense to denote it V x F, as it is formally the
cross product of V with f. Explicitly we have
VXF = (0R/0y — 0Q/0z)i—(0R/0x — OP/0z) j+(0Q/0x — OP/dy) k

If the vector field F' represents the flow of a fluid, then the curl
measures how the flow rotates the vectors, whence its name.

Proposition 1. Let h (resp. F) be a C* scalar (resp. wvector) field.
Then

(a): V x (Vh)=0.
(b): V- (V x F) = 0.

Proof: (a) By definition of gradient and curl,

i j k
VX(Vh):det<£a%£>

oh 9h Bh

Oxr Oy Oz

_l_

[ 9*h B 9°h - 0°h B O?h 1\ 0?h B 0?h K
~ \Oydz 020y 9:0x 029z )" Ox0dy  Oyox
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Since h is C2, its second mixed partial derivatives are independent of
the order in which the partial derivatives are computed. Thus, V x
(Vfh)=0.

(b) By the definition of divergence and curl,

) a)(aR 9Q AR 9P 9Q ap>

v’(VXF):(a—xaﬁ—y,& T a. T A

Fy_%?_%—i_@z’@m dy

B O*R B 0%Q (- 0*R n O0?P n 0%Q B O0*P
- \dzdy  0x0z oyoxr  Oyoz 020x 020y )
Again, since F is C?, 88;52 = 88;_8]17 etc., and we get the assertion.

O

Warning: There exist twice differentiable scalar (resp. vector)
fields A (resp. F'), which are not C?, for which (a) (resp. (b)) does not
hold.

When the vector field F' represents fluid flow, it is often called ir-
rotational when its curl is 0. If this flow describes the movement of
water in a stream, for example, to be irrotational means that a small
boat being pulled by the flow will not rotate about its axis. We will
see later that the condition V x F' = 0 occurs naturally in a purely
mathematical setting as well.

Examples: (i) Let D = R® — {0} and F(z,y, 2) = zl5i — iyl
Show that F' is irrotational. Indeed, by the definition of curl,

Yy -z
(22+y2) (22+y2)

I I O G T W G e DA G TR
0z \ a2+ 2 0z \ 22 + y? I\ bz x? +y? Ay \ x2 + y?

_ [—(ﬁ +tyh) 202 (P +y?) - 2y2] K= 0

VxF:det<

Ho -
o=

o Yo
N———

(2% +y?)? (#* +9?)
(ii) Let m be any integer # 3, D = R* — {0}, and
F(z,y,2) = = (2i + yj + zk), where r = y/2? + y? + 22. Show that F
is not the curl of another vector field. Indeed, suppose F' =V x G.
Then, since F is C!, G will be C?, and by the Proposition proved
above, V- F' =V - (V x G) would be zero. But,

o 0 0
vr= () G )
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rmo_ 21.2 m ,,ﬂmfZ rm 9 2(m ,,ﬂmfZ pm _222 m Tmf2
2( 5) N yz( 5) N 2( 5)
1 m 2 2 2\,.m—2 1

:ﬂ—m(?)r —m(z® +y* 4 2°)r ):r—m(?)—m).
This is non-zero as m # 3. So F' is not a curl.

Warning: It may be true that the divergence of F' is zero, but F
is still not a curl. In fact this happens in example (ii) above if we
allow m = 3. We cannot treat this case, however, without establishing
Stoke’s theorem.

5. AN INTERPRETATION OF GREEN’S THEOREM VIA THE CURL

Recall that Green’s theorem for a plane region ® with boundary
a piecewise C! Jordan curve C says that, given any C! vector field
G = (P,Q) on an open set D containing ®, we have:

W [ (22 s f pas o

We will now interpret the term % — %—5. To do that, we think of

the plane as sitting in R® as {z = 0}, and define a C' vector field F
on D := {(z,y,2) € R|(z,y) € D} by setting F(z,y,2) = G(z,y) =
Pi+Qj. We can interpret this as taking values in R3 by thinking of its

i j k
value as Pi+Qj+0k.ThenV><F:det(§;ai,gi) - (3—Q—9—P)k,

PO 0 ox dy
because%—f:%:(). Thus we get:
oQ oOP
15 VXxF) k=——-——.
(15) (VX F) k=G =

And Green’s theorem becomes:

Theorem 1. [[(V x F)-kdzdy = §, Pdr+ Qdy

6. A CRITERION FOR BEING CONSERVATIVE VIA THE CURL

A consequence of the reformulation above of Green’s theorem using
the curl is the following:

Proposition 1. Let G : D — R?, D C R? open and simply con-
nected, G = (P,Q), be a C! vector field. Set F(x,y,2) = G(x,y), for
all (z,y,z) € R with (z,y) € D. Suppose V x F = 0. Then G is
conservative on D.
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Proof: Since V x F' = 0, the reformulation in section 5 of Green’s
theorem implies that §C Pdx + @ dy = 0 for all Jordan curves C
contained in D. QED

Example: D =R? — {(2,0) e R? | z < 0}, G(z,y) = preayed Sl mrn B
Determine if GG is conservative on D:

Again, define F(z,y,2) to be G(z,y) for all (z,y, z) in R3 such that
(r,y) € D. Since G is evidently C', F' will be C! as well. By the
Proposition above, it will suffice to check if F' is irrotational, i.e.,
V X F =0, on Dx R. This was already shown in Example (i) of
section 4 of this chapter. So G is conservative.



