Chapter 6

Green’s Theorem in the Plane

0 Introduction

Recall the following special case of a general fact proved in the previous
chapter. Let C be a piecewise C! plane curve, i.e., a curve in R? defined
by a piecewise C!-function

a:[a,b] — R?

with end points «(a) and a(b). Then for any C' scalar field ¢ defined on a
connected open set U in R? containing C, we have

/C Ve - da = p(a(b)) — plala)).

In other words, the integral of the gradient of ¢ along C, in the direction
stipulated by «, depends only on the difference, measured in the right order,
of the values of ¢ on the end points. Note that the two-point set {a,b} is
the boundary of the interval [a,b] in R. A general question which arises is to
know if similar things hold for integrals over surfaces and higher dimensional
objects, i.e., if the integral of the analog of a gradient, sometimes called an
exact differential, over a geometric shape M depends only on the integral
of its primitive on the boundary oM.

Our object in this chapter is to establish the simplest instance of such a
phenomenon for plane regions. First we need some preliminaries.



1 Jordan curves

Recall that a curve C parametrized by « : [a,b] — R? is said to be closed iff
ala) = a(b). Tt is called a Jordan curve, or a simple closed curve, iff «
is piecewise C! and 1-1 (injective) on the open interval (a,b). Geometrically,
this means the curve doesn’t cross itself. Examples of Jordan curves are
circles, ellipses, and in fact all kinds of ovals. The hyperbola defined by
a:[0,1] = R? x— £ is (for any ¢ # 0) simple, i.e., it does not intersect
itself, but it is not closed. On the other hand, the clover is closed, but
not simple.

Here is a fantastic result, in some sense more elegant than the ones in
Calculus we are trying to establish, due to the French mathematician Camille
Jordan; whence the name Jordan curve.

Theorem. Let C be a Jordan curve in R?. Then there exists connected open
sets U,V in the plane such that

(i) U, V,C are pairwise mutually disjoint,
and

(i) R»R=UUV UC.

In other words, any Jordan curve C separates the plane into two disjoint,
connected regions with C' as the common boundary. Such an assertion is
obvious for an oval but not (at all) in general. There is unfortunately no way
we can prove this magnificent result in this course. But interested students
can read a proof in Oswald Veblen’s article, “Theory of plane curves in Non-
metrical Analysis situs,” Transactions of the American Math. Society, 6, no.
1, 83-98 (1905).

The two regions U and V' are called the interior or inside and exterior
or outside of C'. To distinguish which is which let’s prove

Lemma: In the above situation exactly one of U and V' is bounded. This
is called the interior of C.

Proof. Since [a, b] is compact and « is continuous the curve C' = «a([a, b])
is compact, hence closed and bounded. Pick a disk D(r) of some large radius
r containing C. Then S := R?*\ D(r) C UUV. Clearly S is connected, so any
two points P, @ € S can be joined by a continuous path §: [0,1] — S with
P = 3(0), Q = B(1). We have [0,1] = 3~1(U) U (V) since S is covered
by U and V. Since § is continuous the sets 371(U) and 37!(V) are open
subsets of [0,1]. If P € U, say, put t, = sup{t € [0,1]|3(t) € U} € [0,1]. If



B(to) € U then, since 371 (U) is open, we find points in a small neighborhood
of ty mapped to U. If ¢ty < 1 this would mean we’d find points bigger than
to mapped into U which contradicts the definition of t5. So if B(ty) € U
then tg = 1 and @ = ((1) € U. If, on the other hand, ((ty) € V, there
is an interval of points around t; mapped to V which also contradicts the
definition of ¢y (we’d find a smaller upper bound in this case). So the only
conclusion is that if one point P € S lies in U so do all other points ). Then
S CUandV C D(r)so V is bounded.

Recall that a parametrized curve has an orientation. A Jordan curve
can either be oriented counterclockwise or clockwise. We usually orient a
Jordan curve C' so that the interior, V say, lies to the left as we traverse
the curve, i.e. we take the counterclockwise orientation. This is also called
the positive orientation. In fact we could define the counterclockwise or
positive orientation by saying that the interior lies to the left.

Note finally that the term “interior” is a bit confusing here as V' is not

the set of interior points of C'; but it is the set of interior points of the union
of V and C.

2 Simply connected regions

Let R be a region in the plane whose interior is connected. Then R is
said to be simply connected (or s.c.) iff every Jordan curve C' in R can
be continuously deformed to a point without crossing itself in the process.
Equivalently, for any Jordan curve C' C R, the interior of C' lies completely
in the interior of R.

Examples of s.c. regions:
(1) R=TR?
(2) R=interior of a Jordan curve C.

The simplest case of a non-simply connected plane region is the
annulus given by {v € R?|¢; < |[v|| < o} with 0 < ¢; < ¢p. The reason
is the hole in the middle which prevents certain Jordan curves from being
collapsed all the way.

When a region is not simply connected, one often calls it multiply con-
nected or m.c. The annulus is often said to be doubly connected because we
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can cut it into two subregions each of which is simply connected. In general,
if a region has m holes, it is said to be (m + 1)-connected, for the simple rea-
son that we can cut it into m+ 1, but no smaller, number of simply connected
subregions.

Sometimes we would need a similar, but more stringent notion. A region
R is said to be convex iff for any pair of points P, the line joining P, ()
lies entirely in R.

A star-shaped region is simply connected but not convex.

3 Green’s theorem for s.c. plane regions

Recall that if f is a vector field with image in R", we can analyze f by its
coordinate fields fi, fo, ..., fn, which are scalar fields. When n = 2 (resp.
n = 3), it is customary notation to use P,Q (resp. P,Q, R) instead of fi, fo

(resp. fi, fa, f3).

Theorem A (Green) Let f = (P,Q) be a C* vector field on a connected
open set Y in R%. Suppose C is a piecewise C* Jordan curve with inside (or
interior) U such that ® := C' UU lies entirely in Y. Then we have

4/(2—?—%—5)dmdy:ff-da

Here C' is the boundary 0® of ®, and moreover, the integral over C' is
taken in the positive direction. Note that

f ~da = (P(Jf, y)7 Q(xvy)) ’ (xl(t)v y/(t>>dt7
and so we are justified in writing
7{]@ cda = %(Pd:v + Qdy).
c c

Given any C' Jordan curve C with ® = C U U as above, we can try to
finely subdivide the region using C' arcs such that ® is the union of subre-
gions @4, ..., P, with Jordan curves as boundaries and with non-intersecting
insides/interiors, such that each ®; is simultaneously a region of type I and

4



I1 (see chapter 5). This can almost always be achieved. So we will content
ourselves, mostly due to lack of time and preparation on Jordan curves, with
proving the theorem only for regions which are of type I and I1.

Theorem A follows from the following, seemingly more precise, identities:

(i) [f %Ldedy = — § Pdx
) c

i) [f %dxdy = $ Qdy.
CI) C

Now suppose @ is of type I, i.e., of the form {a < z < b, pi(x) <y <
wa(x)}, with @ < b and ¢, @9 continuous on [a,b]. Then the boundary C
has 4 components given by

Cy: graph of p1(z), a <x <b
Cy: x=0,01(b) <y < pa(b)
C3: graph of po(z), a <x <b
Ci: x=a,p1(a) <y < paa).
As (' is positively oriented, each C; is oriented as follows: In Cf, traverse

from x = a to x = b; in Cy, traverse from y = ¢1(b) to y = o(b); in Cs, go
from = b to x = a; an in Cy, go from s(a) to ¢i(a).

It is easy to see that
/de:/de:O,

Cy Cy

since Cy and Cy are vertical segments allowing no variation in z. Hence we
have

(1)

- j'{ Pdr = — / Pdz + / Pdr | = / [P(2, ¢2(2)) — Pz, ¢ ()] dx.

C 1 Cg a

On the other hand, since f is a C! vector field, g—jyj is continuous, and since
® is a region of type I, we may apply Fubini’s theorem and get



op b Wz(ﬂﬁ)ap
//a—ydxdy:/dx / 8_y
) a w1(x)

Note that x is fixed in the inside integral on the right. We see, by the
fundamental theorem of 1-variable Calculus, that

(3)
/ oy Pz, pa(x)) — P(z, 1 (x)).

Putting together (1), (2) and (3), we immediately obtain identity (i).
Similarly (ii) can be seen to hold by exploiting the fact that ® is also of
type I1.
Hence Theorem A is now proved for a region ® which is of type I and I1.
To prove this result for a general region, the basic idea is to cut it into
a finite number of subregions each of which is of type I or of type II. For
a rigorous treatment of the general situation, read Apostol’s Mathematical

Analysis (chap. 10). For a more geometric point of view, look at Spivak’s
Calculus on Manifolds.

4 An area formula

The example below will illustrate a very useful consequence of Green’s
theorem, namely that the area of the inside of a C! Jordan curve C
can be computed as

A= 74 (wdy — ydo). *)

C

A proof of this fact is easily supplied by taking the vector field f = (P, Q)
in Theorem A to be given by P(z,y) = —y and Q(x,y) = z. Clearly, f is

C! everywhere on R?, and so the theorem is applicable. The identity for A

follows as % = —%—]; =1.



Example:

Fix any positive number r, and consider the hypocycloid C parametrized
by
a:[0,27] — R? t+ (rcos’t,rsin®t).

Then C'is easﬂy seen to be a piecewise C! Jordan curve. Note that it is also

given by x3 + y3 = 7"3 We have

2

A= 74 (ady —yd) = / (2 () — ya' () dt.

C 0
Now, /(t) = 3r cos? t(—sint), and y/(t) = 3rsin®t cost. Hence
xy' (t) — ya'(t) = (rcos® t)(3rsin®t cost) + (rsin® t)(3r cos® t sin t)

which simplifies to 3r2sin? ¢t cos? t, as sin?t + cos’t = 1. So we obtain

27 27
A:3—702 sin 2t Zdt:?)_rz 1 — cos4t .
2 2 8 2
0 0

by using the trigonometric identities sin 2u = 2sinwucosu and cos2u = 1 —
2sin?u. Finally, we then get

2

272 3r? sindt\1°"
A 16 /( cos 4t)dt 16 (t 1 )]O

0

ie.,

5 Green’s theorem for multiply connected
regions

We mentioned earlier that the annulus in the plane is the simplest example
of a non-simply connected region. But it is not hard to see that we can cut
this region into two pieces, each of which is the interior of a C! Jordan curve.
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We may then apply Theorem A of §3 to each piece and deduce statement
over the annulus as a consequence. To be precise, pick any point z in R? and
consider

b = Bz(’i”z) — BZ(Tl),
for some real numbers 71,75 such that 0 < r; < ry. Here B.(r;) denotes the
closed disk of radius r; and center z.

Let C4, resp. Cy, denote the positively oriented (circular) boundary of
B.(r1), resp. B.(ry). Let D; be the flat diameter of B.(r;), i.e., the set
{zog—r; <x <x0+7;, Y =10}, where g (resp. yo) denotes the z-coordinate
(resp. y-coordinate) of z. Then Dy N @ splits as a disjoint union of two
horizontal segments D, = Dy N {x > 29} and D_ = Dy N {z < z¢}. Denote
by C;" (resp. C;) the upper (resp. lower) half of the circle C;, for i = 1,2.
Then ® = & U &, where & (resp. ®7) is the region bounded by Ct =
CyuD_UCUD, (resp. C~ =C5 UD,UD; UD_). We can orient the
piecewise C! Jordan curves C* and C'~ in the positive direction. Let U*, U~
denote the interiors of C*,C~. Then Ut NU~ =0, and ®* = C* U U*.

Now let f = (P, Q) be a C'-vector field on a connected open set containing
B.(ry). Then, combining what we get by applying Green’s theorem for s.c.
regions to @ and &, we get:

4/ (Z—g — 88—];) dzdy = %(de + Qdy) — %(de + Qdy), *)

2 Cy

where both the line integrals on the right are taken in the positive (counter-
clockwise) direction. Note that the minus sign in front of the second line
integral on the right comes from the need to orient C* positively.

In some sense, this is the key case to understand as any multiply connected
region can be broken up into a finite union of shapes each of which can be
continuously deformed to an annulus. Arguing as above, we get the following
(slightly stronger) result:

Theorem B (Green’s theorem for m.c. plane regions) Let Cy,Cs, ..., C,
be non-intersecting piecewise C' Jordan curves in the plane with interiors
Uy,Us, ..., U, such that

(Z) Ui D OZ', Vi > 2,
and

(1) U;NU; =0, foralli,j>2.



Put ® = Cy UU; — U_,U;, which is not simply connected if r > 2. Also
let f = (P,Q) be aC" vector field on a connected open set S containing .
Then we have

4 / (Z—f - g—];) dady = j{ (Pdz + Qdy) — Z_; f (Pdx + Qdy)

1
where each Cj,j > 1 is positively oriented.

Corollary: Let Cy,...C,, f be as in Theorem B. In addition, suppose that

99 _ or everywhere on S. Then we have
ox oy

]{ (Pdz + Qdy) = Z f{ (Pdz + Qdy).

C1 =2 C;

6 The winding number

Let C' be an oriented piecewise C' curve in the plane, and let z = (xq,yo)
be a point not lying on C'. Then the winding number of C' relative
to z is intuitively the number of times C' wraps around z in the positive
direction. (If we reverse the orientation of C, the winding number changes
sign.) Mathematically, this number is defined to be

1 Y — Yo T — o
W(C,z):= %j{ (— - dx + = dy) :
C

where r = ||(z,y) — 2[l = V/(z — 20)* + (y — v0)”.
When C'is parametrized by a piecewise C! function « : [a,b] — R?, a(t) =
(u(t),v(t)), then it is easy to see that

1 [ () — () — (o) — ) ()
Wic=) =5 / (@lt) -2 T (o) —go)?

a

Some write W (a, 2) instead of W (C, z).
We note the following useful result without proof:

Proposition: Let C' be a piecewise C' closed curve in R?, and let z € R? be
a point not meeting C.



(a) W(C,z) € Z.
(b) C Jordan curve = W(C,z) € {0,1,—1}.

More precisely, in the case of a Jordan curve, W(C, z) is 0 if z is outside C,
and it equals £1 if z is inside C.

The reader is advised to do the easy verification of this Proposition for
the unit circle C'. In this case, when z is outside C', the winding number is
zero. When it is inside, W(C, z) is 1 or —1 depending on whether or not C'
is oriented in the positive (counter-clockwise) direction.

Another fun exercise will be to exhibit, for each integer n, a piecewise C!,
closed curve C' and a point z not lying on it, such that W (C,z) = n. Of
course this cannot happen if C' is a Jordan curve if n # 0, £1.

Note:  If C denotes the curve obtained from C by reversing the orientation,
then the mathematical definition does give W (C, z) = —W (C, 2).
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