Sums of transcendental dilates

David Conlon* Jeck Limt

Abstract

We show that there is an absolute constant ¢ > 0 such that |A + X - A] > e°V'°2 41| 4| for
any finite subset A of R and any transcendental number A € R. By a construction of Konyagin
and Laba, this is best possible up to the constant c.

1 Introduction
For any subset A of R and any A € R, let
A+X-A={a+ )\ :a,d € A}.

Our interest here will be in estimating the minimum size of such sums of dilates given |A].
When ) is rational, say A = p/q with p and ¢ coprime, a result of Bukh [3] implies that

[A+A- Al = (Ipl + gD A] = o(|A)),

which is best possible up to the lower-order term (though see [1] for an improvement of the lower-
order term to a constant depending only on \). The more general case where A is algebraic has
also been studied in some depth. In particular, a result of the authors [4] says that if A = (p/q)/¢
for some p, q,d € N, each taken as small as possible for such a representation, then

A+ XAl > (pY7+ g Al - o(|A)),

which is again best possible up to the lower-order term. Moreover, as noted by Krachun and
Petrov [7], for any fixed algebraic number A, the minimum size of |[A+ A- A| is always at most linear
in |A].

For X transcendental, the picture is very different. Indeed, Konyagin and Laba [6] showed that
in this case there exists an absolute constant ¢ > 0 such that

log |A|

. > oot
A+ XAl 2 Ol Tog ]

A

That is, |[A + X - A| can no longer be linear in |A|. This result was subsequently improved by
Sanders [10], by Schoen [12] and again by Sanders [11] using successive quantitative refinements
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of Freiman’s theorem [5] on sets of small doubling, with Sanders’ second bound saying that there
exists an absolute constant ¢ > 0 such that, for |A| sufficiently large,

|A+X- Al > elog” 141 4],

This already comes quite close to matching the best known upper bound, due to Konyagin and
Laba [6], which says that there exists ¢/ > 0 and, for any fixed transcendental number A, arbitrarily
large finite subsets A of R such that

A+ XAl < e Viglal| 4],

Our main result says that this upper bound is in fact best possible up to the constant ¢’.

Theorem 1.1. There is an absolute constant ¢ > 0 such that
|A+ X A| > ecViosldl) 4

for any finite subset A of R and any transcendental number \ € R.

Before proceeding to the proof of this theorem, let us briefly look at the upper bound, which
comes from considering sets of the form

A= {Zlai)\i s(ar, ... am) € [n]m}

This set has size n™ and

m—+1

A+)X-AC {me’ (b1, bmy1) € [2n]m+1}7

i=1
which has size (2n)™*+!. If we take n = 2™, we have |A| = n™ = 2m2’ <o that
A+ X-A] < (2n)™ = o(m+1)? < GCI\/MVH

for some ¢’ > 0, as required. This bound is reminiscent, both in its form and its proof, of Behrend’s
lower bound [2] for the largest subset of [n] containing no three-term arithmetic progressions. Our
Theorem 1.1 is arguably the first example where such a bound is known to be tight to this level of
accuracy.

2 Proof of Theorem 1.1

To begin, we use a simple observation of Krachun and Petrov to recast the problem.

Lemma 2.1 (Krachun—Petrov [7]). Suppose that A € C and A is a finite subset of C. Then there
exists B C Q[A] such that |B| = |A| and | B+ X-B| <|A+ XAl



Suppose now that V is the Q-vector space Q[\] with basis {1,)\,)\27...}. For any positive
integer d, let V; C V be the d-dimensional subspace spanned by {17 A2 )\d_l}, noting that
V =, Va. For any finite A C V, we must have A C V; for some d. Multiplication by X therefore
corresponds to taking the linear map ® : V' — V given by the union of the maps V; — V41 with

(xl,...,xd) — (0,3?1,...,.%‘d).

Thus, the problem of estimating |A + X - A| for finite A C R and A transcendental is equivalent
to estimating |A + ®(A)| for finite A C V. In particular, we may reformulate Theorem 1.1 in the
following terms.

Theorem 2.2. There is an absolute constant ¢ > 0 such that if A CV with |A| =n, then
|A+ ®(A)| > eVisny,

We will focus on proving this latter result, which bears some relation to our recent work [4] on
sums of linear transformations, from here on.

Before getting to the proof proper, we first note a few additional results that we will need. The
first is a discrete variant of the Brunn-Minkowski theorem taken from [4]. In what follows, for each
I C [d], we write p; : R? — R? for the projection onto the coordinates indexed by I, setting all
other coordinates to 0. Note that we may naturally extend the definition of p; to Vg, and hence to
V, by identifying V,; with Q<.

Lemma 2.3 (Conlon-Lim [4, Lemma 2.1]). For any finite subsets A, B of R%,

> Ipr(A+B)| = (A1 + B[V,
IC(d]

For our next result, we need the following estimate of Ruzsa [8] for the size of sumsets in R
We say that a subset C of R? is k-dimensional and write dim(C) = k if the dimension of the affine
subspace spanned by C' is k.

Lemma 2.4 (Ruzsa [8]). If A,B C R%, |A| > |B| and dim(A + B) = d, then

did+1
A+ B|> A +ap - LA+

For a € V, write pi(a) for the vector obtained by removing the k-th coordinate from a. For
A CV and x € pi(A), let A, = p;'(). We define the compression Cj(A) of A along the k-th
coordinate to be the set A’ such that pp(A’) = pr(A) and, for each = € pi(A), the k-th coordinates
of A are 0,1,...,|A;| — 1. It is known (see, for example, [4, Lemma 2.1]) that |C(A) + Cr(B)| <
|A+ B| for any finite A, B C V. We say that A is compressed if Cj,(A) = A for all k. A compressed
set A C Vg has the property that if (aq,...,aq) € A and b; € Z with 0 < b; < a; for all 1 <4 < d,
then (by,...,bq) € A. The next lemma will allow us to assume that A is both compressed and of
low dimension when proving our main result.

Lemma 2.5. Suppose that A C V is finite with |A + ®(A)| = K|A|. Then there is some d < 2K
and A" C Vy with |A’| = |A| such that A’ is compressed and |A" + ®(A")| < |A+ ®(A)|.



Proof. Since A is finite, A C Vp for some D. Note that ® o C; = Cjyq o ® for all i. Denote by Cf;
the composition Cy o Cy 0 ---0 C;. Then Cipyq1(A) = Cip)(A) and Cipiq)(P(A4)) = ©(Cipi(A)).
Thus, setting A; = Cpj(A), we have |A;| = |A] and

[ A1+ @(A1)[ = |Crpy(A) + (Crpi (A))] = [Crp411(A) + Crogay(B(A))] < [A+ 2(A)].

Furthermore, A; is compressed.

Let ex = A*~1 be the basis vectors for k = 1,...,D. If e;, & Ay, then the k-th coordinate of every
point of A; is 0. Let A be the set formed by replacing each point (z1,...,zx_1,0,2k,...,2p_1) of
A; with the point (z1,...,2k—1,%k,...,Zp—1), 0 that A} C Vp_;. We claim that |4} + ®(4))] <
|A1 4+ ®(A;)|. Indeed, every point of Ay + ®(A;) is of the form

(1,22 +Y1,%3 + Y2, s Th1 + Yk—2, Yk—15 Ths Tht1 + Yk -- > TD-1 + YD—2,YD1)
for some (x1,...,2k-1,0,Zk, ..., xp-1), (Y1, Yt—1,0,Yks ..., yp—1) € A1, whereas every point of
A} 4+ ®(A}) is of the form
(1,72 +y1,23 + Y2, ., Tp—1 + YD-2,YD-1)-

There is a clear surjection from A; + ®(A;) to A} + ®(A}) by summing and combining the k-th
and (k + 1)-th coordinates.

Repeating the above procedure whenever possible for each k, we obtain a set A’ with |A’| = | 4],
|A"+ ®(A")] < |A+ P(A)] and A" C Vy for some d with e, € A’ for k = 1,...,d. By this
last condition, A’ is d-dimensional and, moreover, A" + ®(A’) is (d 4+ 1)-dimensional. Hence, by
Lemma 2.4, we have |A’ + ®(A")| > (d + 2)|A'| — W. Using that |A" + ®(A’)| < K|A’| and
|A'| > d+1, we get d < 2K, as required. O

We also note the following result of Pliinnecke—Ruzsa type.

Lemma 2.6. Suppose A C 'V is finite. If |A+ ®(A)| < K|A] for some K >0, then |(A+ ®(A4)) +
O(A+ ®(A4))] < KA.

Proof. The sum version of Ruzsa’s triangle inequality [9] states that for any finite subsets X,Y, Z
of an abelian group,
XY +Z| < | X+Y|| X+ Z].

Setting X = ®(A4), Y = Z = A and noting that |®(A4)| = | 4|, we have
[(A)[|A+ Al < [A+ 2(A)]|A+ 2(A)],

so that |A + A| < K?|A|. Hence, by the Pliinnecke-Ruzsa inequality, |[A + A + A + A| < K8|A|.
Thus, another application of Ruzsa’s triangle inequality (with X = ®(A), Y = A, Z = ®(A) +
O(A) + ®(A)) yields

[2(A)[|A+ ©(A) + 2(A) + (A)] < [A+ (A)[|2(A) + B(A) + (A4) + B(4)],

so that |A + ®(A) + ®(A) + ®(A)| < K?|A|. Applying Ruzsa’s triangle inequality once more (with
X =®(A),Y = A+ ®(A) + ®(A), Z = ®2(A)), we see that

[ D(A)[|A + D(A) + ©(A) + ©*(A)] < |A+ D(A) + 2(A) + D(4)||2(4) + ©*(4)],
so that |4 + ®(A) + ®(A) + P?(A)| < K'Y\ 4], as required. O



We now come to the main novel ingredient in our proof, which is a strong upper bound for the
size of the projections of any compressed A C V; in terms of |A + ®(A)|. Given a set I C [d], we
will write «(I) for the length of the longest set of consecutive integers in I.

Lemma 2.7. Let A C Vy be finite and compressed with |A + ®(A)] = N. Then, for any subset
IC[d],
[pr(4)] < N7,

where k = a(I).
Proof. For any set of integers J, define ¢(J) = {j + 1| j € J}. We claim that, for any Jy, Jo C [d],

P (Allp.s, (A)]

< N.
P1ns(2) (A)]

To show this, we will exhibit an injection ps, (4) X ps,(A) = Prngs)(A) X (A + ©(A)). Let
(z,y) € ps, (A) X ps,(A) and consider the map

(@,9) = (Pring() (), + 2(y)).

Since A is compressed, ps(A) C A for every J, which easily implies that (pj,n¢(.1,) (),  + ®(y)) is
indeed in p,ne(1,)(A) X (A+ ®(A)). To see that the map is injective, it is enough to observe that

T = Dring(2) (%) F Prne (1) () = Dring(1s) (@) + D) (@ + P(y))

and

D(y) = Po(1a) (P(Y)) = Po(sa) (@ + PY)) = Po(12) (%) = Po(10) (@ + P(Y)) — Py () ().
Fori=0,1,...,k, let
L={jel|{jj—1,...,j—i} CI}.
Then I =Ip D11 D--- DIy =0 and, foreachi =0,1,...,k— 1, IN¢(;) = I;11. Thus, by the

claim above,
lpr(A)[lpr; (A)] < N.
|p17:+1 (A)|

Taking the product of this inequality over all i = 0,1...,k — 1, we get
pr(A)[* < N
and the lemma follows. O

We are now ready to prove our main result.

Proof of Theorem 2.2. Suppose instead that |A + ®(A)| = Kn, where K < ecV1ogn for some ¢ > 0
that will be fixed later. By Lemma 2.5, we may assume that A is compressed and A C V; with
d <2K.

By Lemma 2.6, we have

|A 4+ ®(A) + O(A + d(A))| < K.



Since A is compressed, so are ®(A) and, therefore, A + ®(A). Hence, Lemma 2.7 implies that
[pr(A+ B(A))] < (K1On) 7

for any I C [d + 1], where k = a(]). But the number of I C [d + 1] with «(I) = k is at most

d+2—k
S HICd+1]]di+1,...i+k—1eT} < (d+2)24 7k
i=1

Thus, by Lemma 2.3, we have that

d+1
2 < N pr(A+ @A) <Y I Cld+ 1] [a(l) = K} (K'On)F
IC[d+1] k=0
d+1
< (d+ 22T R (K O F
k=0
Therefore,
d+1 d+1
1<) (d+2)27 K= <2(d+2)Y 27 M LK 0w
k=0 k=0
d+1
< 2<d + 2) Ze—(k+1)log 24+10cy/Tog n— l;i;z
k=0
o] _ . logn
< 2(d+2) Ze 24/(log 2) log n+10cy/Tog 7 (uslng (k+1)log2+ Pl > 2+/(log2) logn)
k=0

— 9(d + 2)2e10e-2VIED)VIoEn < ((13c-2VI0g?)VIogn

which is a contradiction for ¢ = 0.1 and n sufficiently large. For smaller n, we may use the trivial
estimate |A + ®(A)| > 2|A|] — 1 to choose an appropriate ¢ that works for all n. O

As a final remark, we note that the conclusion of Theorem 1.1 also holds for any finite subset A
of C and any transcendental A € C. Indeed, Lemma 2.1 again reduces the problem to estimating
|A+ X A for finite A C Q[A] and then to estimating |A + ®(A)| for finite A C V, so the rest of
the proof goes through without change.
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