Sums of transcendental dilates

David Conlon* Jeck Lim ${ }^{\dagger}$

Abstract

We show that there is an absolute constant $c>0$ such that $|A+\lambda \cdot A| \geq e^{c \sqrt{\log |A|}}|A|$ for any finite subset A of \mathbb{R} and any transcendental number $\lambda \in \mathbb{R}$. By a construction of Konyagin and Laba, this is best possible up to the constant c.

1 Introduction

For any subset A of \mathbb{R} and any $\lambda \in \mathbb{R}$, let

$$
A+\lambda \cdot A=\left\{a+\lambda a^{\prime}: a, a^{\prime} \in A\right\}
$$

Our interest here will be in estimating the minimum size of such sums of dilates given $|A|$.
When λ is rational, say $\lambda=p / q$ with p and q coprime, a result of Bukh [3] implies that

$$
|A+\lambda \cdot A| \geq(|p|+|q|)|A|-o(|A|),
$$

which is best possible up to the lower-order term (though see [1] for an improvement of the lowerorder term to a constant depending only on λ). The more general case where λ is algebraic has also been studied in some depth. In particular, a result of the authors [4] says that if $\lambda=(p / q)^{1 / d}$ for some $p, q, d \in \mathbb{N}$, each taken as small as possible for such a representation, then

$$
|A+\lambda \cdot A| \geq\left(p^{1 / d}+q^{1 / d}\right)^{d}|A|-o(|A|),
$$

which is again best possible up to the lower-order term. Moreover, as noted by Krachun and Petrov [7], for any fixed algebraic number λ, the minimum size of $|A+\lambda \cdot A|$ is always at most linear in $|A|$.

For λ transcendental, the picture is very different. Indeed, Konyagin and Laba [6] showed that in this case there exists an absolute constant $c>0$ such that

$$
|A+\lambda \cdot A| \geq c \frac{\log |A|}{\log \log |A|}|A| .
$$

That is, $|A+\lambda \cdot A|$ can no longer be linear in $|A|$. This result was subsequently improved by Sanders [10], by Schoen [12] and again by Sanders [11] using successive quantitative refinements

[^0]of Freiman's theorem [5] on sets of small doubling, with Sanders' second bound saying that there exists an absolute constant $c>0$ such that, for $|A|$ sufficiently large,
$$
|A+\lambda \cdot A| \geq e^{\log ^{c}|A|}|A|
$$

This already comes quite close to matching the best known upper bound, due to Konyagin and Łaba [6], which says that there exists $c^{\prime}>0$ and, for any fixed transcendental number λ, arbitrarily large finite subsets A of \mathbb{R} such that

$$
|A+\lambda \cdot A| \leq e^{c^{\prime} \sqrt{\log |A|}}|A|
$$

Our main result says that this upper bound is in fact best possible up to the constant c^{\prime}.
Theorem 1.1. There is an absolute constant $c>0$ such that

$$
|A+\lambda \cdot A| \geq e^{c \sqrt{\log |A|}}|A|
$$

for any finite subset A of \mathbb{R} and any transcendental number $\lambda \in \mathbb{R}$.
Before proceeding to the proof of this theorem, let us briefly look at the upper bound, which comes from considering sets of the form

$$
A=\left\{\sum_{i=1}^{m} a_{i} \lambda^{i}:\left(a_{1}, \ldots, a_{m}\right) \in[n]^{m}\right\} .
$$

This set has size n^{m} and

$$
A+\lambda \cdot A \subset\left\{\sum_{i=1}^{m+1} b_{i} \lambda^{i}:\left(b_{1}, \ldots, b_{m+1}\right) \in[2 n]^{m+1}\right\},
$$

which has size $(2 n)^{m+1}$. If we take $n=2^{m}$, we have $|A|=n^{m}=2^{m^{2}}$, so that

$$
|A+\lambda \cdot A| \leq(2 n)^{m+1}=2^{(m+1)^{2}} \leq e^{c^{\prime} \sqrt{\log |A|}}|A|
$$

for some $c^{\prime}>0$, as required. This bound is reminiscent, both in its form and its proof, of Behrend's lower bound [2] for the largest subset of $[n]$ containing no three-term arithmetic progressions. Our Theorem 1.1 is arguably the first example where such a bound is known to be tight to this level of accuracy.

2 Proof of Theorem 1.1

To begin, we use a simple observation of Krachun and Petrov to recast the problem.
Lemma 2.1 (Krachun-Petrov [7]). Suppose that $\lambda \in \mathbb{C}$ and A is a finite subset of \mathbb{C}. Then there exists $B \subset \mathbb{Q}[\lambda]$ such that $|B|=|A|$ and $|B+\lambda \cdot B| \leq|A+\lambda \cdot A|$.

Suppose now that V is the \mathbb{Q}-vector space $\mathbb{Q}[\lambda]$ with basis $\left\{1, \lambda, \lambda^{2}, \ldots\right\}$. For any positive integer d, let $V_{d} \subset V$ be the d-dimensional subspace spanned by $\left\{1, \lambda, \lambda^{2}, \ldots, \lambda^{d-1}\right\}$, noting that $V=\bigcup_{d} V_{d}$. For any finite $A \subset V$, we must have $A \subset V_{d}$ for some d. Multiplication by λ therefore corresponds to taking the linear map $\Phi: V \rightarrow V$ given by the union of the maps $V_{d} \rightarrow V_{d+1}$ with

$$
\left(x_{1}, \ldots, x_{d}\right) \mapsto\left(0, x_{1}, \ldots, x_{d}\right)
$$

Thus, the problem of estimating $|A+\lambda \cdot A|$ for finite $A \subset \mathbb{R}$ and λ transcendental is equivalent to estimating $|A+\Phi(A)|$ for finite $A \subset V$. In particular, we may reformulate Theorem 1.1 in the following terms.

Theorem 2.2. There is an absolute constant $c>0$ such that if $A \subset V$ with $|A|=n$, then

$$
|A+\Phi(A)| \geq e^{c \sqrt{\log n}} n
$$

We will focus on proving this latter result, which bears some relation to our recent work [4] on sums of linear transformations, from here on.

Before getting to the proof proper, we first note a few additional results that we will need. The first is a discrete variant of the Brunn-Minkowski theorem taken from [4]. In what follows, for each $I \subseteq[d]$, we write $p_{I}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ for the projection onto the coordinates indexed by I, setting all other coordinates to 0 . Note that we may naturally extend the definition of p_{I} to V_{d}, and hence to V, by identifying V_{d} with \mathbb{Q}^{d}.

Lemma 2.3 (Conlon-Lim [4, Lemma 2.1]). For any finite subsets A, B of \mathbb{R}^{d},

$$
\sum_{I \subseteq[d]}\left|p_{I}(A+B)\right| \geq\left(|A|^{1 / d}+|B|^{1 / d}\right)^{d}
$$

For our next result, we need the following estimate of Ruzsa [8] for the size of sumsets in \mathbb{R}^{d}. We say that a subset C of \mathbb{R}^{d} is k-dimensional and write $\operatorname{dim}(C)=k$ if the dimension of the affine subspace spanned by C is k.

Lemma 2.4 (Ruzsa [8]). If $A, B \subset \mathbb{R}^{d},|A| \geq|B|$ and $\operatorname{dim}(A+B)=d$, then

$$
|A+B| \geq|A|+d|B|-\frac{d(d+1)}{2}
$$

For $a \in V$, write $p_{k}(a)$ for the vector obtained by removing the k-th coordinate from a. For $A \subset V$ and $x \in p_{k}(A)$, let $A_{x}=p_{k}^{-1}(x)$. We define the compression $C_{k}(A)$ of A along the k-th coordinate to be the set A^{\prime} such that $p_{k}\left(A^{\prime}\right)=p_{k}(A)$ and, for each $x \in p_{k}(A)$, the k-th coordinates of A_{x}^{\prime} are $0,1, \ldots,\left|A_{x}\right|-1$. It is known (see, for example, [4, Lemma 2.1]) that $\left|C_{k}(A)+C_{k}(B)\right| \leq$ $|A+B|$ for any finite $A, B \subset V$. We say that A is compressed if $C_{k}(A)=A$ for all k. A compressed set $A \subset V_{d}$ has the property that if $\left(a_{1}, \ldots, a_{d}\right) \in A$ and $b_{i} \in \mathbb{Z}$ with $0 \leq b_{i} \leq a_{i}$ for all $1 \leq i \leq d$, then $\left(b_{1}, \ldots, b_{d}\right) \in A$. The next lemma will allow us to assume that A is both compressed and of low dimension when proving our main result.

Lemma 2.5. Suppose that $A \subset V$ is finite with $|A+\Phi(A)|=K|A|$. Then there is some $d \leq 2 K$ and $A^{\prime} \subset V_{d}$ with $\left|A^{\prime}\right|=|A|$ such that A^{\prime} is compressed and $\left|A^{\prime}+\Phi\left(A^{\prime}\right)\right| \leq|A+\Phi(A)|$.

Proof. Since A is finite, $A \subset V_{D}$ for some D. Note that $\Phi \circ C_{i}=C_{i+1} \circ \Phi$ for all i. Denote by $C_{[i]}$ the composition $C_{1} \circ C_{2} \circ \cdots \circ C_{i}$. Then $C_{[D+1]}(A)=C_{[D]}(A)$ and $C_{[D+1]}(\Phi(A))=\Phi\left(C_{[D]}(A)\right)$. Thus, setting $A_{1}=C_{[D]}(A)$, we have $\left|A_{1}\right|=|A|$ and

$$
\left|A_{1}+\Phi\left(A_{1}\right)\right|=\left|C_{[D]}(A)+\Phi\left(C_{[D]}(A)\right)\right|=\left|C_{[D+1]}(A)+C_{[D+1]}(\Phi(A))\right| \leq|A+\Phi(A)|
$$

Furthermore, A_{1} is compressed.
Let $e_{k}=\lambda^{k-1}$ be the basis vectors for $k=1, \ldots, D$. If $e_{k} \notin A_{1}$, then the k-th coordinate of every point of A_{1} is 0 . Let A_{1}^{\prime} be the set formed by replacing each point $\left(x_{1}, \ldots, x_{k-1}, 0, x_{k}, \ldots, x_{D-1}\right)$ of A_{1} with the point $\left(x_{1}, \ldots, x_{k-1}, x_{k}, \ldots, x_{D-1}\right)$, so that $A_{1}^{\prime} \subset V_{D-1}$. We claim that $\left|A_{1}^{\prime}+\Phi\left(A_{1}^{\prime}\right)\right| \leq$ $\left|A_{1}+\Phi\left(A_{1}\right)\right|$. Indeed, every point of $A_{1}+\Phi\left(A_{1}\right)$ is of the form

$$
\left(x_{1}, x_{2}+y_{1}, x_{3}+y_{2}, \ldots, x_{k-1}+y_{k-2}, y_{k-1}, x_{k}, x_{k+1}+y_{k}, \ldots, x_{D-1}+y_{D-2}, y_{D-1}\right)
$$

for some $\left(x_{1}, \ldots, x_{k-1}, 0, x_{k}, \ldots, x_{D-1}\right),\left(y_{1}, \ldots, y_{k-1}, 0, y_{k}, \ldots, y_{D-1}\right) \in A_{1}$, whereas every point of $A_{1}^{\prime}+\Phi\left(A_{1}^{\prime}\right)$ is of the form

$$
\left(x_{1}, x_{2}+y_{1}, x_{3}+y_{2}, \ldots, x_{D-1}+y_{D-2}, y_{D-1}\right)
$$

There is a clear surjection from $A_{1}+\Phi\left(A_{1}\right)$ to $A_{1}^{\prime}+\Phi\left(A_{1}^{\prime}\right)$ by summing and combining the k-th and $(k+1)$-th coordinates.

Repeating the above procedure whenever possible for each k, we obtain a set A^{\prime} with $\left|A^{\prime}\right|=|A|$, $\left|A^{\prime}+\Phi\left(A^{\prime}\right)\right| \leq|A+\Phi(A)|$ and $A^{\prime} \subset V_{d}$ for some d with $e_{k} \in A^{\prime}$ for $k=1, \ldots, d$. By this last condition, A^{\prime} is d-dimensional and, moreover, $A^{\prime}+\Phi\left(A^{\prime}\right)$ is $(d+1)$-dimensional. Hence, by Lemma 2.4, we have $\left|A^{\prime}+\Phi\left(A^{\prime}\right)\right| \geq(d+2)\left|A^{\prime}\right|-\frac{(d+1)(d+2)}{2}$. Using that $\left|A^{\prime}+\Phi\left(A^{\prime}\right)\right| \leq K\left|A^{\prime}\right|$ and $\left|A^{\prime}\right| \geq d+1$, we get $d \leq 2 K$, as required.

We also note the following result of Plünnecke-Ruzsa type.
Lemma 2.6. Suppose $A \subset V$ is finite. If $|A+\Phi(A)| \leq K|A|$ for some $K>0$, then $\mid(A+\Phi(A))+$ $\Phi(A+\Phi(A))\left|\leq K^{10}\right| A \mid$.

Proof. The sum version of Ruzsa's triangle inequality [9] states that for any finite subsets X, Y, Z of an abelian group,

$$
|X||Y+Z| \leq|X+Y||X+Z|
$$

Setting $X=\Phi(A), Y=Z=A$ and noting that $|\Phi(A)|=|A|$, we have

$$
|\Phi(A) \| A+A| \leq|A+\Phi(A)||A+\Phi(A)|
$$

so that $|A+A| \leq K^{2}|A|$. Hence, by the Plünnecke-Ruzsa inequality, $|A+A+A+A| \leq K^{8}|A|$. Thus, another application of Ruzsa's triangle inequality (with $X=\Phi(A), Y=A, Z=\Phi(A)+$ $\Phi(A)+\Phi(A))$ yields

$$
|\Phi(A)||A+\Phi(A)+\Phi(A)+\Phi(A)| \leq|A+\Phi(A)||\Phi(A)+\Phi(A)+\Phi(A)+\Phi(A)|
$$

so that $|A+\Phi(A)+\Phi(A)+\Phi(A)| \leq K^{9}|A|$. Applying Ruzsa's triangle inequality once more (with $\left.X=\Phi(A), Y=A+\Phi(A)+\Phi(A), Z=\Phi^{2}(A)\right)$, we see that

$$
|\Phi(A)|\left|A+\Phi(A)+\Phi(A)+\Phi^{2}(A)\right| \leq|A+\Phi(A)+\Phi(A)+\Phi(A)|\left|\Phi(A)+\Phi^{2}(A)\right|
$$

so that $\left|A+\Phi(A)+\Phi(A)+\Phi^{2}(A)\right| \leq K^{10}|A|$, as required.

We now come to the main novel ingredient in our proof, which is a strong upper bound for the size of the projections of any compressed $A \subset V_{d}$ in terms of $|A+\Phi(A)|$. Given a set $I \subseteq[d]$, we will write $\alpha(I)$ for the length of the longest set of consecutive integers in I.

Lemma 2.7. Let $A \subset V_{d}$ be finite and compressed with $|A+\Phi(A)|=N$. Then, for any subset $I \subseteq[d]$,

$$
\left|p_{I}(A)\right| \leq N^{\frac{k}{k+1}}
$$

where $k=\alpha(I)$.
Proof. For any set of integers J, define $\phi(J)=\{j+1 \mid j \in J\}$. We claim that, for any $J_{1}, J_{2} \subset[d]$,

$$
\frac{\left|p_{J_{1}}(A)\right|\left|p_{J_{2}}(A)\right|}{\left|p_{J_{1} \cap \phi\left(J_{2}\right)}(A)\right|} \leq N
$$

To show this, we will exhibit an injection $p_{J_{1}}(A) \times p_{J_{2}}(A) \rightarrow p_{J_{1} \cap \phi\left(J_{2}\right)}(A) \times(A+\Phi(A))$. Let $(x, y) \in p_{J_{1}}(A) \times p_{J_{2}}(A)$ and consider the map

$$
(x, y) \mapsto\left(p_{J_{1} \cap \phi\left(J_{2}\right)}(x), x+\Phi(y)\right)
$$

Since A is compressed, $p_{J}(A) \subseteq A$ for every J, which easily implies that $\left(p_{J_{1} \cap \phi\left(J_{2}\right)}(x), x+\Phi(y)\right)$ is indeed in $p_{J_{1} \cap \phi\left(J_{2}\right)}(A) \times(A+\Phi(A))$. To see that the map is injective, it is enough to observe that

$$
x=p_{J_{1} \cap \phi\left(J_{2}\right)}(x)+p_{J_{1} \backslash \phi\left(J_{2}\right)}(x)=p_{J_{1} \cap \phi\left(J_{2}\right)}(x)+p_{J_{1} \backslash \phi\left(J_{2}\right)}(x+\Phi(y))
$$

and

$$
\Phi(y)=p_{\phi\left(J_{2}\right)}(\Phi(y))=p_{\phi\left(J_{2}\right)}(x+\Phi(y))-p_{\phi\left(J_{2}\right)}(x)=p_{\phi\left(J_{2}\right)}(x+\Phi(y))-p_{J_{1} \cap \phi\left(J_{2}\right)}(x)
$$

For $i=0,1, \ldots, k$, let

$$
I_{i}=\{j \in I \mid\{j, j-1, \ldots, j-i\} \subseteq I\}
$$

Then $I=I_{0} \supset I_{1} \supset \cdots \supset I_{k}=\emptyset$ and, for each $i=0,1, \ldots, k-1, I \cap \phi\left(I_{i}\right)=I_{i+1}$. Thus, by the claim above,

$$
\frac{\left|p_{I}(A)\right|\left|p_{I_{i}}(A)\right|}{\left|p_{I_{i+1}}(A)\right|} \leq N
$$

Taking the product of this inequality over all $i=0,1 \ldots, k-1$, we get

$$
\left|p_{I}(A)\right|^{k+1} \leq N^{k}
$$

and the lemma follows.
We are now ready to prove our main result.
Proof of Theorem 2.2. Suppose instead that $|A+\Phi(A)|=K n$, where $K<e^{c \sqrt{\log n}}$ for some $c>0$ that will be fixed later. By Lemma 2.5, we may assume that A is compressed and $A \subset V_{d}$ with $d \leq 2 K$.

By Lemma 2.6, we have

$$
|A+\Phi(A)+\Phi(A+\Phi(A))| \leq K^{10} n
$$

Since A is compressed, so are $\Phi(A)$ and, therefore, $A+\Phi(A)$. Hence, Lemma 2.7 implies that

$$
\left|p_{I}(A+\Phi(A))\right| \leq\left(K^{10} n\right)^{\frac{k}{k+1}}
$$

for any $I \subseteq[d+1]$, where $k=\alpha(I)$. But the number of $I \subseteq[d+1]$ with $\alpha(I)=k$ is at most

$$
\sum_{i=1}^{d+2-k}|\{I \subseteq[d+1] \mid i, i+1, \ldots, i+k-1 \in I\}| \leq(d+2) 2^{d+1-k}
$$

Thus, by Lemma 2.3, we have that

$$
\begin{aligned}
2^{d+1} n & \leq \sum_{I \subseteq[d+1]}\left|p_{I}(A+\Phi(A))\right| \leq \sum_{k=0}^{d+1}|\{I \subseteq[d+1] \mid \alpha(I)=k\}|\left(K^{10} n\right)^{\frac{k}{k+1}} \\
& \leq \sum_{k=0}^{d+1}(d+2) 2^{d+1-k}\left(K^{10} n\right)^{\frac{k}{k+1}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
1 & \leq \sum_{k=0}^{d+1}(d+2) 2^{-k} K^{\frac{10 k}{k+1}} n^{-\frac{1}{k+1}} \leq 2(d+2) \sum_{k=0}^{d+1} 2^{-k-1} K^{10} n^{-\frac{1}{k+1}} \\
& \leq 2(d+2) \sum_{k=0}^{d+1} e^{-(k+1) \log 2+10 c \sqrt{\log n}-\frac{\log n}{k+1}} \\
& \leq 2(d+2) \sum_{k=0}^{d+1} e^{-2 \sqrt{(\log 2) \log n}+10 c \sqrt{\log n}} \quad\left(u \operatorname{sing}(k+1) \log 2+\frac{\log n}{k+1} \geq 2 \sqrt{(\log 2) \log n}\right) \\
& =2(d+2)^{2} e^{\left(10 c-2 \sqrt{\log 2) \sqrt{\log n}} \leq e^{(13 c-2 \sqrt{\log 2}) \sqrt{\log n}},\right.}
\end{aligned}
$$

which is a contradiction for $c=0.1$ and n sufficiently large. For smaller n, we may use the trivial estimate $|A+\Phi(A)| \geq 2|A|-1$ to choose an appropriate c that works for all n.

As a final remark, we note that the conclusion of Theorem 1.1 also holds for any finite subset A of \mathbb{C} and any transcendental $\lambda \in \mathbb{C}$. Indeed, Lemma 2.1 again reduces the problem to estimating $|A+\lambda \cdot A|$ for finite $A \subset \mathbb{Q}[\lambda]$ and then to estimating $|A+\Phi(A)|$ for finite $A \subset V$, so the rest of the proof goes through without change.

References

[1] A. Balog and G. Shakan, On the sum of dilations of a set, Acta Arith. 164 (2014), 153-162.
[2] F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 331-332.
[3] B. Bukh, Sums of dilates, Combin. Probab. Comput. 17 (2008), 627-639.
[4] D. Conlon and J. Lim, Sums of linear transformations, preprint available at arXiv:2203.09827 [math.CO].
[5] G. A. Freiman, Foundations of a structural theory of set addition, Translations of Mathematical Monographs, Vol. 37, American Mathematical Society, Providence, R.I., 1973.
[6] S. Konyagin and I. Łaba, Distance sets of well-distributed planar sets for polygonal norms, Israel J. Math. 152 (2006), 157-179.
[7] D. Krachun and F. Petrov, On the size of $A+\lambda A$ for algebraic λ, preprint available at arXiv:2010.00119 [math.CO].
[8] I. Z. Ruzsa, Sum of sets in several dimensions, Combinatorica 14 (1994), 485-490.
[9] I. Z. Ruzsa, Sums of finite sets, in Number theory (New York, 1991-1995), 281-293, Springer, New York, 1996.
[10] T. Sanders, Appendix to "Roth's theorem on progressions revisited" by J. Bourgain, J. Anal. Math. 104 (2008), 193-206.
[11] T. Sanders, On the Bogolyubov-Ruzsa lemma, Anal. PDE 5 (2012), 627-655.
[12] T. Schoen, Near optimal bounds in Freiman's theorem, Duke Math. J. 158 (2011), 1-12.

[^0]: *Department of Mathematics, Caltech, Pasadena, CA 91125, USA. Email: dconlon@caltech.edu. Research supported by NSF Award DMS-2054452.
 ${ }^{\dagger}$ Department of Mathematics, Caltech, Pasadena, CA 91125, USA. Email: jlim@caltech.edu. Research partially supported by an NUS Overseas Graduate Scholarship.

