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Abstract

We show that there is an absolute constant c > 0 such that |A + λ · A| ≥ ec
√

log |A||A| for
any finite subset A of R and any transcendental number λ ∈ R. By a construction of Konyagin
and  Laba, this is best possible up to the constant c.

1 Introduction

For any subset A of R and any λ ∈ R, let

A+ λ ·A = {a+ λa′ : a, a′ ∈ A}.

Our interest here will be in estimating the minimum size of such sums of dilates given |A|.
When λ is rational, say λ = p/q with p and q coprime, a result of Bukh [3] implies that

|A+ λ ·A| ≥ (|p|+ |q|)|A| − o(|A|),

which is best possible up to the lower-order term (though see [1] for an improvement of the lower-
order term to a constant depending only on λ). The more general case where λ is algebraic has
also been studied in some depth. In particular, a result of the authors [4] says that if λ = (p/q)1/d

for some p, q, d ∈ N, each taken as small as possible for such a representation, then

|A+ λ ·A| ≥ (p1/d + q1/d)d|A| − o(|A|),

which is again best possible up to the lower-order term. Moreover, as noted by Krachun and
Petrov [7], for any fixed algebraic number λ, the minimum size of |A+λ ·A| is always at most linear
in |A|.

For λ transcendental, the picture is very different. Indeed, Konyagin and  Laba [6] showed that
in this case there exists an absolute constant c > 0 such that

|A+ λ ·A| ≥ c log |A|
log log |A|

|A|.

That is, |A + λ · A| can no longer be linear in |A|. This result was subsequently improved by
Sanders [10], by Schoen [12] and again by Sanders [11] using successive quantitative refinements
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of Freiman’s theorem [5] on sets of small doubling, with Sanders’ second bound saying that there
exists an absolute constant c > 0 such that, for |A| sufficiently large,

|A+ λ ·A| ≥ elog
c |A||A|.

This already comes quite close to matching the best known upper bound, due to Konyagin and
 Laba [6], which says that there exists c′ > 0 and, for any fixed transcendental number λ, arbitrarily
large finite subsets A of R such that

|A+ λ ·A| ≤ ec
′
√

log |A||A|.

Our main result says that this upper bound is in fact best possible up to the constant c′.

Theorem 1.1. There is an absolute constant c > 0 such that

|A+ λ ·A| ≥ ec
√

log |A||A|

for any finite subset A of R and any transcendental number λ ∈ R.

Before proceeding to the proof of this theorem, let us briefly look at the upper bound, which
comes from considering sets of the form

A =

{
m∑
i=1

aiλ
i : (a1, . . . , am) ∈ [n]m

}
.

This set has size nm and

A+ λ ·A ⊂

{
m+1∑
i=1

biλ
i : (b1, . . . , bm+1) ∈ [2n]m+1

}
,

which has size (2n)m+1. If we take n = 2m, we have |A| = nm = 2m
2

, so that

|A+ λ ·A| ≤ (2n)m+1 = 2(m+1)2 ≤ ec
′
√

log |A||A|

for some c′ > 0, as required. This bound is reminiscent, both in its form and its proof, of Behrend’s
lower bound [2] for the largest subset of [n] containing no three-term arithmetic progressions. Our
Theorem 1.1 is arguably the first example where such a bound is known to be tight to this level of
accuracy.

2 Proof of Theorem 1.1

To begin, we use a simple observation of Krachun and Petrov to recast the problem.

Lemma 2.1 (Krachun–Petrov [7]). Suppose that λ ∈ C and A is a finite subset of C. Then there
exists B ⊂ Q[λ] such that |B| = |A| and |B + λ ·B| ≤ |A+ λ ·A|.
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Suppose now that V is the Q-vector space Q[λ] with basis
{

1, λ, λ2, . . .
}

. For any positive

integer d, let Vd ⊂ V be the d-dimensional subspace spanned by
{

1, λ, λ2, . . . , λd−1
}

, noting that
V =

⋃
d Vd. For any finite A ⊂ V , we must have A ⊂ Vd for some d. Multiplication by λ therefore

corresponds to taking the linear map Φ : V → V given by the union of the maps Vd → Vd+1 with

(x1, . . . , xd) 7→ (0, x1, . . . , xd).

Thus, the problem of estimating |A + λ · A| for finite A ⊂ R and λ transcendental is equivalent
to estimating |A + Φ(A)| for finite A ⊂ V . In particular, we may reformulate Theorem 1.1 in the
following terms.

Theorem 2.2. There is an absolute constant c > 0 such that if A ⊂ V with |A| = n, then

|A+ Φ(A)| ≥ ec
√
lognn.

We will focus on proving this latter result, which bears some relation to our recent work [4] on
sums of linear transformations, from here on.

Before getting to the proof proper, we first note a few additional results that we will need. The
first is a discrete variant of the Brunn–Minkowski theorem taken from [4]. In what follows, for each
I ⊆ [d], we write pI : Rd → Rd for the projection onto the coordinates indexed by I, setting all
other coordinates to 0. Note that we may naturally extend the definition of pI to Vd, and hence to
V , by identifying Vd with Qd.

Lemma 2.3 (Conlon–Lim [4, Lemma 2.1]). For any finite subsets A,B of Rd,∑
I⊆[d]

|pI(A+B)| ≥ (|A|1/d + |B|1/d)d.

For our next result, we need the following estimate of Ruzsa [8] for the size of sumsets in Rd.
We say that a subset C of Rd is k-dimensional and write dim(C) = k if the dimension of the affine
subspace spanned by C is k.

Lemma 2.4 (Ruzsa [8]). If A,B ⊂ Rd, |A| ≥ |B| and dim(A+B) = d, then

|A+B| ≥ |A|+ d|B| − d(d+ 1)

2
.

For a ∈ V , write pk(a) for the vector obtained by removing the k-th coordinate from a. For
A ⊂ V and x ∈ pk(A), let Ax = p−1k (x). We define the compression Ck(A) of A along the k-th
coordinate to be the set A′ such that pk(A′) = pk(A) and, for each x ∈ pk(A), the k-th coordinates
of A′x are 0, 1, . . . , |Ax| − 1. It is known (see, for example, [4, Lemma 2.1]) that |Ck(A) +Ck(B)| ≤
|A+B| for any finite A,B ⊂ V . We say that A is compressed if Ck(A) = A for all k. A compressed
set A ⊂ Vd has the property that if (a1, . . . , ad) ∈ A and bi ∈ Z with 0 ≤ bi ≤ ai for all 1 ≤ i ≤ d,
then (b1, . . . , bd) ∈ A. The next lemma will allow us to assume that A is both compressed and of
low dimension when proving our main result.

Lemma 2.5. Suppose that A ⊂ V is finite with |A + Φ(A)| = K|A|. Then there is some d ≤ 2K
and A′ ⊂ Vd with |A′| = |A| such that A′ is compressed and |A′ + Φ(A′)| ≤ |A+ Φ(A)|.
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Proof. Since A is finite, A ⊂ VD for some D. Note that Φ ◦ Ci = Ci+1 ◦ Φ for all i. Denote by C[i]

the composition C1 ◦ C2 ◦ · · · ◦ Ci. Then C[D+1](A) = C[D](A) and C[D+1](Φ(A)) = Φ(C[D](A)).
Thus, setting A1 = C[D](A), we have |A1| = |A| and

|A1 + Φ(A1)| = |C[D](A) + Φ(C[D](A))| = |C[D+1](A) + C[D+1](Φ(A))| ≤ |A+ Φ(A)|.

Furthermore, A1 is compressed.
Let ek = λk−1 be the basis vectors for k = 1, . . . , D. If ek 6∈ A1, then the k-th coordinate of every

point of A1 is 0. Let A′1 be the set formed by replacing each point (x1, . . . , xk−1, 0, xk, . . . , xD−1) of
A1 with the point (x1, . . . , xk−1, xk, . . . , xD−1), so that A′1 ⊂ VD−1. We claim that |A′1 + Φ(A′1)| ≤
|A1 + Φ(A1)|. Indeed, every point of A1 + Φ(A1) is of the form

(x1, x2 + y1, x3 + y2, . . . , xk−1 + yk−2, yk−1, xk, xk+1 + yk, . . . , xD−1 + yD−2, yD−1)

for some (x1, . . . , xk−1, 0, xk, . . . , xD−1), (y1, . . . , yk−1, 0, yk, . . . , yD−1) ∈ A1, whereas every point of
A′1 + Φ(A′1) is of the form

(x1, x2 + y1, x3 + y2, . . . , xD−1 + yD−2, yD−1).

There is a clear surjection from A1 + Φ(A1) to A′1 + Φ(A′1) by summing and combining the k-th
and (k + 1)-th coordinates.

Repeating the above procedure whenever possible for each k, we obtain a set A′ with |A′| = |A|,
|A′ + Φ(A′)| ≤ |A + Φ(A)| and A′ ⊂ Vd for some d with ek ∈ A′ for k = 1, . . . , d. By this
last condition, A′ is d-dimensional and, moreover, A′ + Φ(A′) is (d + 1)-dimensional. Hence, by

Lemma 2.4, we have |A′ + Φ(A′)| ≥ (d+ 2)|A′| − (d+1)(d+2)
2 . Using that |A′ + Φ(A′)| ≤ K|A′| and

|A′| ≥ d+ 1, we get d ≤ 2K, as required.

We also note the following result of Plünnecke–Ruzsa type.

Lemma 2.6. Suppose A ⊂ V is finite. If |A+ Φ(A)| ≤ K|A| for some K > 0, then |(A+ Φ(A)) +
Φ(A+ Φ(A))| ≤ K10|A|.

Proof. The sum version of Ruzsa’s triangle inequality [9] states that for any finite subsets X,Y, Z
of an abelian group,

|X||Y + Z| ≤ |X + Y ||X + Z|.
Setting X = Φ(A), Y = Z = A and noting that |Φ(A)| = |A|, we have

|Φ(A)||A+A| ≤ |A+ Φ(A)||A+ Φ(A)|,

so that |A + A| ≤ K2|A|. Hence, by the Plünnecke–Ruzsa inequality, |A + A + A + A| ≤ K8|A|.
Thus, another application of Ruzsa’s triangle inequality (with X = Φ(A), Y = A, Z = Φ(A) +
Φ(A) + Φ(A)) yields

|Φ(A)||A+ Φ(A) + Φ(A) + Φ(A)| ≤ |A+ Φ(A)||Φ(A) + Φ(A) + Φ(A) + Φ(A)|,

so that |A+ Φ(A) + Φ(A) + Φ(A)| ≤ K9|A|. Applying Ruzsa’s triangle inequality once more (with
X = Φ(A), Y = A+ Φ(A) + Φ(A), Z = Φ2(A)), we see that

|Φ(A)||A+ Φ(A) + Φ(A) + Φ2(A)| ≤ |A+ Φ(A) + Φ(A) + Φ(A)||Φ(A) + Φ2(A)|,

so that |A+ Φ(A) + Φ(A) + Φ2(A)| ≤ K10|A|, as required.
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We now come to the main novel ingredient in our proof, which is a strong upper bound for the
size of the projections of any compressed A ⊂ Vd in terms of |A + Φ(A)|. Given a set I ⊆ [d], we
will write α(I) for the length of the longest set of consecutive integers in I.

Lemma 2.7. Let A ⊂ Vd be finite and compressed with |A + Φ(A)| = N . Then, for any subset
I ⊆ [d],

|pI(A)| ≤ N
k

k+1 ,

where k = α(I).

Proof. For any set of integers J , define φ(J) = {j + 1 | j ∈ J}. We claim that, for any J1, J2 ⊂ [d],

|pJ1(A)||pJ2(A)|
|pJ1∩φ(J2)(A)|

≤ N.

To show this, we will exhibit an injection pJ1(A) × pJ2(A) → pJ1∩φ(J2)(A) × (A + Φ(A)). Let
(x, y) ∈ pJ1(A)× pJ2(A) and consider the map

(x, y) 7→ (pJ1∩φ(J2)(x), x+ Φ(y)).

Since A is compressed, pJ(A) ⊆ A for every J , which easily implies that (pJ1∩φ(J2)(x), x+ Φ(y)) is
indeed in pJ1∩φ(J2)(A)× (A+ Φ(A)). To see that the map is injective, it is enough to observe that

x = pJ1∩φ(J2)(x) + pJ1\φ(J2)(x) = pJ1∩φ(J2)(x) + pJ1\φ(J2)(x+ Φ(y))

and

Φ(y) = pφ(J2)(Φ(y)) = pφ(J2)(x+ Φ(y))− pφ(J2)(x) = pφ(J2)(x+ Φ(y))− pJ1∩φ(J2)(x).

For i = 0, 1, . . . , k, let
Ii = {j ∈ I | {j, j − 1, . . . , j − i} ⊆ I} .

Then I = I0 ⊃ I1 ⊃ · · · ⊃ Ik = ∅ and, for each i = 0, 1, . . . , k − 1, I ∩ φ(Ii) = Ii+1. Thus, by the
claim above,

|pI(A)||pIi(A)|
|pIi+1(A)|

≤ N.

Taking the product of this inequality over all i = 0, 1 . . . , k − 1, we get

|pI(A)|k+1 ≤ Nk

and the lemma follows.

We are now ready to prove our main result.

Proof of Theorem 2.2. Suppose instead that |A+ Φ(A)| = Kn, where K < ec
√
logn for some c > 0

that will be fixed later. By Lemma 2.5, we may assume that A is compressed and A ⊂ Vd with
d ≤ 2K.

By Lemma 2.6, we have

|A+ Φ(A) + Φ(A+ Φ(A))| ≤ K10n.
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Since A is compressed, so are Φ(A) and, therefore, A+ Φ(A). Hence, Lemma 2.7 implies that

|pI(A+ Φ(A))| ≤ (K10n)
k

k+1

for any I ⊆ [d+ 1], where k = α(I). But the number of I ⊆ [d+ 1] with α(I) = k is at most

d+2−k∑
i=1

|{I ⊆ [d+ 1] | i, i+ 1, . . . , i+ k − 1 ∈ I}| ≤ (d+ 2)2d+1−k.

Thus, by Lemma 2.3, we have that

2d+1n ≤
∑

I⊆[d+1]

|pI(A+ Φ(A))| ≤
d+1∑
k=0

|{I ⊆ [d+ 1] | α(I) = k}| (K10n)
k

k+1

≤
d+1∑
k=0

(d+ 2)2d+1−k(K10n)
k

k+1 .

Therefore,

1 ≤
d+1∑
k=0

(d+ 2)2−kK
10k
k+1n−

1
k+1 ≤ 2(d+ 2)

d+1∑
k=0

2−k−1K10n−
1

k+1

≤ 2(d+ 2)

d+1∑
k=0

e−(k+1) log 2+10c
√
logn− log n

k+1

≤ 2(d+ 2)

d+1∑
k=0

e−2
√

(log 2) logn+10c
√
logn

(
using (k + 1) log 2 +

log n

k + 1
≥ 2
√

(log 2) log n

)
= 2(d+ 2)2e(10c−2

√
log 2)

√
logn ≤ e(13c−2

√
log 2)

√
logn,

which is a contradiction for c = 0.1 and n sufficiently large. For smaller n, we may use the trivial
estimate |A+ Φ(A)| ≥ 2|A| − 1 to choose an appropriate c that works for all n.

As a final remark, we note that the conclusion of Theorem 1.1 also holds for any finite subset A
of C and any transcendental λ ∈ C. Indeed, Lemma 2.1 again reduces the problem to estimating
|A + λ · A| for finite A ⊂ Q[λ] and then to estimating |A + Φ(A)| for finite A ⊂ V , so the rest of
the proof goes through without change.
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