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Abstract

We develop novel techniques which allow us to prove a diverse range of results relating to subset sums
and complete sequences of positive integers, including solutions to several longstanding open problems.
These include: solutions to the three problems of Burr and Erdős on Ramsey complete sequences, for
which Erdős later offered a combined total of $350; analogous results for the new notion of density
complete sequences; the solution to a conjecture of Alon and Erdős on the minimum number of colors
needed to color the positive integers less than n so that n cannot be written as a monochromatic sum;
the exact determination of an extremal function introduced by Erdős and Graham on sets of integers
avoiding a given subset sum; and, answering a question reiterated by several authors, a homogeneous
strengthening of a seminal result of Szemerédi and Vu on long arithmetic progressions in subset sums.

1 Introduction

Many of the most famous problems and results in mathematics concern the representation of positive
integers as the sum of elements from a sparse sequence. For example, the long open Goldbach conjecture
states that every even integer at least four is the sum of two primes, while Vinogradov’s theorem states that
every sufficiently large odd integer is the sum of three primes (and was recently extended by Helfgott [28]
to cover all odd integers at least seven). Some other notable results of this type include Lagrange’s four-
square theorem that every positive integer is the sum of four squares, Gauss’ Eureka theorem that every
positive integer is the sum of three triangular numbers and the Hilbert–Waring theorem.

While these problems concern the representation of integers as the sum of a bounded number of terms
from a particular sequence, there are many results and open problems which do not stipulate a bound
on the number of terms. A prominent example of such a result is a theorem of Szemerédi and Vu [40],
confirming an old conjecture of Erdős [14], which says that there is a constant C such that if A = (an)∞n=1

is an infinite increasing sequence of integers with |A∩[n]| ≥ C
√
n for all sufficiently large n which intersects

every infinite arithmetic progression of integers, then we can represent any sufficiently large integer as a
sum of distinct terms from the sequence. In this paper, we develop general methods which solve many
open problems of precisely this type.
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To be more precise, given a set or a sequence A of integers, we define the set of subset sums Σ(A) to
be the set of all integers representable as a sum of distinct elements from A. That is,

Σ(A) =

{∑
s∈S

s : S ⊆ A

}
.

Our contribution then is to solve several open problems on conditions which guarantee that Σ(A) contains
either a particular integer or all sufficiently large integers. In particular, we answer several old questions of
Burr and Erdős [9] on the density of so-called Ramsey complete sequences, for whose solution Erdős [19]
later offered $350. We also solve a conjecture of Alon and Erdős [2] on the minimum number of colors
needed to color the positive integers less than n so that n cannot be written as a monochromatic sum and
determine exactly the answer to an extremal question first studied by Alon, Erdős and Graham [1, 18] on
the maximum size of a set avoiding a particular subset sum. Finally, answering a question reiterated by
several groups of authors, including Erdős and Sárközy [22], Sárközy [36] and Tran, Vu, and Wood [42],
we prove a homogeneous strengthening of another result of Szemerédi and Vu [40] from which the Erdős
conjecture mentioned above was derived.

What unites these seemingly disparate topics is a common proof framework that allows us to show the
existence of a long interval in the set of subset sums of an integer set S. This framework has several steps:

(i) We partition S into ` parts S1, . . . , S` of roughly equal size for an appropriate choice of `.

(ii) We further partition each part Si into two parts S′i and S
′′
i of appropriate size and show that, for

any s ∈ S′′i , the set of subset sums of S′i modulo s is large.

(iii) Using step (ii), we show that Σ(Si) = Σ(S′i ∪ S′′i ) is dense in some long interval.

(iv) Using step (iii), we show that Σ(S) = Σ(S1 ∪ · · · ∪ S`) contains a long interval.

Step (ii) is the heart of the method and must be appropriately tailored to each application, drawing
variously on the probabilistic method, on structural results from additive number theory and on estimates
from analytic number theory. We will say more about our methods in Section 2. For now, we will focus
on describing our main results, along with several extensions, variations and applications, in more detail.

1.1 Ramsey completeness and density completeness

We say that a sequence of positive integers A is complete if every sufficiently large positive integer is in
Σ(A) and entirely complete if every positive integer is in Σ(A). For example, the powers of two are entirely
complete, while the powers of three are incomplete. A far less simple example, due to Birch [6], is that
the sequence {piqj : i, j ≥ 0} is complete whenever p, q ≥ 2 are coprime integers. For more on the rich
history of complete sequences (and some open problems), we refer the interested reader to [10, 21].

Our starting point here is with the observation that the completeness property can be surprisingly
fragile. Indeed, removing any element from the powers of two turns an entirely complete sequence into
an incomplete one. For this reason, Burr and Erdős [8, 9] began the study of more robust notions of
completeness. We will be concerned with two such notions here, namely, robustness under partitioning,
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known as Ramsey completeness in the literature, and robustness under taking subsets, a new concept
which we refer to as density completeness.

1.1.1 Ramsey completeness

Following Burr and Erdős [9], we say that a sequence of positive integers A is r-Ramsey complete if,
whenever the sequence is partitioned into r classes A1, A2, . . . , Ar, every sufficiently large positive integer
is in

⋃r
i=1 Σ(Ai) and entirely r-Ramsey complete if every positive integer is in

⋃r
i=1 Σ(Ai). Equivalently, A

is entirely r-Ramsey complete if, for any coloring of A using r colors, every positive integer can be written
as a monochromatic subset sum.

In their paper introducing these concepts, Burr and Erdős [9] constructed an entirely 2-Ramsey com-
plete sequence A with the property that |A∩ [n]| ≤ C log3 n for all n, where C is an absolute constant. In
the other direction, they were able to show that there is a constant c > 0 for which there is no 2-Ramsey
complete sequence with |A ∩ [n]| ≤ c log2 n for all sufficiently large n. They also asked whether it might
be possible to narrow the gap between these two estimates and Erdős [19] later offered $100 for such an
improvement.

For r ≥ 3, the results of Burr and Erdős clearly imply that there is no r-Ramsey complete sequence with
|A ∩ [n]| ≤ c log2 n for all sufficiently large n. However, even for r = 3, they were unable to construct an
r-Ramsey complete sequence with |A∩ [n]| = no(1). Given the lack of progress on this problem, Erdős [19]
later offered $250 for any non-trivial result. Our first theorem solves both this problem and that above
at once, by determining the growth rate of the sparsest possible r-Ramsey complete sequence up to an
absolute constant factor.

Theorem 1.1. There is a constant C such that, for every integer r ≥ 2, there is an r-Ramsey complete
sequence A with |A ∩ [n]| ≤ Cr log2 n for all n. Furthermore, there is a constant c > 0 such that no
sequence A with |A ∩ [n]| ≤ cr log2 n for all sufficiently large n is r-Ramsey complete.

Note that the lower bound, that is, the statement that there is a constant c > 0 such that no sequence
A with |A ∩ [n]| ≤ cr log2 n for all sufficiently large n is r-Ramsey complete, already improves on Burr
and Erdős’ result, which had no dependency on r. We note also that a standard compactness argument
implies that if A is an r-Ramsey complete sequence, then there is n(A) such that, for every r-coloring
of A, every positive integer at least n(A) can be written as a sum of distinct monochromatic elements.
We may therefore enlarge the r-Ramsey complete sequence A constructed in Theorem 1.1 to an entirely
r-Ramsey complete sequence by including all positive integers less than n(A).

The key to proving Theorem 1.1 is a density-type result, Lemma 2.8, saying that, with high probability,
a random sequence of Cε−1 log x elements chosen from those elements of the interval [x, 2x) with no small
prime factor has the property that any subset of size C log x contains a particular long interval in its set of
subset sums. This density statement already improves a result of Spencer [37] from 1981 by showing that,
for any integers r ≥ 2 and n sufficiently large in terms of r, there is a set of integers S of size Cr log n with
the property that any r-coloring of S contains a monochromatic subset whose elements add to n. More
to the point, by concatenating the sequences given by Lemma 2.8, one for each dyadic interval [x, 2x), it
is easy to construct the sparse r-Ramsey complete sequence A required by Theorem 1.1.
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We also study Ramsey completeness for polynomial sequences. The study of ordinary completeness
for polynomial sequences has a long history, with important contributions by Sprague [38], Roth and
Szekeres [34] and Cassels [11]. These efforts culminated in a result of Graham [26], who characterized all
real polynomial sequences which are complete (where the definition of completeness extends to real-valued
sequences without alteration). Graham first observed the well-known fact that every real polynomial of
degree k can be written as P (x) =

∑k
i=0 αi

(
x
i

)
, where

(
x
i

)
is the polynomial 1

i!

∏i−1
j=0(x − j) and αi ∈ R

with αk 6= 0. He then showed that (P (m))m≥1 is complete if and only if the following three properties
hold:

(i) αk > 0,

(ii) αi = pi/qi for each i, where pi and qi are relatively prime integers, and

(iii) gcd(p0, p1, . . . , pk) = 1.

Given this body of work, it was a natural step for Burr and Erdős [9] to ask which polynomial sequences
are Ramsey complete. According to Erdős [19], Burr subsequently proved that the sequence of kth powers
is r-Ramsey complete for all r ≥ 2, though this result was never published. Our next theorem subsumes
this result, answering their question completely by showing that all complete polynomial sequences are
r-Ramsey complete for all r ≥ 2. In fact, it gives much more, extending the upper bound in Theorem 1.1,
which corresponds to the case P (x) = x, by showing that every complete polynomial sequence has a
subsequence which is r-Ramsey complete and as sparse as possible. Note again that in this context we
are allowing the sequence to be real-valued, rather than restricting to the integers. The definitions of
completeness and Ramsey completeness should then be adjusted to facilitate this change.

Theorem 1.2. For any positive integer k, there is a constant C(k) such that, for every polynomial P of
degree k for which (P (m))m≥1 is complete and every r ≥ 2, there is an r-Ramsey complete subsequence
A ⊂ (P (m))m≥1 with |A ∩ [n]| ≤ C(k)r log2 n for all n.

1.1.2 Density completeness

We say that a sequence of positive integers A is ε-complete if every subsequence A′ of A with the property
that |A′ ∩ [n]| ≥ ε|A ∩ [n]| for all sufficiently large n is complete. This is the natural density analogue of
Ramsey completeness, though it is not at all obvious that such sequences actually exist. Indeed, since the
even integers are not complete, the set of all positive integers is not (1

2 − δ)-complete for any δ > 0, an
observation which might suggest that no ε-complete sequences exist when ε is small. However, by using
the result of Szemerédi and Vu [40], which we will discuss in more detail in Section 1.3, that there is a
constant C such that any subset of [n] of size at least C

√
n contains an arithmetic progression of length

n in its set of subset sums, one can show that any sequence of primes A with |A ∩ [n]| ≥ 2Cε−1√n for
all sufficiently large n is ε-complete. Thus, the correct takeaway is that the property of being ε-complete
is not monotone. More concretely, as in the example above where we looked at all positive integers, an
ε-complete sequence cannot have an ε-proportion of its elements sharing a common divisor.

In keeping with our results about Ramsey completeness, our main result regarding this new notion of
ε-completeness is a determination of how sparse an ε-complete sequence can be. To state this result, we

4



need some notation. Let F = (fn)n≥1 be any sequence of positive integers for which fn =
∑

i≤εn fi for
all sufficiently large n. It is easy to see that any two such sequences are comparable, growing within a
constant factor of each other which depends only on the initial terms. In Appendix A.1, we will show that
any such F satisfies

fn = e

(
1

2 log(1/ε)
+o(1)

)
(logn)2

or, equivalently,
|F ∩ [n]| = e

√
(2 log(1/ε)+o(1)) logn.

The promised result now says that the fastest-growing ε-complete sequence grows on the same order as F .

Theorem 1.3. Let F = (fn)n≥1 be any sequence of positive integers for which fn =
∑

i≤εn fi for all
sufficiently large n. Then every ε-complete sequence A = (an)n≥1 must satisfy an = O(fn) and there is an
ε-complete sequence with an = Θ(fn).

Like with Ramsey completeness, we may also prove a generalization regarding ε-complete subsequences
of complete polynomial sequences, though in this case we omit the details of the argument, only pointing
to how ideas from the proofs of Theorems 1.2 and 1.3 can be combined to give the required conclusion.

Theorem 1.4. Let P be a polynomial for which the sequence (P (m))m≥1 is complete. Then there is a
subsequence A = (an)n≥1 of (P (m))m≥1 with an = Θ(fn) which is ε-complete. That is, any complete
polynomial sequence has an ε-complete subsequence which is as sparse as an ε-complete sequence can be.

1.2 Ensuring a given subset sum

So far, we have discussed problems and results on notions of completeness, where we require that all
sufficiently large integers can be represented as subset sums. We now address the natural problem of
ensuring that a particular integer is a subset sum, again looking at both a Ramsey variant and a density
variant.

1.2.1 Monochromatic subset sums

Given a positive integer n, let f(n) be the minimum integer r for which there is an r-coloring of the positive
integers less than n with the property that n cannot be written as a monochromatic sum of distinct integers.
The problem of estimating f(n) was raised by Erdős many times [15, 16, 17], culminating in a problem
paper [20] where he stated that he could show f(n) = o(n1/3) and asked whether f(n) = n1/3−o(1). Solving
this problem, Alon and Erdős [2] showed that there are positive constants c1 and c2 such that

c1n
1/3

log4/3 n
≤ f(n) ≤ c2n

1/3(log log n)1/3

(log n)1/3
, (1)

adding that they suspect the upper bound is closer to the truth. Using his result with Szemerédi [40] on long
arithmetic progressions in subset sums, Vu [43] later refined the lower bound, showing that f(n) ≥ c1n1/3

logn

for some positive c1.
We improve these results further, determining f(n) up to an absolute constant factor and thereby

confirming Alon and Erdős’ conjecture that their upper bound is close to the true order of magnitude.
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As is customary, we write φ(n) for the Euler totient function, the number of positive integers less than n
which are coprime to n.

Theorem 1.5. For every positive integer n, the minimum number of colors f(n) for which it is possible
to color the positive integers less than n so that n cannot be written as a monochromatic sum of distinct
integers satisfies

f(n) = Θ

(
n1/3(n/φ(n))

(log n)1/3(log log n)2/3

)
.

Standard estimates imply that n/φ(n) ∈ (1, 2 log log n) for n sufficiently large, with n/φ(n) large if
and only if n is divisible by many small primes. As a result, f(n) is surprisingly far from being monotone,
exhibiting local multiplicative fluctuations on the order of log log n. Moreover, though f(n) is indeed close
to the upper bound proved by Alon and Erdős, differing by at most a log log n factor, their upper bound
is only optimal up to a constant factor when n is divisible by many small primes.

To give some sense of where our improvement comes from, let us briefly describe the coloring that
Alon and Erdős use for their upper bound, using r colors in total. First, they use r/2 colors to color all
integers in [n−1] larger than 2n/r, with all integers in [n/(j+1), n/j) getting color j. Since any j distinct
integers of color j have sum less than n and any j + 1 distinct integers of color j have sum larger than n,
we see that n is not a sum of distinct elements from any of these color classes. Second, for each of the first
r/4 primes p that are coprime to n, they place all remaining multiples of p in a color class. Since each
sum of multiples of p is itself a multiple of p and each p is coprime to n, we see that n is again not a sum
of elements from any of these color classes. To complete the construction, we group the few remaining
uncolored integers into color classes so that the sum of the elements in any given color class is less than
n. A careful analysis then shows that r can be taken to be the upper bound in (1).

As in the Alon–Erdős coloring, our coloring uses r/2 colors to color all integers in [n− 1] larger than
2n/r and then r/4 colors to color the multiples of each of the first r/4 primes which are coprime to n.
However, we then add an additional third step, which makes use of the non-uniform distribution of the
remaining elements in congruence classes modulo d for an appropriate choice of d. Indeed, let d be as
large as possible so that d is coprime to n and φ(d) < r/32, noting that the prime factors of d must be
among the first r/4 primes coprime to n and so the remaining uncolored integers are all coprime to d. For
each congruence class t (mod d) with t coprime to d, let xt ∈ [d] be such that xt ≡ t−1n (mod d). If a
sum of elements, each congruent to t (mod d), is equal to n, then the sum must involve either xt terms,
d + xt terms or more than d + xt terms. Therefore, arguing as for the first r/2 colors, neither the set of
integers congruent to t (mod d) which are at least n/xt nor the set of integers congruent to t (mod d)

which are at least n/(d + xt) and less than n/xt can contain a subset sum equal to n. Hence, using at
most 2φ(d) < r/8 additional colors, we may color all integers in [n − 1] larger than n/d in such a way
that n is not a monochromatic sum of distinct elements. To complete the coloring, we again group the
remaining uncolored integers into color classes so that the sum of the elements in any given color class is
less than n. Worked out carefully, this then returns the upper bound in Theorem 1.5. For a sketch of how
we prove the matching lower bound, which is the more difficult aspect of the proof, we refer the reader to
Section 2.3.

In practice, since our methods allow it, we will prove a more general result. For the statement, we
need some notation. For positive integers ρ and m, writing pi for the ith prime, we let W (ρ) =

∏ρ
i=1 pi
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and τ(ρ,m) = φ(W (ρ)m)/(W (ρ)m). For m ∈ [n,
(
n
2

)
], we then let ρ(n,m) be the smallest positive integer

ρ such that ρ/τ(ρ,m) ≥ n2/φ(m). Our generalization of Theorem 1.5 is now as follows.

Theorem 1.6. For every positive integer n and any m ∈ [n,
(
n
2

)
], the minimum number of colors f(n,m)

for which it is possible to color the positive integers less than n so that m cannot be written as a monochro-
matic sum of distinct integers satisfies

f(n,m) = Θ

(
min

(
m1/3(m/φ(m))

(log n)1/3(log log n)2/3
, ρ(n,m)

))
.

1.2.2 The largest set avoiding a given subset sum

What is the maximum size g(n,m) of a subset of [n] which has no subset sum equal to m? Variants of
this natural extremal problem, interesting for any positive integers n < m ≤

(
n+1

2

)
, were originally raised

by Erdős and Graham (see, for instance, [21, Page 59] and [18]), although, in the exact form mentioned
here, the problem was first studied in detail by Alon [1].

If we let snd(m) be the smallest positive integer that does not divide m, an easy lower bound for
g(n,m) is b n

snd(m)c, since the set of all multiples of snd(m) below n does not have n as a subset sum. This
simple observation of Alon [1] was later refined by Alon and Freiman [3], who observed that g(n,m) ≥
s(n,m) := b n

snd(m)c+ snd(m)− 2 by augmenting the example above with snd(m)− 2 additional elements,
each congruent to either 1 or −1 modulo snd(m). Another simple lower bound, better than that above
when m is close to

(
n+1

2

)
, is g(n,m) ≥ b

√
2m − 1/2c, following from the fact that the sum of the first

b
√

2m− 1/2c positive integers is less than m.
For the upper bound, Alon [1] first showed that if n1+ε ≤ m ≤ n2/(log n)2, then g(n,m) = O(s(n,m)),

where the implicit constant depends on ε. He also conjectured that g(n,m) = (1 + o(1))s(n,m) in
roughly the same range. For Cn(log n)6 ≤ m ≤ n1.5−o(1), this conjecture was proved soon after by
Lipkin [31]. Remarkably, around the same time, Alon and Freiman [3] determined the function exactly
for n5/3+o(1) ≤ m < n2

20(logn)2
, establishing that g(n,m) = s(n,m) in this range. More than twenty years

then elapsed before Tran, Vu and Wood [42] proved Alon’s conjecture in full generality by showing that
g(n,m) = (1 + o(1))s(n,m) for n(log n)1+o(1) ≤ m ≤ n2

9(logn)2
. We improve these results, determining the

function exactly for all Cn log n ≤ m ≤ n2

(8+o(1))(logn)2
and asymptotically for all Cn log n ≤ m ≤

(
n+1

2

)
.

Theorem 1.7. There is a constant C such that if n and m are positive integers and g(n,m) is the
maximum size of a subset of [n] with no subset sum equal to m, then

g(n,m) = s(n,m) =

⌊
n

snd(m)

⌋
+ snd(m)− 2

for m ∈
[
Cn log n, n2

12(logn)2

]
and

g(n,m) = max
(
s(n,m), (1 + o(1))

√
2m
)

for m ∈
[

n2

12(logn)2
,
(
n+1

2

)]
.
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Since snd(m) ≤ (1 + o(1)) logm ≤ (2 + o(1)) log n, the theorem in fact implies that g(n,m) =

max
(
s(n,m), (1 + o(1))

√
2m
)

= s(n,m) for Cn log n ≤ m ≤ n2

(8+o(1))(logn)2
, as promised above. On the

other hand, once m < cn log n for c sufficiently small, we do not generally have the bound g(n,m) =

(1 + o(1))s(n,m). Indeed, for 8n < m < n(log n)/8, we can show that there is a subset of [n] of
size h = bn2/(2m)c with no subset sum equal to m, so if snd(m) ≥ (log n)/2, then g(n,m) ≥ h >

(2−o(1))s(n,m). To show the existence of the required subset of size h, choose an integer n′ ∈ (h+3n/4, n]

such that m ∈ [n′n/(2h), n′n/(2h) + n/4]. Note that n′ ∈ (h + 3n/4, n] as n′ ≤ 2mh/n ≤ n and, since
n2/(2m) ≥ h ≥ n2/(2m) − 1, we can verify that, for m ∈ (8n, n(log n)/8) and n sufficiently large,
n′ ≥ 2h(m−n/4)

n > h + 3n/4. Observe now that the set of subset sums of the interval [n′ − h, n′] does
not contain any element from the interval [n′n/(2h), n′n/(2h) + n/4], since any sum of at most n/(2h)

elements from the interval is strictly smaller than n′n/(2h), while any sum of at least n/(2h) + 1 elements
from the interval is strictly larger than (n′ − h)(n/(2h) + 1) = n′n/(2h) + n′ − h− n/2 > n′n/(2h) + n/4.
Therefore, the interval [n′− h, n′] has size at least h and does not contain m as a subset sum, as required.

To say more about how we prove Theorem 1.7, we must first discuss the main tool used in our proof,
a strengthening of the subset sums result of Szemerédi and Vu [40] which is itself of independent interest.

1.3 Long homogeneous progressions in subset sums

We opened this paper by mentioning Szemerédi and Vu’s proof [40] of a longstanding conjecture of
Erdős [14]. As shown by Folkman [24], this is itself a corollary of the statement that there is a con-
stant C such that if A = (an)∞n=1 is an infinite increasing sequence of integers with |A ∩ [n]| ≥ C

√
n

for all sufficiently large n, then Σ(A) contains an infinite arithmetic progression. In proving this latter
statement, Szemerédi and Vu first proved the following finite analogue, which we have already mentioned
several times. Note that this result is clearly best possible, as may be seen by considering the set of all
positive integers up to b

√
2n− 1/2c.

Theorem 1.8 (Szemerédi–Vu [40]). There is a constant C such that if A ⊂ [n] with |A| ≥ C
√
n, then

Σ(A) contains an arithmetic progression of length n.

This theorem improved on an earlier result obtained independently by Freiman [25] and Sárközy [35],
who showed that there is a constant C such that if |A| ≥ C

√
n log n, then Σ(A) contains an arithmetic

progression of length at least n. However, it also loses something, because the Freiman–Sárközy result
gives not only an arithmetic progression, but a homogeneous progression, an arithmetic progression a, a+

d, . . . , a + kd where the common difference d divides a and, hence, every other term in the progression.
The natural question then, reiterated by several groups of authors, including Erdős and Sárközy [22],
Sárközy [36] and Tran, Vu, and Wood [42], is whether there is a common strengthening of the Szemerédi–
Vu and Freiman–Sárközy theorems. We answer this question in the affirmative.

Theorem 1.9. There is a constant C such that if A ⊂ [n] with |A| ≥ C
√
n, then Σ(A) contains a

homogeneous progression of length n.

For the proof of Theorem 1.7, we need a slightly stronger version of Theorem 1.9. This result, Theo-
rem 6.1, states that if A ⊂ [n] with |A| ≥ C

√
n, then there exists d (which is typically just 1) such that

most elements in A are divisible by d and the set of subset sums formed from adding at most 250n/|A|
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elements of A which are divisible by d contains a homogeneous progression with length n and common
difference d.

To prove Theorem 1.7, suppose now that A is a subset of [n] with s(n,m) + 1 elements and we
wish to show that m ∈ Σ(A). Using Theorem 6.1, we may conclude that Σ(A) contains a homogeneous
progression with length n and common difference d, where d divides most elements of A. Moreover, if
d|m, this progression will contain m, so we may assume that d ≥ snd(m). A simple counting argument
then implies that d must in fact equal snd(m), as otherwise there will not be enough elements in A. Since
s(n,m) + 1 = b n

snd(m)c+ snd(m)− 1, there must also be at least snd(m)− 1 elements in A which are not
divisible by snd(m). We complete the proof by using these additional elements to show that m ∈ Σ(A),
as required.

As another corollary of Theorem 1.9, we also obtain an improved bound on an old question of Straus [39]
(see also [23]) regarding the maximum size of a non-averaging subset of [n], where a subset A of [n] is
said to be non-averaging if no a ∈ A is the average of two or more other elements of A. If we write
h(n) for the maximum size of a non-averaging subset of [n], an elegant construction of Bosznay [7] shows
that h(n) = Ω(n1/4). On the other hand, if we write H(n) for the maximum integer for which there
are two subsets of [n] of size H(n) whose sets of subset sums have no non-zero common element, then
a result of Straus [39] says that h(n) ≤ 2H(n) + 2. Using the Freiman–Sárközy result on homogeneous
progressions, Erdős and Sárközy [22] were able to show that H(n) = O(

√
n log n), which, by Straus’

observation, also yields a similar upper bound on h(n). By following their method, but using Theorem 1.9
instead of the Freiman–Sárközy result, we improve their bound to H(n) = O(

√
n), which is tight up to

the constant factor, as may be seen by considering the sets [1, c
√
n] and [n− c

√
n, n] for any c <

√
2. By

Straus’ inequality, it also provides an improved upper bound h(n) = O(
√
n) for the size of the largest

non-averaging subset of [n].

Corollary 1.10. There is a constant C such that H(n) ≤ C
√
n, where H(n) is the largest integer for which

there are two subsets of [n] of size H(n) whose sets of subset sums have no non-zero common element, and
h(n) ≤ C

√
n, where h(n) is the size of the largest non-averaging subset of [n].

Organization of the paper

In the next section, we will elaborate on our methods by giving rough outlines of the proofs of some of our
main results. We then proceed to the formal proofs, proving Theorems 1.1 and 1.2 on Ramsey completeness
in Section 3, Theorem 1.3 on density completeness in Section 4 and Theorem 1.6 on monochromatic
subset sums in Section 5. We turn to the proof of Theorem 1.9, our homogeneous strengthening of the
Szemerédi–Vu theorem, and its consequence Corollary 1.10 in Section 6 and conclude in Section 7 by
proving Theorem 1.7 on the largest set avoiding a particular subset sum. Several supplementary results
are consigned to the appendices.

Notation

For the sake of clarity of presentation, we omit floor and ceiling signs whenever they are not essential. We
also maintain the convention that all logarithms are natural logarithms unless otherwise specified.
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2 Overview of the proofs of the main results

The techniques used to prove Theorems 1.1, 1.2, 1.6 and 1.9 all share some similarities. In each case, we
reduce a problem over Z to the corresponding problem over Zm. In the cyclic setting, considering the
structure of the “almost periods”, i.e., those elements whose inclusion does not significantly expand the
subset sum, allows us to transform our questions about subset sums into problems about iterated sumsets.
The literature on iterated sumsets is extensive, allowing us to reach our desired conclusions by combining
existing results on these sumsets with novel arguments from probabilistic combinatorics. In this section, we
say more about the specific ideas that go into the proofs of each of our main theorems. The detailed proofs
of these theorems and the other results described in the introduction are then in subsequent sections.

2.1 Some useful tools

We will repeatedly use the following simple lemma, allowing us to extend intervals in the set of subset
sums by adding new elements. It is essentially Lemma 1 of Graham [26].

Lemma 2.1 (Graham [26]). Let A be a set such that Σ(A) contains all integers in the interval [x, x+ y).

(i) If a is a positive integer with a ≤ y and a /∈ A, then Σ(A ∪ {a}) contains all integers in the interval
[x, x+ y + a).

(ii) If a1, . . . , as are positive integers such that ai ≤ y +
∑

j<i aj and ai /∈ A for i = 1, . . . , s, then
Σ(A ∪ {a1, a2, . . . , as}) contains all integers in the interval [x, x+ y +

∑s
i=1 ai).

Proof. For the proof of the first part, note that if u ∈ [x, x + y), then u ∈ Σ(A) ⊂ Σ(A ∪ {a}). If
u ∈ [x+ y, x+ y + a), then u− a ∈ [x, x+ y) ⊂ Σ(A), so u = (u− a) + a ∈ Σ(A ∪ {a}). The second part
follows from the first part by induction on s.

We will also make repeated use of the following result of Lev [30]. The importance of this result is
that it allows us to find long intervals in a set of subset sums by first finding several dense subsets of
long intervals and then summing these sets. Several weaker versions of this result appeared earlier in the
literature, many of which would also suffice for our purposes.

Lemma 2.2 (Lev [30]). Suppose `, q ≥ 1 and n ≥ 3 are integers with ` ≥ 2d(q− 1)/(n− 2)e. If S1, . . . , S`

are integer sets each having at least n elements, each a subset of an interval of at most q + 1 integers
and none a subset of an arithmetic progression of common difference greater than one, then S1 + · · ·+ S`

contains an interval of length at least `(n− 1) + 1.

In working with general cyclic groups, the following analogue of the Cauchy–Davenport theorem, a
consequence of Theorem 1.1 from [12], will also be useful to us. Given subsets A and B of an abelian
group G, we define A + B = {a + b : a ∈ A, b ∈ B} and A− B = {a− b : a ∈ A, b ∈ B}. For k ∈ N, we
define the k-fold sumset kA = A+A+ · · ·+A︸ ︷︷ ︸

k times

.

Lemma 2.3 (Cochrane, Ostergaard and Spencer [12]). If A is a subset of an abelian group G which is
not contained in a coset of a proper subgroup of G and r, s are non-negative integers which are not both
zero, then

|rA− sA| ≥ min

{
|G|, (r + s+ 1)|A|

2

}
.
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We will also make use of the following result of Deshouillers and Freiman [13]. The following corrected
statement of the result appears in [4], where it is also shown that the hypothesis |A+A| ≤ 2.04|A| can be
weakened to |A+A| ≤ 2.1|A|.

Lemma 2.4 (Deshouillers and Freiman [13]). There exists a positive constant ξ such that if A is a subset
of Zm of size at most ξm with |A + A| ≤ 2.04|A|, then there exists a proper subgroup H ⊆ Zm such that
either

(i) A is a subset of an arithmetic progression of H-cosets of length ` with (`− 1)|H| ≤ |A+A| − |A|,

(ii) A meets exactly three H-cosets and these three H-cosets are terms of an arithmetic progression of
H-cosets of length ` with (min(`, 4)− 1)|H| ≤ |A+A| − |A| or

(iii) A is a subset of an H-coset and |A| ≥ ξ|H|.

Here an arithmetic progression of H-cosets of length ` is a set of the form
⋃
i∈[`](x + id + H), where

x, d ∈ Zm and d /∈ H.

The following simple lemma is crucial in the proofs of most of our main results.

Lemma 2.5. Let m be an integer. Let A be a set of integers such that m /∈ A and the size of Σ(A)

considered modulo m is at least h, then |Σ(A ∪ {m})| ≥ |Σ(A)|+ h.

Proof. The lemma follows since each modulo m class containing an element of Σ(A) contributes at least
one new element to (Σ(A) + {m}) \ Σ(A).

In showing that there are many subset sums over cyclic groups, we use the following lemma, which
shows that the set of new elements whose inclusion do not expand the set of subset sums is small.

Lemma 2.6. Suppose A ⊂ Zm with d < |A| < m and let Gd be the set of x ∈ Zm such that |(A+x)∪A| ≤
|A|+ d. Then |Gd| ≤ |A|2

|A|−d .

Proof. For each x ∈ Zm, |(A+ x) ∩ (Zm \ A)| ≤ |A+ x| = |A|, while if x ∈ Gd, |(A+ x) ∩ (Zm \ A)| ≤ d

by definition. Furthermore,∑
x∈Zm

|(A+ x) ∩ (Zm \A)| =
∑
a∈A
|{x ∈ Zm : a+ x ∈ Zm \A}| =

∑
a∈A

(m− |A|) = |A|(m− |A|),

where the second equality follows since, for each a ∈ A, a + x is an element of Zm \ A for exactly
|Zm \A| = m− |A| values of x. Thus,

|A|(m− |A|) ≤ |Gd| · d+ (m− |Gd|)|A|,

from which we get the desired inequality by rearranging.

We will often use the lemma above in combination with the following simple result.

Lemma 2.7. If A ⊂ Zm and x1, . . . , xk ∈ Zm satisfy |(A + xi) ∪ A| ≤ |A| + d for all i ∈ [k], then
|(A+ x1 + · · ·+ xk) ∪A| ≤ |A|+ kd.
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Proof. We will show, by induction on i, that |(A + x1 + · · · + xi) ∪ A| ≤ |A| + id for 1 ≤ i ≤ k. This is
clearly true for i = 1. For the induction step, assume that |(A + x1 + · · · + xi−1) ∪ A| ≤ |A| + (i − 1)d.
Then

|(A+ x1 + · · ·+ xi) ∪A| − |A| = |(A+ x1 + · · ·+ xi) \A|

≤ |(A+ x1 + · · ·+ xi) \ (A+ xi)|+ |(A+ xi) \A|

= |(A+ x1 + · · ·+ xi−1) \A|+ |(A+ xi) \A|

≤ (i− 1)d+ d = id.

Thus, |(A+ x1 + · · ·+ xi) ∪A| ≤ |A|+ id for 1 ≤ i ≤ k.

2.2 Outline of the proof of the upper bounds in Theorems 1.1 and 1.2

The upper bound in Theorem 1.1 states that there exists a constant C such that, for every r ≥ 2, there is
an r-Ramsey complete sequence A with |A ∩ [n]| ≤ Cr log2 n for all n. The following density-type result
is the key to the proof of this statement.

Lemma 2.8. Let C = 3840 and ε ∈ (0, 1/2]. Let x be a positive integer. Let X be the set of integers in
[x, 2x) with no prime divisor at most (log x)/2. If a sequence S of Cε−1 log x elements in X is chosen
independently and uniformly at random, then, with high probability (as x → ∞), S has distinct terms
and, for any subsequence S′ of S of size ε|S| = C log x, the set Σ(S′) contains all integers in the interval
[Cx log x

4 , 7Cx log x
8 ].

The upper bound in Theorem 1.1 can be easily deduced from Lemma 2.8 as follows.

Proof of the upper bound in Theorem 1.1. Let ε = 1/r and let x0 be large enough that the conclusion of
Lemma 2.8 holds with positive probability for this choice of ε and x ≥ x0. Let xi = 2ix0 and yi = Cxi log xi.
By Lemma 2.8, for each dyadic interval [xi, xi+1) with i ≥ 0 we can pick a sequence Si of Cr log xi distinct
elements in this interval such that the set of subset sums of any subset of Si of size at least |Si|/r
contains the integers in Ii := [yi/4, 7yi/8]. Note that every r-coloring of Si has a color class of size at
least |Si|/r and so the set of monochromatic subset sums of Si contains the integers in Ii. We pick the
sequence A to be the concatenation of the sequences Si for i ≥ 0. Observe that, for all n, we have
A(n) ≤

∑
i:n≤xi+1

|Si| ≤ Cr(log n)2. Moreover, since yi+1/4 < 7yi/8, the intervals Ii cover all integers
at least y0/4. Thus, for every r-coloring of A, every sufficiently large integer can be represented as a
monochromatic subset sum. That is, the sequence A is r-Ramsey complete.

We now give an informal sketch of the proof of Lemma 2.8, showing how it follows from an appropriate
combination of the results of Section 2.1 with some further ideas. To begin, we observe that for any
fixed set I of C log x indices in [Cε−1 log x], the elements of the subsequence (si : i ∈ I) of S of size ε|S|
are independently and uniformly distributed in X. By taking a union bound, it will therefore suffice to
show that if S′ is a sequence of C log x elements chosen independently and uniformly from X, then the
probability that Σ(S′) does not contain all integers in the interval [Cx log x

4 , 7Cx log x
8 ] is sufficiently small.

For this, for some fixed `, we take ` disjoint random subsets S′′1 , . . . , S′′` of S′, each of size |S′|/(8`),
with the aim being to show that, with appropriately high probability, the set of subset sums Σ(S′′j )
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is a dense subset of a long interval and is not contained in an arithmetic progression with common
difference larger than 1. Lemma 2.2 then allows us to conclude that S′′ = S′′1 ∪ · · · ∪ S′′` is such that
Σ(S′′) = Σ(S′′1 ) + · · · + Σ(S′′` ) contains a long interval. Note, moreover, that S′′ only has size |S′|/8, so
there are at least 7|S′|/8 elements still remaining in S′. Using Graham’s lemma, Lemma 2.1, we can use
these elements to extend the long interval in Σ(S′′) to a significantly longer interval containing all of the
required elements.

It only remains to show that Σ(S′′j ) is a dense subset of a long interval with appropriately high
probability (showing that it is also not contained in an arithmetic progression with common difference
larger than 1 is reasonably straightforward). For this, we split S′′j randomly into two disjoint pieces P1

and P2. The key remaining component is to show that for every m ∈ X, the set of integers in [x, 2x)

with no prime factor at most (log x)/2, the mod m set of subset sums Σm(P1) is large with very high
probability. Very roughly, this follows by exposing the elements of P1 one at a time and showing that most
elements expand the mod m set of subset sums significantly. Though we will not give a more detailed
description here, we note that this key step again relies on several results from the previous section,
including the Cauchy–Davenport-type statement, Lemma 2.3, as well as Lemma 2.6, which bounds the
number of almost periods, those x for which (A + x) \ A is small. Finally, once we know that |Σm(P1)|
is, with high probability, large for each m ∈ X, we can apply Lemma 2.5 repeatedly to conclude that
|Σ(S′′j )| ≥

∑
m∈P2

|Σm(P1)|, which yields the required lower bound for |Σ(S′′j )|.
The proof of Theorem 1.2 follows a similar scheme. Let P be a complete polynomial. By the char-

acterization due to Graham [26] discussed in the introduction, we can write P (x) =
∑k

i=0 αi
(
x
i

)
with

αk > 0 and αi = pi
qi
, where pi and qi are relatively prime integers, qi > 0 and gcd(p0, . . . , pk) = 1. If

L = lcm(q0, . . . , qk), then the polynomial L · P has integer coefficients in its binomial representation and
satisfies Graham’s condition, so it is also complete. Furthermore, if ((L ·P )(an))∞n=1 is r-Ramsey complete,
then (P (an))∞n=1 is r-Ramsey complete, so it suffices to work with complete polynomials which have integer
coefficients in their binomial representations. From now on, we will assume that P is such a polynomial.

To prove Theorem 1.2, we prove the following polynomial analogue of Lemma 2.8. For a polynomial
P and a sequence T of integers, let P (T ) be the sequence where we replace each term t in T by P (t).

Lemma 2.9. Let P be a complete polynomial of degree k with integer coefficients in its binomial represen-
tation and let C(k) = k2k+15. Let ε ∈ (0, 1/2]. Let x be a positive integer. Let X be the set of elements y
in [x, (1 + 1/k)x) such that P (y) has no prime divisor at most (log x)1/2. If a sequence S of C(k)ε−1 log x

elements in X is chosen independently and uniformly at random, then, with high probability (as x→∞),
S has distinct terms and, for any subsequence S′ of S of size ε|S|, the set Σ(P (S′)) contains all integers
in the interval [ e9P (x)|S′|, 8

9P (x)|S′|].

We now show how Theorem 1.2 follows from Lemma 2.9, just as the upper bound in Theorem 1.1
follows from Lemma 2.8.

Proof of Theorem 1.2. Let ε = 1/r. For each positive integer i, let xi = (1 + 1/k)i, yi = C(k)P (xi) log xi

and Ii = [eyi/9, 8yi/9]. For i sufficiently large in terms of P and r, Lemma 2.9 implies that we can pick a
subsequence Si of C(k)r log xi distinct terms in [xi, (1 + 1/k)xi) such that any subsequence S′ of Si with
|Si|/r terms has the property that Σ(P (S′)) contains all integers in the interval Ii. Therefore, since every
r-coloring of Si has a color class of size at least |Si|/r, the set of monochromatic subset sums of P (Si)

13



contains the integers in Ii. We pick the sequence A to be the concatenation of the sequences P (Si) with
i sufficiently large. Then, for all n, we have A(n) ≤

∑
i:P (xi)≤n |Si| = Ok

(
(log n)2

)
. Moreover, as xi is

sufficiently large, P (x) is increasing for x ≥ xi and P (xi+1) = P ((1 + 1/k)xi) ≤ eP (xi). It follows that,
for i sufficiently large, eyi+1/9 ≤ 8yi/9 and the intervals Ii and Ii+1 are overlapping. Hence, the intervals
Ii cover all sufficiently large integers. Thus, for every r-coloring of A, every sufficiently large integer can
be represented as a monochromatic subset sum. That is, the sequence A is r-Ramsey complete.

The proof of Lemma 2.9 itself follows along broadly similar lines to the proof of Lemma 2.8. The key
additional input, arising in the analogue of the step where we showed that |Σm(P1)| is large with high
probability for each m ∈ X, is the following result on iterated sumsets of a set of polynomial values,
proved through a form of PET induction (see, for example, [5]). For further details, we refer the reader
to Section 3, where the proofs of Lemmas 2.8 and 2.9 are given in full.

Lemma 2.10. There exists a constant Ck, depending only on k, such that if P is a complete polynomial
of degree k with integer coefficients in its binomial representation, x is sufficiently large depending on P ,
m is an integer in [x, 2x), (log x)−1 < α < 1/2 and T is a subset of [x, 2x) of size at least αx, then the
iterated sumset 2k−1P (T )− 2k−1P (T ) contains more than αCkP (m) residue classes modulo P (m).

2.3 Outline of the proof of the lower bound in Theorems 1.5 and 1.6

Recall that, for any n ≤ m ≤
(
n
2

)
, f(n,m) is defined as the minimum r for which there is an r-coloring

of [n − 1] such that m cannot be written as a sum of distinct monochromatic elements. In this section,
we sketch the main ideas behind the lower bound in Theorem 1.6, which asymptotically determines the
value of f(n,m). For simplicity, we will focus on the case m = n corresponding to Theorem 1.5, where
we wish to show that f(n) = f(n, n) = Θ

(
n1/3(n/φ(n))

(logn)1/3(log logn)2/3

)
. Theorem 1.6 follows from an appropriate

elaboration of these ideas.
We begin by sketching Vu’s argument [43] (itself building on an argument used by Alon and Erdős [2]),

which yields the bound f(n) ≥ c1
n1/3

logn for some positive constant c1. To this end, consider an arbitrary

r-coloring of [n] for some r < c1
n1/3

logn . We restrict our attention to the interval [n2/3, 2n2/3) and focus on
the color class containing the largest number of primes from this interval. Let Q be the set of primes in
this color class, noting that r < c1

n1/3

logn implies that |Q| ≥ Cn1/3 for a positive constant C (which can be
made arbitrarily large by taking c1 to be sufficiently small). Partition Q into three subsets Q1, Q2 and
Q3 of roughly equal size. Since |Q1| ≥ C

3 n
1/3, we can apply the Szemerédi–Vu theorem, Theorem 1.8,

to Q1 to obtain an arithmetic progression of length at least 2n2/3 in Σ(Q1). We can then complete this
arithmetic progression of common difference d, say, to a long interval by building a complete modulo d
class using Q2. Provided the parameters have been chosen appropriately, this interval will have length at
least 2n2/3 and the minimum number in the interval will be smaller than n. Therefore, by Lemma 2.1,
adding each element of Q3 in turn will expand the interval and, since adding all elements in Q3 would
exceed n, the resulting interval in Σ(Q1 ∪Q2 ∪Q3) must contain n.

To go further, we make two observations about this argument. First, note that we passed immediately
to a subset of the primes. This was in order to avoid the situation where a color class consists entirely of
numbers with a given divisor, as, otherwise, it would be impossible to write any n which is not a multiple
of this divisor as a sum of elements from the color class. Second, the key tool in the proof, Theorem 1.8, is
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tight up to the constant, since the set of subset sums of the set consisting of the first b
√

2n−1/2c positive
integers has size less than n. However, this naive application of Theorem 1.8 makes no use of the fact that
our set consists entirely of primes. It is here that we are able to gain.

To illustrate the main ideas in our argument, we first restrict to the case where n is prime. Suppose
then that there is an r-coloring of [n − 1], where r satisfies n = λr3(log r)(log log r)2 for a sufficiently
large constant λ. If we let y = Θ(r2(log r)(log log r)), the number of primes in the interval [y, 2y) is
Θ(r2 log log r), so, by the pigeonhole principle, there is a monochromatic subset Q of the primes in [y, 2y)

with |Q| = Ω(r log log r). As in Vu’s argument, the plan from this point is to use a subset V of Q of
size O(r log log r) to build a large interval and then to apply Lemma 2.1 to expand this interval using the
remaining elements. To show that Σ(V ) contains the required interval, we partition V into a bounded
number of sets V1, V2, . . . , V` of roughly equal size and show that, for each i, Σ(Vi) contains a dense subset
of an interval. Given this crucial input, Lemma 2.2 then implies that Σ(V ) contains a long interval.

Quantitatively, for this argument to go through, we need Σ(V ) to contain an interval of length
Ω(r2(log r)(log log r)). For this to follow from Lemma 2.2, we need to have |Σ(Vi)| = Ω(r2(log r)(log log r))

for each Vi, themselves satisfying |Vi| = O(r log log r). Thus, we need to show that |Σ(Vi)|/|Vi| ≥ r log r,
say. For this, we prove an inverse result, that if |Σ(Vi)|/|Vi| < r log r, then a large subset of Vi must be
additively structured, in the sense that this subset is contained in a set of size O(|Vi|(log r)/(log log r))

which can be written as a union of long arithmetic progressions. We then use the Selberg sieve to show
that, since Vi consists of primes, it is impossible for a large subset of Vi to have this structure.

In practice, as in the proofs of Theorems 1.1 and 1.2, we do much of our work over cyclic groups.
Indeed, to show that Σ(Vi) is large, we partition Vi into two sets Ai,1 and Ai,2 and show that, for each
a2 ∈ Ai,2, |Σ(Ai,1) (mod a2)| is large. Lemma 2.5 then allows us to conclude that Σ(Vi) = Σ(Ai,1 ∪ Ai,2)

is large.
To show that |Σ(Ai,1) (mod a2)| is large, we consider an iterative building process which grows the set

of subset sums modulo a2 by picking elements in Ai,1 one at a time. We begin with T0 = Ai,1 and Σ(0) =

{0} ⊆ Za2 . In step j ≥ 1, we choose an element xj from Tj−1 which maximizes |(Σ(j−1) +xj)\Σ(j−1)|,
where the set Σ(j−1) is viewed as a subset of Za2 , and then set Σ(j) = (Σ(j−1)+xj)∪Σ(j−1) and Tj =

Tj−1\{xj}. If, for each j ≤ |Ai,1|/2, there is a choice of xj such that |(Σ(j−1)+xj)\Σ(j−1)| is large, then
|Σ(Ai,1) (mod a2)| will be large, as required. If, instead, there is a step j such that |(Σ(j−1)+x)\Σ(j−1)|
is small for all x ∈ Tj−1, then, using Lemma 2.4 (or, rather, its corollary, Lemma 5.7), we can show that
Tj−1 is additively structured, in the sense that it is contained in a small set which is a union of long
arithmetic progressions. By a version of the Selberg sieve, Tj−1 cannot then contain too many primes,
contradicting the fact that, as a subset of Q, Tj−1 consists entirely of primes.

Several additional ideas are needed to handle the case where n is not prime. For instance, in the prime
case, we could build the required sum n using only primes, but now we must use integers of the form qu,
where u is a small divisor of n and q is coprime to the first r primes. As before, our first step is to pass
to a large monochromatic subset Q0 of this set, the goal being to show that n is contained in the set of
subset sums of Q0. In the prime case, we took a subset V of Q = Q0, partitioned it into sets Vi and
then partitioned each Vi into sets Ai,1 and Ai,2, before showing that |Σ(Ai,1) (mod a2)| is large for each
a2 ∈ Ai,2. However, this argument may not go through in the general case, because, when a2 is not prime,
we could have that Ai,1, and hence Σ(Ai,1), is contained in a small proper subgroup of Za2 .
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To overcome this issue, we first apply a preprocessing step to the set Q0, our aim being to find a closely
related set Q which is k-diverse, by which we mean that, for any d ≥ 2, there are at least k elements of
Q which are not divisible by d. We obtain such a set through a simple iteration. Indeed, if we have a set
which is not k-diverse, then there is some d dividing all but k elements of the set, so we can remove these
elements from the set and divide the remaining elements by d to form a new set. Repeating this procedure
with an appropriate value of k, we eventually arrive at a large k-diverse set Q such that {vx : x ∈ Q} ⊆ Q0

for some v|n. Thus, in order to conclude that n is a sum of elements in Q0, we only need to show that
n/v is a sum of elements in Q.

A crucial property of diverse sets is that random subsets of a diverse set are themselves diverse with
high probability. Thus, by taking a random subset V of Q, randomly partitioning V into parts Vi and
then randomly partitioning each Vi into Ai,1 and Ai,2, we have that, with high probability, all of the sets
Ai,1 are diverse. We can also show that any common divisor of a large subset of Ai,1 must be a small
divisor of n. Proceeding now along the same lines as the prime case, this reduces our task to showing that
|Σ(Ai,1) (mod a2)| is large for any diverse subset Ai,1 of A with the additional property that any common
divisor of a large subset of Ai,1 is small.

To show that |Σ(Ai,1) (mod a2)| is large, we consider a more refined version of the iterative building
process used in the prime case. The details of this key step are contained in Lemma 5.6. We again begin
with T0 = Ai,1 and Σ(0) = {0} ⊆ Za2 and, in step j ≥ 1, we again choose an element xj from Tj−1 and set
Σ(j) = (Σ(j − 1) + xj) ∪Σ(j − 1) and Tj = Tj−1 \ {xj}, but the process for choosing xj is more complex.
To describe it, we let dj be the greatest common divisor of the elements in Tj−1. The choice of xj depends
on the sets Su = Σ(j − 1) ∩ (u + djZa2) with u ∈ Za2/djZa2 . We refer to step j as a growth phase, an
unsaturated phase or a saturated phase, depending on whether there exists u such that Su is non-empty
and small, no non-empty Su is small and at least one is of intermediate size or all non-empty Su are large,
respectively. If j is a growth phase, we choose xj from Tj−1 so as to maximize |Σ(dj , j)| − |Σ(dj , j − 1)|,
where Σ(dj , t) = {

∑
h∈H xh (mod a2) : H ⊆ [t] ∩ {h : dj |xh}}. If j is an unsaturated or saturated phase,

we choose xj from Tj−1 so as to maximize |(Σ(j − 1) + xj) \ Σ(j − 1)|.
If now there is a saturated phase j among the first |Ai,1|/2 steps, we can show that |Σ(Ai,1) (mod a2)| ≥

|Σ(j − 1)| is large, as required. On the other hand, we can also show that there are only a small number
of growth phases among the first |Ai,1|/2 steps. Hence, we can assume that there are many unsaturated
phases. Our aim now is to show that |Σ(j)|− |Σ(j− 1)| is large for any unsaturated phase, since, together
with the fact that there are many unsaturated phases, this will imply that |Σ(Ai,1) (mod a2)| is large, as
required. As in the prime case, this final step proceeds by first showing that if |Σ(j)| − |Σ(j − 1)| is not
large, then Tj−1 must be additively structured, again that it is contained in a small set which is a union of
long arithmetic progressions, and then using the Selberg sieve to derive a contradiction, in this case that
Tj−1 cannot contain many elements of the form qu, where u is a small divisor of n and q is coprime to the
first r primes.

2.4 Outline of the proof of Theorem 1.9

To prove Theorem 1.9, that there exists a constant C such that any A ⊂ [n] with |A| ≥ C
√
n has a

homogeneous progression of length n in Σ(A), we use a variant of the ideas discussed in Subsection 2.3.
As in that subsection, we apply a preprocessing step to the set A to find a set A′ of size comparable to A
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which is k-diverse for an appropriate k and for which there exists an integer d such that {dx : x ∈ A′} ⊆ A.
We also maintain a further property, that A′ intersects each dyadic interval in either the empty set or a
large set. Having obtained the required set A′, we replace A with this set and consider a random partition
of the set into parts X1, Y1, . . . , X`, Y`.

The key step in the proof is Lemma 6.2, which roughly says that if Xi satisfies an appropriate diversity
condition, then |Σ(Xi) (mod b)| is large for all b ∈ Yi. But since Xi is part of a random partition of
the diverse set A, we can, with high probability, guarantee that Xi is also diverse and, therefore, by
Lemma 6.2, that |Σ(Xi) (mod b)| is large for all b ∈ Yi. Then, as in the previous outlines, we apply
Lemma 2.5, in this case together with what we know about the distribution of A in dyadic intervals, to
show that Σ(Xi ∪ Yi) is large, followed by Lemma 2.2 to conclude that Σ(A) contains a long interval.
Unwinding the preprocessing step, we see that this interval corresponds to a long homogeneous arithmetic
progression in the set of subset sums of the original set, as required.

At first glance, Lemma 6.2 seems to bear close resemblance to one of the key steps in the proofs of
Theorems 1.5 and 1.6 described in the previous subsection (and formally encapsulated in Lemma 5.6). In
both cases, we wish to show that if X is a sufficiently diverse set, then |Σ(X) (mod b)| is large for all
b in a certain set Y . The difference lies in the fact that the sets X considered in Theorems 1.5 and 1.6
are carefully chosen so that we can hope for a stronger guarantee on the size of Σ(X) (mod b) than in
the typical case, whereas here we are concerned precisely with that typical case. The proof of Lemma 6.2
follows from a similar iterative building process to that used in the proof of Lemma 5.6, as described at
the end of the last subsection.

Because we need it for the proof of Theorem 1.7, our result on the largest subset of [n] avoiding a
particular subset sum, we will actually prove a strengthening of Theorem 1.9, saying that we can build
the required homogeneous progression using short sums, that is, sums with only a small number of terms.
This strengthening requires a somewhat more careful analysis than that described above. In particular,
we must start with T0 equal to a large random subset of Xi and Σ(0) = Xi \ T0 (mod b).

3 Ramsey completeness

3.1 Proof of the upper bound in Theorem 1.1

The goal of this section is to prove the upper bound in Theorem 1.1, that there exists a constant C such
that, for every r ≥ 2, there is an r-Ramsey complete sequence A with |A ∩ [n]| ≤ Cr log2 n for all n. As
shown in Section 2.2, this theorem follows from another statement, Lemma 2.8, whose proof will occupy
us in this subsection.

The next lemma, a mod m analogue of Lemma 2.8, is the key step in proving that lemma. Let Σm(S)

be the set of subset sums of S taken modulo m.

Lemma 3.1. Fix c ≥ 6 and assume that x is sufficiently large. Let w = (log x)/2 and let X be the set
of integers in [x, 2x) with no prime divisor at most w. Let m ∈ X. If a sequence S of c log x integers is
chosen uniformly and independently at random from X and viewed as a sequence of elements in Zm, then
|Σm(S)| < x

4 with probability less than (log x)−(c−5) log x.

Proof. Let W =
∏
p≤w p, where the product is taken over primes, and τ = φ(W )/W . The prime number
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theorem implies that W = e(1+o(1))w = x1/2+o(1). In any interval of length W , there are exactly τW

integers with no prime divisor at most w. By Merten’s third theorem, τ = (e−γ + o(1)) / logw, where γ
is the Euler–Mascheroni constant. It follows that

|X| ≥ τ(x−W ) ≥ x

2 log log x
.

Let q = c log x. Let S = (s1, s2, . . . , sq) be a sequence of q random elements of X. Let Si = (s1, . . . , si)

denote the sequence consisting of the first i elements of S. Let δ = log log x/ log x. Call i ∈ [2, q] bad if

• |Σm(Si)| ≤ 3
2 |Σm(Si−1)| and |Σm(Si−1)| ≤ x/ log x or

• |Σm(Si)| ≤ (1 + δ)|Σm(Si−1)| and x/ log x < |Σm(Si−1)| < x/4.

The following two claims allow us to quickly complete the proof.

Claim 1. The probability that i is bad conditioned on the choice of Si−1 is at most p := 4(log log x)2

log x .

Claim 2. If |Σm(S)| < x/4, then the number of integers in [2, q] which are not bad is less than 4 log x.

Assuming Claim 1, for any B ⊂ [2, q], the probability that all elements in B are bad is at most p|B|.
From Claim 2, if |Σm(S)| < x/4, then there is a set B of q − 4 log x integers i ∈ [2, q] which are bad.
Taking a union bound over all such choices of B, the probability that |Σm(S)| < x/4 is at most

(
q

q − 4 log x

)
p|B| =

(
q

4 log x

)
p|B| < c4 log x

(
4(log log x)2

log x

)(c−4) log x

< (log x)−(c−5) log x.

To complete the proof, it remains to verify Claims 1 and 2.

Proof of Claim 1. Fix Si−1 = (s1, . . . , si−1). Conditioned on this choice of Si−1, we bound the probability
that i is bad. If |Σm(Si−1)| ≥ x/4, then i cannot be bad (so the event that i is bad has probability zero). We
may therefore restrict attention to the two cases |Σm(Si−1)| ≤ x/ log x and x/ log x < |Σm(Si−1)| < x/4.

For the first case, note, by Lemma 2.6, that the number of s with |Σm(Si−1 ∪ {s})| ≤ 3
2 |Σm(Si−1)|

is at most |Σm(Si−1)|2
|Σm(Si−1)|/2 = 2|Σm(Si−1)|. Therefore, if |Σm(Si−1)| ≤ x/ log x, the probability that i is bad

conditioned on Si−1 is at most 2|Σm(Si−1)|
|X| ≤ 2x

|X| log x ≤
4 log log x

log x < p.
Suppose now that x/ log x < |Σm(Si−1)| < x/4. For a positive integer D, let GD be the set of s such

that |Σm(Si−1∪{s})| ≤ |Σm(Si−1)|+D. Let d = bδ|Σm(Si−1)|c, so i is bad in this case if and only if si ∈ Gd.
Let k = b 1

2δ c, so kd ≤ |Σm(Si−1)|/2. By Lemma 2.7, kGd ⊆ Gkd, so |kGd| ≤ |Gkd| ≤ 2|Σm(Si−1)| < x
2 ,

where the middle inequality is again by the consequence of Lemma 2.6 noted above.
If |Gd| ≤ m

w , then |Gd| ≤ m
w ≤

2x
(log x)/2 < 2δx. Otherwise, |Gd| > m

w . In this case, since m has
no prime divisor at most w, no subgroup of Zm has size larger than m

w . Thus, Gd cannot be contained
in a coset of a non-trivial subgroup. By Lemma 2.3, since |kGd| ≤ x

2 < m, we must have |kGd| ≥
(k + 1)|Gd|/2 ≥ |Gd|/(4δ). Hence, |Gd| ≤ 4δ|kGd| ≤ 4δx/2 = 2δx. Thus, in either case, conditioned on
the choice of Si−1, the probability that i is bad, which is the same as the probability that si ∈ Gd, is at
most |Gd||X| ≤

2δx
|X| ≤ 4δ log log x = p.

Proof of Claim 2. As Si−1 ⊂ Si for i ∈ [2, q], Σm(Si−1) ⊂ Σm(Si) and, hence, 1 ≤ |Σm(S1)| ≤ · · · ≤
|Σm(Sq)| = |Σm(S)| < x

4 . Therefore, the number of i which are not bad with |Σm(Si−1)| ≤ x/ log x and
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|Σm(Si)| ≥ 3
2 |Σm(Si−1)| is at most log3/2 x, as we get a factor of 3/2 for each such i. Moreover, since

(1+δ)δ
−1 log2 log x ≥ 2log2 log x = log x, the number of elements i which are not bad with x/4 > |Σm(Si−1)| >

x/ log x and |Σm(Si)| ≥ (1 + δ)|Σm(Si−1)| is at most δ−1 log2 log x = log2 x, as we get a factor of 1 + δ for
each such i. Therefore, the number of i ∈ [2, q] which are not bad is at most log3/2 x+log2 x < 4 log x.

We next prove Lemma 2.8 using Lemma 3.1. Let C = 3840, ε ∈ (0, 1/2] and X be the set of integers in
[x, 2x) with no prime divisor at most (log x)/2, as in Lemma 3.1. We wish to show that if a sequence S of
Cε−1 log x elements in X is chosen independently and uniformly at random, then, with high probability,
S has distinct terms and, for any subsequence S′ of S of size ε|S| = C log x, the set Σ(S′) contains all
integers in the interval [Cx log x

4 , 7Cx log x
8 ].

Proof of Lemma 2.8. By the birthday paradox, as |S| = o(
√
|X|), S has distinct terms with high proba-

bility. Fix a choice of subset I ′ of [Cε−1 log x] of size C log x and consider the subsequence S′ of S given by
(si)i∈I′ . Let I ′′ be the smallest |S′|/8 elements in I ′ and let S′′ be given by (si)i∈I′′ . Let ` = 40. Arrange
I ′′ in increasing order and partition I ′′ into ` sets I ′′1 , . . . , I ′′` of consecutive terms so that each set I ′′j for
j ∈ [`] has size |I ′′|/`. This gives a partition of S′′ into ` subsequences S′′1 , . . . , S′′` , where S

′′
j = (si)i∈I′′j .

Note that |S′′j | =
C log x

8` and Σ(S′′j ) ⊆ [0, 2xC log x
8` ]. We shall prove below that, with high probability, the

sequence S has the property that, for all possible choices of I ′ and j, |Σ(S′′j )| ≥ Cx log x/64`. Assuming
this, we can show that Σ(S′′j ) is not contained in an arithmetic progression with common difference larger
than 1. Indeed, if Σ(S′′j ) is contained in an arithmetic progression with common difference d > 1, then
d ≤ (2Cx log x)/(8`)

(Cx log x)/(64`)−1 ≤ 17. Moreover, if Σ(S′′j ) is contained in an arithmetic progression with common
difference d > 1, then all elements in Σ(S′′j ) are congruent modulo d, from which it follows that all el-
ements of S′′j are divisible by d. This contradicts the fact that no element of S′′j has a prime factor at
most (log x)/2 > 17. Hence, for each j, Σ(S′′j ) is not contained in an arithmetic progression with com-
mon difference larger than 1. Therefore, by Lemma 2.2, as Σ(S′′) = Σ(S′′1 ) + · · · + Σ(S′′` ), the set Σ(S′′)

contains the integers in an interval of length at least `
(
Cx log x

64` − 1
)

+ 1 > 2x. Finally, by Lemma 2.1,

Σ(S′) = Σ(S′′ ∪ (S′ \ S′′)) contains all integers in the interval [Cx log x
4 , 7Cx log x

8 ], where we used that all
elements of S′ are at most 2x, the elements of Σ(S′′) are at most 2x|S′′| = Cx log x

4 and the sum of the
elements in S′ \ S′′ is at least 7

8 |S
′|x = 7Cx log x

8 .
It remains to show that, with high probability, the sequence S has the property that, for all possible

choices of I ′ and j, |Σ(S′′j )| ≥ Cx log x/64`. Fix an index 1 ≤ j ≤ ` and partition the index set I ′′j
of S′′j into two consecutive blocks J1 and J2 of equal size. Let P1 = (si)i∈J1 and P2 = (si)i∈J2 , so

|P1| = |P2| =
|S′′j |

2 = C log x
640 = c log x for c = C

640 = 6. Recall that X is the set of integers in [x, 2x) with
no prime divisor at most (log x)/2. Consider m ∈ X. We note that when we fix the subset of indices I ′

of [Cε−1 log x] of size C log x and the index j, then J1 is determined as a particular subsequence of I ′.
Moreover, each element in P1 is uniformly and independently distributed in X. Taking a union bound over
all x`

(
Cε−1 log x
C log x

)
choices of I ′, j ∈ [`] and m ∈ X, Lemma 3.1 implies that the probability |Σm(P1)| < x

4

for some I ′, j ∈ [`] and m ∈ X is at most

x`

(
Cε−1 log x

C log x

)
·
(

1

log x

)(c−5)(log x)

≤ 50x(e/ε)3840 log x ·
(

1

log x

)log x

= ox(1),

where ox(1) tends to 0 as x tends to infinity. Thus, with high probability, the sequence S is such that
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|Σm(P1)| ≥ x
4 for all choices of I ′, j ∈ [`] and m ∈ X. In this case, by repeated application of Lemma 2.5,

for all j ∈ [`],

|Σ(S′′j )| ≥
∑
m∈P2

x

4
=
x

4
·
|S′′j |

2
=
Cx log x

64`
.

Therefore, with high probability, the sequence S is such that |Σ(S′′j )| ≥ Cx log x/64` for all possible choices
of I ′ and j, as required.

3.2 Proof of Theorem 1.2

Our aim in this section is to prove Theorem 1.2, our main result on the Ramsey completeness of complete
polynomial sequences (P (m))m≥1, saying that there exists a constant C, depending only on the degree of
P , such that, for every r ≥ 2, there is an r-Ramsey complete sequence A ⊂ (P (m))m≥1 with |A ∩ [n]| ≤
Cr log2 n for all n. As remarked in Section 2.2, we can and will assume that P is a complete polynomial
which has integer coefficients in its binomial representation. That is, we can write P (x) =

∑k
i=0 αi

(
x
i

)
,

with αk > 0, each αi an integer and gcd(α0, . . . , αk) = 1.
Our first goal will be to prove Lemma 2.10. To recall the statement, suppose that P is a complete

polynomial of degree k with integer coefficients in its binomial representation, m is an integer in [x, 2x),
(log x)−1 < α < 1/2 and T is a subset of [x, 2x) of size at least αx. Then Lemma 2.10 asserts that there
is a constant Ck depending only on k such that, for x sufficiently large, the iterated sumset 2k−1P (T ) −
2k−1P (T ) contains more than αCkP (m) residue classes modulo P (m). Once this lemma is in place, we
will follow a scheme similar to that of the previous subsection to complete the proof.

Proof of Lemma 2.10. Let T = {x0, x1, . . . , x`−1}, where x ≤ x0 < x1 < · · · < x`−1 < 2x and ` ≥ αx.
Let x0,i = xi and `0 = `. Let `j = `j−1(`j−1 − 1)/4x for j = 1, . . . , k. For each j ∈ [k], we recursively
construct a subsequence xj,0 < xj,1 < · · · < xj,`j−1 of T with `j terms, as follows. For each j ∈ [k], note
that at least (`j−1 − 1) /2 of the indices 0 ≤ i ≤ `j−1 − 2 satisfy xj−1,i+1 − xj−1,i ≤ 2x/`j−1. Thus, by
the pigeonhole principle, there is yj ∈ [2x/`j−1] such that at least ((`j−1 − 1)/2)/ (2x/`j−1) = `j indices
0 ≤ i ≤ `j−1 − 2 satisfy xj−1,i+1 − xj−1,i = yj . Let xj,i = xj−1,ti for `j increasing indices t0, t1, . . . , t`j−1

such that xj−1,ti+1 − xj−1,ti = yj . As x/ (`j + 1) ≤ (2x/ (`j−1 + 1))2, by iterating we get

x

`j + 1
≤
(

x

`0 + 1

)2j

22(1+2+···+2j−1) ≤ α−2j22j+1
. (2)

In particular, by (2) and the assumption α ≥ (log x)−1, we obtain that, for 1 ≤ j ≤ k, yj is bounded above
by a polynomial function of log x depending on k.

Let P0 = P and recursively define

Pj(x) = Pj−1(x+ yj)− Pj−1(x),

which is a polynomial in x of degree k−j whose coefficients are polynomials in y1, . . . , yj . Let zj :=
∏j
i=1 yi.

Then zj and the coefficients of Pj are bounded in absolute value by a polynomial function of log x which
depends on k and the coefficients of P . This observation brings the following simple claim into play.

Claim. Let Q(x) =
∑k

i=0 βix
i and Q̃(x) =

∑k
i=0 β̃ix

i, where βi and β̃i are allowed to depend on x. If the
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βi and β̃i are at most a fixed polynomial function of log x in absolute value and βk = β̃k is bounded below
in absolute value by some positive constant depending only on k, then limx→∞

Q(x)

Q̃(x)
= 1.

Recall that P is a complete polynomial with integer coefficients in its binomial representation P (x) =∑k
i=0 αi

(
x
i

)
and the leading coefficient αk is a positive integer. The coefficient of xk−j in Pj(x) is the

same as that in αkzj
(
x
k−j
)
. To see this, note, by induction, that the coefficient of xk−j in Pj(x) =

Pj−1(x+ yj)−Pj−1(x) is the same as the coefficient of xk−j in αkzj−1

(( x+yj
k−j+1

)
−
(

x
k−j+1

))
and, hence, of

αkzj−1yj
(
x
k−j
)

= αkzj
(
x
k−j
)
. It follows from the claim that the polynomial Pj(x) is asymptotically equal

to αkzj
(
x
k−j
)
.

Let c = 1/(k2k+2) and wk−1 = 1. For 0 ≤ j ≤ k − 2, let wj = 2k−jyj+1. We choose (not necessarily
disjoint) sets I0, I1, . . . , Ik−1 of indices such that Ij ⊆ [`j ] and any two distinct indices in Ij differ by
at least wj . By partitioning [x, 2x) into 1/c intervals of length cx each, we can further guarantee that
{x0,i0 : i0 ∈ I0} is a subset of an interval [x′, x′ + cx) of length cx that is a subinterval of [x, 2x). By
greedily picking the elements, we can guarantee that |I0| ≥ c`0/w0 and |Ij | ≥ `j/wj for j > 0.

For a k-tuple t = (i0, . . . , ik−1) ∈ I0 × · · · × Ik−1, let

F (t) =

k−1∑
j=0

Pj(xj,ij ).

We claim that these numbers are distinct modulo P (m). This follows from showing that (as integers) these
numbers lie in an interval of length less than P (m) and that they are ordered lexicographically. That is,
if t = (ij) and t′ = (i′j) are distinct k-tuples, j0 is the smallest index such that ij0 6= i′j0 and ij0 > i′j0 , then
F (t) > F (t′).

We first show that the numbers F (t) with t ∈ I0×· · ·×Ik−1 lie in an interval of length less than P (m).
As x is sufficiently large, each Pj is positive and increasing in [x, 2x). It follows that

P (x′) +
∑

1≤j≤k−1

Pj(x) ≤ F (t) ≤ P (x′ + cx) +
∑

1≤j≤k−1

Pj(2x). (3)

We have that

P (x′ + cx)− P (x′) ≤ αk
((

x′ + cx

k

)
−
(
x′

k

))
+
∑
j<k

|αj |(x′ + cx)j

≤ αk
((

2x

k

)
−
(

2x− cx
k

))
+
∑
j<k

|αj |(2x)j

= (2k − (2− c)k)P (x) +R(x),

where R is a polynomial with degree at most k − 1 depending only on P . Thus, the difference between
the upper and lower bounds for F (t) in (3) is, for x sufficiently large, at most

P (x′ + cx)− P (x′) +
∑

1≤j≤k−1

Pj(2x)

≤ (2k − (2− c)k)P (x) +R(x) +
∑

1≤j≤k−1

Pj(2x)
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≤ ck2k−1P (x) ≤ 1

2
P (x) ≤ 1

2
P (m),

where, in the second inequality, we used that 2k − (2 − c)k < ck2k−1, as well as the claim and the
fact that R(x) +

∑
1≤j≤k−1 Pj(2x) is a polynomial of degree at most k − 1 in x whose coefficients are

polynomials (depending only on P ) in y1, . . . , yk−1, where y1, . . . , yk−1 are themselves bounded in absolute
value by a polynomial function of log x. Hence, the integers F (t) all lie in an interval of length at most
P (m)/2 < P (m), as desired.

We next show that the integers F (t) with t ∈ I0 × · · · × Ik−1 are lexicographically ordered. Indeed,
suppose t = (ij) and t′ = (i′j) are distinct k-tuples, j0 is the smallest index such that ij0 6= i′j0 and ij0 > i′j0 .
Then

F (t)− F (t′) =

k−1∑
j=j0

Pj(xj,ij )− Pj(xj,i′j ). (4)

Since xj,ij − xj,i′j ≥ ij − i′j ≥ wj , the first summand in (4), when j = j0, is asymptotically at least
αkzj0wj0

(
x

k−j0−1

)
. If j0 = k−1, the rest of the sum is 0. Otherwise, j0 ≤ k−2 and, since x ≤ xj,ij , x′j,i′j < 2x

and Pj(x) is increasing for x sufficiently large, the rest of the sum in (4) is at least

k−1∑
j=j0+1

Pj(x)− Pj(2x).

By the claim, this sum is asymptotic to its first summand (when j = j0 + 1). Therefore, this sum is
asymptotically −αkzj0+1(2k−j0−1−1)

(
x

k−j0−1

)
. As zj0+1 = yj0+1zj0 , we have zj0wj0 > 2zj0+1(2k−j0−1−1).

Hence, as x is sufficiently large, the first term in the sum in (4) is more than the absolute value of the sum
of the other terms, so we conclude that F (t) > F (t′), as desired.

As the integers F (t) with t ∈ I0× · · · × Ik−1 are distinct modulo P (m), the number of distinct residue
classes F (t) (mod P (m)) is at least

k−1∏
j=0

|Ij | ≥ c
k−1∏
j=0

`j/wj ≥ ckxk
k−1∏
j=0

α2j+1 ≥ ckα2k+1
xk,

where ck > 0 depends only on k. Here we used yj ≤ 2x/`j−1, wj = 2k−jyj+1 by the definition of wj and
the bound (2) on `j .

Note now that P0(x0,i) = P (xi) ∈ P (T ). We will show, inductively, that for j ≥ 1 we have Pj(xj,i) ∈
2j−1P (T )− 2j−1P (T ) for all 0 ≤ i ≤ `j − 1. Indeed,

Pj(xj,i) = Pj−1(xj,i + yj)− Pj−1(xj,i) = Pj−1(xj−1,ti+1)− Pj−1(xj−1,ti) ∈ 2j−1P (T )− 2j−1P (T ),

recalling that there exist indices ti such that xj,i = xj−1,ti and xj,i + yj = xj−1,ti+1. As each F (t) is
the sum of k terms in which the jth term is of the form Pj(xj,i), we have that each F (t) is in the set
P (T ) +

∑k−1
j=1(2j−1P (T ) − 2j−1P (T )) = 2k−1P (T ) − (2k−1 − 1)P (T ). The set 2k−1P (T ) − 2k−1P (T ) =

−P (T ) + 2k−1P (T )− (2k−1 − 1)P (T ) is the union of | − P (T )| translates of 2k−1P (T )− (2k−1 − 1)P (T ).
Hence, ∣∣∣2k−1P (T )− 2k−1P (T )

∣∣∣ ≥ ckα2k+1
xk > αCkP (m)
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for an appropriate constant Ck depending only on k, completing the proof.

Remark. A Hilbert cube of dimension k (or simply a k-cube) is a set H(a0, e1, . . . , ek) of the form
{a0 +

∑
i∈I ei : I ⊆ [k]} with a0 an integer and e1, . . . , ek positive integers (see [27] for more on the long

history of these objects). The first step in the proof of Lemma 2.10 was to iteratively build many Hilbert
cubes of dimension k consisting of elements of T , all with ej = yj and where we can take a0 to be any
xk,i. An alternative approach to this step is to build many k-cubes in T with small e1, . . . , ek and then to
use the pigeonhole principle to show that one can pick out many such k-cubes with the same e1, . . . , ek.

As in the previous subsection, we will deduce Lemma 2.9 from a modular analogue, which we now
state. Recall that Σm(S) is the set of subset sums modulo m.

Lemma 3.2. Let P be a complete polynomial of degree k with integer coefficients in its binomial repre-
sentation. Fix c ≥ k2k+4 and assume x is sufficiently large (depending on P ). Let w = (log x)1/2 and
let X be the set of y ∈ [x, (1 + 1/k)x) such that P (y) has no prime divisor at most w. Let m ∈ X.
If S = (s1, . . . , sq) is a sequence of q = c log x elements chosen uniformly and independently at random
from X and the sequence P (S) = (P (s1), . . . , P (sq)) is viewed as a sequence of elements in ZP (m), then
|ΣP (m)(P (S))| < P (m)/4 with probability at most (log x)−(c−k2k+3)(log x)/(8Ck), where Ck is the constant
defined in Lemma 2.10.

We will need the following estimate for the proof of Lemma 3.2.

Lemma 3.3. For each positive integer k, there is ck > 0 such that the following holds. Suppose P is a
complete polynomial of degree k with integer coefficients in its binomial representation. If x is sufficiently
large and 1 < w < (log x)/2 is an integer, then the set X of y ∈ [x, (1 + 1/k)x) such that P (y) has no
prime divisor at most w satisfies |X| ≥ ck(logw)−kx.

Proof. For each prime q ≤ k, let vq be the largest integer v such that qv | k!. For i ≤ k, we have∏i−1
j=0(q2vq + (x− j)) =

∏i−1
j=0(x− j) + q2vqz for some integer z, so

(
x+ q2vq

i

)
−
(
x

i

)
=

1

i!

i−1∏
j=0

(q2vq + (x− j))− 1

i!

i−1∏
j=0

(x− j) =
q2vqz

i!
.

Letting vq,i and ri be integers such that i! = qvq,iri and gcd(ri, q) = 1, we have, since
(
x+q2vq

i

)
−
(
x
i

)
is an

integer, that ri | z. Moreover, vq,i ≤ vq, since i! | k!. Hence,(
x+ q2vq

i

)
−
(
x

i

)
=
q2vqz

i!
= qvq · qvq−vq,i z

ri
≡ 0 (mod qvq).

That is,
(
x
i

)
(mod qvq) is periodic every q2vq and, therefore, P (x) (mod q) is periodic every q2vq . Since

P is complete, for each prime q ≤ k, there exists an integer x ∈ [1, q2vq ] such that P (x) is coprime to
q. Using that

∏
q≤k, q prime q

2vq = k!2, we have, by the Chinese Remainder Theorem, that there exists an
integer y ∈ [1, k!2] such that P (y) is coprime to all primes q ≤ k. We also have that P (x) (mod q) is
periodic every k!2 for all primes q ≤ k. Moreover, for each prime q > k ≥ i,

(
x
i

)
(mod q) is periodic every

q. Therefore, letting Rk,w = k!2
∏
k<q≤w, q prime q, we have that P (x) (mod

∏
q≤w, q prime q) is periodic

every Rk,w.
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Let W be the set of positive integers y at most Rk,w such that P (y) is coprime to all primes at most
w. Let mP,q be the number of roots of P (x) (mod q), which is at most k for each prime q, where we used
that P has degree k and is nonzero modulo q by completeness. By the Chinese Remainder Theorem, the
fraction of y ∈ [

∏
k<q≤w, q prime q] such that P (y) is coprime to

∏
k<q≤w, q prime q is then

∏
k<q≤w, q prime

(
1−

mP,q

q

)
≥ c′k(logw)−k

for some constant c′k > 0, where we used the bound 1− ε > e−ε−ε
2 for 0 < ε < 1/2 and Merten’s second

theorem, which implies that
∑

q≤w, q prime 1/q = log logw+O(1). Furthermore, as shown above, there exists
y ∈ [k!2] such that P (y) is coprime to

∏
q≤k, q prime q. Since P (y) (mod

∏
q≤k, q prime q) is periodic every k!2

and gcd(k!2,
∏
k<q≤w, q prime q) = 1, the Chinese Remainder Theorem implies that the fraction of y ∈ [Rk,w]

such that P (y) is coprime to Rk,w is at least (c′k/k!2)(logw)−k. Hence, |W | ≥ (c′k/k!2)(logw)−kRk,w. Since
the integers y for which P (y) has no prime factor at most w are periodic every Rk,w and Rk,w ≤ x1/2+o(1)

by the assumption w ≤ (log x)/2, we have that |X| ≥ (|W |/Rk,w)(x/k) − |W | ≥ ck(logw)−kx for an
appropriate ck > 0 depending only on k, as required.

The proof of Lemma 3.2 now proceeds along broadly similar lines to the proof of Lemma 3.1.

Proof of Lemma 3.2. Let Si = (s1, . . . , si) denote the sequence consisting of the first i terms of S and let
Ti = (P (s1), P (s2), . . . , P (si)). We also write T as a shorthand for Tq = P (S). Call i ∈ [2, q] bad if

• |ΣP (m)(Ti)| ≤ (1 + 2−k−1)|ΣP (m)(Ti−1)| and |ΣP (m)(Ti−1)| < P (m)
2w or

• |ΣP (m)(Ti)| ≤
(
1 + 1

2k+1w

)
|ΣP (m)(Ti−1)| and P (m)

2w ≤ |ΣP (m)(Ti−1)| < P (m)
4 .

The following claims are the key components in the proof. Here Ck is the constant from Lemma 2.10.

Claim 1. The probability that i is bad conditioned on the choice of Si−1 is at most p := (log x)−1/(4Ck).

Claim 2. If |ΣP (m)(T )| < P (m)/4, then the number of integers in [2, q] which are not bad is less than
k2k+3 log x.

By Claim 1, for anyB ⊂ [2, q], the probability that all elements inB are bad is at most p|B|. By Claim 2,
if |ΣP (m)(T )| < P (m)/4, then there is a set B of q − k2k+3 log x = (c − k2k+3) log x integers i ∈ [2, q]

which are bad. Taking a union bound over all choices of B, the probability that |ΣP (m)(T )| < P (m)/4 is
at most (

q

q − k2k+3 log x

)
p|B| =

(
q

k2k+3 log x

)
p|B|

≤ (ec)k2k+3 log x(log x)−(c−k2k+3)(log x)/(4Ck)

< (log x)−(c−k2k+3)(log x)/(8Ck).

Therefore, in order to complete the proof of the lemma, it suffices to prove Claims 1 and 2. It is here,
in the proof of Claim 1, that Lemma 2.10 comes into play.
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Proof of Claim 1. Fix Si−1 = (s1, . . . , si−1). Conditioned on this choice of Si−1, we bound the probability
that i is bad. If |ΣP (m)(Ti−1)| ≥ P (m)/4, then i cannot be bad (so the probability that i is bad is zero). The
proof now splits into two cases, when |ΣP (m)(Ti−1)| < P (m)

2w and when P (m)
2w ≤ |ΣP (m)(Ti−1)| < P (m)/4.

Case 1. |ΣP (m)(Ti−1)| < P (m)
2w .

Let
V =

{
t ∈ [x, (1 + 1/k)x) : |ΣP (m)(Ti−1 ∪ {P (t)})| ≤

(
1 +

1

2k+1

)
|ΣP (m)(Ti−1)|

}
.

Observe that i is bad conditioned on Si−1 if and only if si ∈ V . We will show that |V | ≤ αx, where
α = w−1/Ck and Ck is again the constant from Lemma 2.10.

Suppose, for the sake of contradiction, that |V | > αx. Lemma 2.10 then implies that

|2k−1P (V )− 2k−1P (V )| > αCkP (m) = P (m)/w,

where P (V ) = {P (v) : v ∈ V }. Note now that if U ⊆ ZP (m) and u ∈ ZP (m), then |ΣP (m)(U ∪ {u})| =

|ΣP (m)(U ∪ {−u})|. Thus, for each z ∈ P (V ) ∪ (−P (V )), we have

|ΣP (m)(Ti−1 ∪ {z})| ≤
(

1 +
1

2k+1

)
|ΣP (m)(Ti−1)|

and Lemma 2.7 implies that, for each y ∈ 2k−1P (V )− 2k−1P (V ),

|ΣP (m)(Ti−1 ∪ {y})| ≤
(

1 +
2k

2k+1

)
|ΣP (m)(Ti−1)| = 3

2
|ΣP (m)(Ti−1)|. (5)

However, by Lemma 2.6, the number of y ∈ ZP (m) satisfying (5) is at most 2|ΣP (m)(Ti−1)| < P (m)/w.
But this contradicts the bound |2k−1P (V )−2k−1P (V )| > P (m)/w, so we must indeed have that |V | ≤ αx.

Case 2. P (m)/2w ≤ |ΣP (m)(Ti−1)| < P (m)/4.

Let

V =

{
t ∈ [x, (1 + 1/k)x) : |ΣP (m)(Ti−1 ∪ {P (t)})| ≤

(
1 +

1

2k+1w

)
|ΣP (m)(Ti−1)|

}
.

Observe again that i is bad conditioned on Si−1 if and only if si ∈ V . As in Case 1, we will show that
|V | ≤ αx. Indeed, suppose, for the sake of contradiction, that |V | > αx. Then, by Lemma 2.10, we again
have that |2k−1P (V ) − 2k−1P (V )| > P (m)/w. By our assumption that P (m) has no prime divisor at
most w, 2k−1P (V )− 2k−1P (V ) cannot be contained in a coset of a proper subgroup of ZP (m). Hence, by
Lemma 2.3,

|2k−1wP (V )− 2k−1wP (V )| > P (m)/2.

However, again using Lemma 2.7, for all elements y ∈ 2k−1wP (V )− 2k−1wP (V ), we have

|ΣP (m)(Ti−1 ∪ {y})| ≤
(

1 +
2kw

2k+1w

)
|ΣP (m)(Ti−1)| = 3

2
|ΣP (m)(Ti−1)|.

But, by Lemma 2.6, the number of such elements is at most 2|ΣP (m)(Ti−1)| < P (m)/2, a contradiction.
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Therefore, in either case, the set V of bad choices satisfies |V | ≤ αx. By using Lemma 3.3, which says
that |X| ≥ ck(logw)−kx for an appropriate ck > 0, this implies that the probability i is bad conditioned
on the choice of Si−1 is at most

|V |/|X| ≤ αx/
(
ck(logw)−kx

)
= αc−1

k (logw)k = c−1
k (log x)−1/(2Ck)

(
1

2
log log x

)k
< (log x)−1/(4Ck) = p,

as required.

Proof of Claim 2. As Si−1 ⊂ Si for i ∈ [2, q], ΣP (m)(Ti−1) ⊆ ΣP (m)(Ti) and, hence, 1 ≤ |ΣP (m)(T1)| ≤ · · · ≤
|ΣP (m)(Tq)| = |ΣP (m)(T )| < P (m)/4. Therefore, the number of i which are not bad with |ΣP (m)(Ti−1)| <
P (m)/2w and |ΣP (m)(Ti)| ≥ (1 + 2−k−1)|ΣP (m)(Ti−1)| is at most log(P (2x)/2w)

log(1+2−k−1)
≤ k2k+2 log x. More-

over, the number of i which are not bad with P (m)/2w ≤ |ΣP (m)(Ti−1)| < P (m)/4 and |ΣP (m)(Ti)| ≥(
1 + 1

2k+1w

)
|ΣP (m)(Ti−1)| is at most log(2w)

log(1+2−k−1w−1)
≤ log x, where we used that w = (log x)1/2. Therefore,

the number of i ∈ [2, q] which are not bad is at most k2k+2 log x+ log x < k2k+3 log x.

We conclude this subsection and the proof of Theorem 1.2 by using Lemma 3.2 to prove Lemma 2.9.
To this end, suppose that P is a complete polynomial of degree k with integer coefficients in its bino-
mial representation, C(k) = k2k+15, ε ∈ (0, 1/2] and X is the set of y ∈ [x, (1 + 1/k)x) such that P (y)

has no prime divisor at most (log x)1/2. Our aim is to show that if a sequence S of C(k)ε−1 log x ele-
ments in X is chosen independently and uniformly at random, then, with high probability, S has distinct
terms and, for any subsequence S′ of S of size ε|S|, the set Σ(P (S′)) contains all integers in the interval
[ e9P (x)|S′|, 8

9P (x)|S′|].

Proof of Lemma 2.9. As P is a complete polynomial, its leading coefficient is positive. Hence, for x
sufficiently large, P will be positive and strictly increasing on the interval [x, (1 + 1/k)x]. We may
therefore assume that P is injective on the interval [x, (1 + 1/k)x) and, for any y in this interval, P (y) ∈
[P (x), P ((1 + 1/k)x)) ⊂ [P (x), eP (x)).

By the birthday paradox, as |S| = o(
√
|X|), P (S) has distinct terms with high probability. Fix a

choice of subset I ′ of [C(k)ε−1 log x] of size C(k) log x and consider the subsequence S′ of S given by
(si)i∈I′ . Let I ′′ be the smallest |S′|/9 elements in I ′ and let S′′ be given by (si)i∈I′′ . Let ` = 64. Arrange
I ′′ in increasing order and partition I ′′ into ` sets I ′′1 , . . . , I ′′` of consecutive terms so that each set I ′′j for
j ∈ [`] has size |I ′′|/`. This gives a partition of S′′ into ` subsequences S′′1 , . . . , S′′` , where S

′′
j = (si)i∈I′′j .

Note that each element of Σ(P (S′′j )) is nonnegative and at most P ((1 + 1/k)x)|S′′j | < eP (x)|S′′j |. We shall
prove below that, with high probability, the sequence S has the property that, for all possible choices
of I ′ and j, |Σ(P (S′′j ))| ≥ P (x)|S′′j |/8. Assuming this, we can show that Σ(P (S′′j )) is not contained in
an arithmetic progression with common difference larger than 1. Indeed, if Σ(P (S′′j )) is contained in

an arithmetic progression with common difference d > 1, then d ≤ P ((1+1/k)x)|S′′j |
P (x)|S′′j |/8−1

≤ 9e. Moreover, if
Σ(P (S′′j )) is contained in an arithmetic progression with common difference d > 1, then all elements in
Σ(P (S′′j )) are congruent modulo d, from which it follows that all elements of P (S′′j ) are divisible by d.
This contradicts the fact that no element of P (S′′j ) has a prime factor at most (log x)1/2. Hence, for each j,
Σ(P (S′′j )) is not contained in an arithmetic progression with common difference larger than 1. Therefore,
by Lemma 2.2, as Σ(S′′) = Σ(S′′1 )+ · · ·+Σ(S′′` ), the set Σ(S′′) contains the integers in an interval of length
at least `

(
P (x)|S′′j |/8− 1

)
+ 1 > P ((1 + 1/k)x). Finally, by Lemma 2.1, Σ(P (S′′)∪ P (S′ \ S′′)) contains
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all integers in the interval [eP (x)|S′|/9, 8P (x)|S′|/9], where we used that all elements of S′ are at most
P ((1 + 1/k)x), the elements of Σ(S′′) are at most P ((1 + 1/k)x)|S′′| = P ((1 + 1/k)x)|S′|/9 < eP (x)|S′|/9
and the sum of the elements in S′ is at least P (x)|S′ \ S′′| = 8P (x)|S′|/9.

It remains to show that, with high probability, the sequence S has the property that, for all possible
choices of I ′ and j, |Σ(P (S′′j ))| ≥ P (x)|S′′j |/8. Fix an index 1 ≤ j ≤ ` and partition the index set I ′′j
of S′′j into two consecutive blocks J1 and J2 of equal size. Let Q1 = (si)i∈J1 and Q2 = (si)i∈J2 , so

|Q1| = |Q2| =
|S′′j |

2 = C(k) log x
18` > k2k+4 log x. Recall that X is the set of integers in [x, (1 + 1/k)x) such

that P (x) has no prime divisor at most (log x)1/2. Consider m ∈ X. We note that when we fix the subset
of indices I ′ of [C(k)ε−1 log x] of size C(k) log x and the index j, then J1 is determined as a particular
subsequence of I ′. Moreover, each element in Q1 is uniformly and independently distributed in X. Taking
a union bound over all x`

(C(k)ε−1 log x
C(k) log x

)
choices of I ′, j ∈ [`] and m ∈ X, Lemma 3.2 implies that the

probability |ΣP (m)(P (Q1))| < P (m)
4 for some choice of I ′, j ∈ [`] and m ∈ X is at most

x`

(
C(k)ε−1 log x

C(k) log x

)
· (log x)−k2kC−1

k log x ≤ x`(e/ε)C(k) log x · (log x)−k2kC−1
k log x = ox(1),

where ox(1) tends to 0 as x tends to infinity. Thus, with high probability, the sequence S is such that
|ΣP (m)(P (Q1))| ≥ P (m)

4 for all possible choices of I ′, j ∈ [`] and m ∈ X. In this case, by repeated
application of Lemma 2.5, for all j ∈ [`],

|Σ(P (S′′j ))| ≥
∑
m∈Q2

P (m)/4 = |Q2|P (m)/4 = |S′′j |P (m)/8 ≥ P (x)|S′′j |/8.

Therefore, with high probability, the sequence S is such that |Σ(P (S′′j ))| ≥ P (x)|S′′j |/8 for all possible
choices of I ′ and j, as required.

3.3 Proof of the lower bound in Theorem 1.1

We first prove a useful lemma.

Lemma 3.4. Let S be a sequence of positive integers and m and q be positive integers. Then

|Σ(S) ∩ [m]| ≤ 2m/q
∏

a∈S∩[m]

(
1 + 2−a/q

)
≤ 2m/q exp

 ∑
a∈S∩[m]

2−a/q

 .

Proof. Let rS(s) denote the number of ways of representing s as a sum of distinct elements from S. So if
s ∈ Σ(S), then rS(s) ≥ 1, while rS(s) = 0 otherwise. For each s ∈ Σ(S)∩ [m], we get a contribution of one
to the leftmost expression. For the middle expression, by expanding the product, for each s ∈ Σ(S) ∩ [m]

we get a contribution of rS(s) · 2m/q · 2−s/q ≥ 1, proving the desired inequality. We then get the last
inequality by using 1 + z ≤ ez for z ≥ 0.

Using the above lemma, we prove the following theorem, giving the lower bound in Theorem 1.1.

Theorem 3.5. Let r ≥ 2 be an integer. If a sequence of positive integers A satisfies A(n) ≤ r−1
140 (log2 n)2

for all sufficently large n, then A is not r-Ramsey complete.
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Proof. By replacing r by r − 1 if r is odd, it suffices to prove that, for r ≥ 2 even, a sequence of positive
integers A with A(n) ≤ r

70(log2 n)2 for all sufficiently large n is not r-Ramsey complete.
By reordering, we may suppose that A = (ai)

∞
i=1 is in increasing order a1 ≤ a2 ≤ · · · . Define an

r/2-coloring of A, which we call the hue coloring, by assigning a` hue h ∈ Zr/2 if ` ≡ h (mod r/2). For a
positive integer j, define a red/blue-coloring Cj of A where Cj(a) is red if a ≤ 2j and blue otherwise. Let
cj be the product coloring formed from the hue coloring and the red/blue-coloring Cj . That is, cj is an
r-coloring of A given by the hue and whether or not the term is at most 2j .

The largest positive integer that can be written as a sum of red elements of the same hue in coloring
cj is at most

2j +
2

r

∑
a∈A∩[2j ]

a. (6)

This follows since, for any two hues h and h′, the elements of A ∩ [2j ] with hue h and those with hue h′

interlace and are bounded by 2j , so the sum of elements of hue h is at most 2j more than the sum of
elements of hue h′ and, therefore, at most 2j more than the average sum of elements taken over all hues.

Let the cost of a ∈ A ∩ [2j ] for the coloring cj be a/2jj. Over all colorings cj with j ≥ 1, the total
cost of a > 2 is

∑
j≥log2 a

a/2jj ≤ 2/ log2 a, while the cost of each a ∈ {1, 2} over all such cj is at most 2.
If any number larger than 2j−1(j + 2) can be written as a sum of monochromatic red elements in coloring
cj (so they are also of the same hue), then, by (6), we have

2j +
2

r

∑
a∈A∩[2j ]

a > 2j−1(j + 2),

or, equivalently,
∑

a∈A∩[2j ] a > r2j−2j, so the total cost of all elements in A ∩ [2j ] for the coloring cj is at
least r/4.

Let i be a sufficiently large positive integer. The total cost of the elements a ∈ A∩ [2i] for the colorings
c1, . . . , ci is at most

O(1) +
∑

a∈A∩(2,2i]

2

log2 a
<
ri

32
, (7)

where the O(1) term comes from considering the cost of the terms a ∈ {1, 2}. To prove inequality (7), we
use Abel’s summation formula∑

x0<n≤x
tnf(n) = T (x)f(x)− T (x0)f(x0)−

∫ x

x0

T (y)f ′(y)dy,

where f is a continuously differentiable function on [x0, x] and T (y) =
∑

n≤y tn. Using Abel’s summation
formula with tn = 1 if n ∈ A∩(2i0 , 2i] and tn = 0 otherwise, where i0 is chosen so that A(n) ≤ r

140(log2 n)2

for all n ≥ 2i0 , and f(x) = 1
log2 x

, we obtain

∑
a∈A∩(2,2i]

1

log2 a
= O(1) +

A(2i)

i
− A(2i0)

i0
+

∫ 2i

2i0

A(x) log 2

x(log x)2
dx

≤ O(1) +
ri2

140i
+

∫ 2i

2i0

r(log2 x)2 log 2

140x(log x)2
dx
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≤ O(1) +
2ri

140
<
ri

65
,

where we assume in the last inequality that i is sufficiently large.
Thus, fewer than (ri/32)/(r/4) = i/8 of the i colorings cj with 1 ≤ j ≤ i have the property that there

is a number greater than 2j−1(j+ 2) that can be expressed as a sum of elements which are red of the same
hue. We call j red-strong if there is a number greater than 2j−1(j + 2) that can be expressed as a sum of
elements which are red of the same hue in the coloring cj .

For a non-negative integer j, define

g(j) =
∑

a∈A,2j<a≤2jj

2−a/2
j+4
.

For each a ∈ A, the contribution of a to the various g(j) is∑
j:2j<a≤2jj

2−a/2
j+4 ≤

∑
h≥0

2−2h−4
< 5,

where we used the change of variables h = blog2 ac − j. Hence,

i∑
j=1

g(j) <
∑

a∈A∩[2ii]

5 = 5A(i2i).

For s ∈ Zr/2, let As be the subset of A consisting of elements of hue s. Let As,>t = {a ∈ As : a > t}.
Let b(j) denote the number of elements of [2jj] which can be written as a sum of blue elements in coloring
cj of the same hue, so b(j) = |

⋃r/2
s=1 Σ(As,>2j ) ∩ [2jj]| ≤

∑r/2
s=1 |Σ(As,>2j ) ∩ [2jj]|. Applying Lemma 3.4

with S = As,>2j , m = 2jj and q = 2j+4, we have

∣∣Σ(As,>2j ) ∩ [2jj]
∣∣ ≤ 2j/16 exp

 ∑
a∈A

s,>2j
∩[2jj]

2−a/2
j+4

 ≤ 2j/16 exp

(
1 +

2

r
g(j)

)
,

where we have again used the fact that, for any two hues h and h′, the blue elements with hue h interlace
the blue elements of hue h′ together with the observation that the function x 7→ 2−2x−4 is monotone and
bounded above by 1. We thus have b(j) ≤ r

22j/16 exp
(
1 + 2

rg(j)
)
. Hence, for i sufficiently large,

i∏
j=1

b(j) ≤
i∏

j=1

r

2
2j/16exp

(
1 +

2

r
g(j)

)
≤ ri2i2/31 exp

2

r

i∑
j=1

g(j)

 ≤ ri2i2/31 exp

(
10

r
A(i2i)

)
< 2i

2/4.

(8)
If at least 3i/4 of the i colorings cj for j = 1, . . . , i have the property that at least 2j positive integers

at most 2jj can be written as a sum of blue elements of the same hue, then the left hand side of (8) is
at least

∏3i/4
j=1 2j = 2(3i/4+1

2 ) > 2i
2/4, contradicting (8). Hence, for at least i/4 of the colorings cj with

j = 1, . . . , i, we have that there are at most 2j positive integers at most 2jj which can be written as a
sum of blue elements of the same hue in A. Call j blue-strong if in coloring cj at least 2j positive integers
at most 2jj can be written as a sum of blue elements of the same hue in A. Call j weak if it is neither
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blue-strong nor red-strong. Hence, for i sufficiently large, there are at least i− i/8− 3i/4 = i/8 elements
j ∈ [i] which are weak. Thus, there are infinitely many weak j and we let J = {jh}h≥1 be an infinite
sequence of weak j so that jh ≥ 2rj

2
h−1 .

We next define an r-coloring c of A for which there are infinitely many integers which cannot be
written as a sum of monochromatic elements from A. The coloring c is a product coloring of the hue
coloring (which uses r/2 colors) and a red/blue-coloring of A. We color an integer in A blue if it is in
one of the intervals (2j , 2jj] with j ∈ J and red otherwise. We will prove that at least half the elements
in (2j−1(j + 2), 2jj], where j ∈ J is sufficiently large, cannot be written as a monochromatic sum in the
coloring c.

Suppose now that N ∈ (2j−1(j + 2), 2jj] is a sum of red elements of the same hue. Since there are no
red elements in (2j , 2jj] in the coloring c, N can also be written as a sum of red elements of the same hue
in cj , contradicting the assumption that j is weak. Hence, no element in (2j−1(j + 2), 2jj] is a sum of red
elements of the same hue in the coloring c.

As j = jh is weak, there are at most 2j elements at most 2jj that can be written as a monochromatic
sum of blue elements of the same hue in (2j , 2jj]. The number of remaining blue elements in [2jj] is at
most

A(2jh−1jh−1) ≤ r

140
(log2(2jh−1jh−1))2 ≤

rj2
h−1

2
≤ log2 j

2
.

Thus, the number of positive integers at most 2jj which can be written as a monochromatic sum of blue
elements in the coloring c is at most 2(log2 j)/22j < 2jj/8. Hence, as 2jj/8 ≤ 1

2

(
2jj − 2j−1(j + 2)

)
, at

least half the elements in (2j−1(j + 2), 2jj] cannot be written as a sum of blue elements of the same hue
in the coloring c. As there are infinitely many such j, there are infinitely many positive integers which are
not the monochromatic sum of elements in the coloring c. This completes the proof.

Remark. In the proof above, for j = 1, . . . , i, we made use of colorings Cj which color the positive integers
up to 2j red and all larger integers blue. Alternatively, we could have picked a random coloring φx which
colors all positive integers up to x red and all larger integers blue, where x ∈ [N ] is chosen with probability

1
xH(N) with H(N) =

∑N
x=1

1
x . One can then do a similar analysis using elementary probability to get a

better constant factor in Theorem 3.5.

4 Density completeness

In this section, we discuss Theorems 1.3 and 1.4, our results on density completeness. Since reordering a
sequence does not change whether or not it is ε-complete, it will suffice to consider monotonically increasing
sequences. We will begin with the following simple result, from which the first part of Theorem 1.3 follows.

Theorem 4.1. Let ε > 0. If A = (an)n≥1 is a monotonically increasing sequence of positive integers which
is ε-complete, then there is C such that

an ≤
∑

i≤εn+C

ai

holds for all positive integers n.

Proof. Suppose that there is no such C. Then there is a function g : N → N with limn→∞ g(n) = ∞
such that an >

∑
i≤εn+g(n) ai holds for infinitely many n. Thus, we can pick an infinite sequence of
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positive integers n1, n2, . . . such that, for all j, we have anj >
∑

i≤εnj+g(nj) ai and g(nj) > nj−1. Pick a
subsequence A′ of A by deleting all elements ai of A whose subscript i satisfies εnj + g(nj) < i ≤ nj for
some positive integer j.

We first show that A′(x) ≥ εA(x) holds for all x. It suffices to check this when x = anj for some
positive integer j. However, we have A′(anj ) ≥ εnj + g(nj)− nj−1 > εnj = εA(anj ), as required.

To see that A′ is not complete, we show that each integer anj is not the sum of elements from A′.
Indeed, such elements must be at most anj and hence at most aεnj+g(nj). However,

∑
i≤εnj+g(nj) ai < anj ,

so anj is not in Σ(A′) and A′ is not complete.

This gives a necessary growth condition for a sequence to be ε-complete. Recall that it is also necessary
for an ε-complete sequence to satisfy the divisibility condition that no prime is a factor of more than an
ε-proportion of the elements in the sequence. In the proof of Theorem 4.3 below, we show that, apart
from some mild additional assumptions, a random sequence satisfying both the growth condition from
Theorem 4.1 and a suitable variant of this divisibility condition is likely to be ε-complete.

Recall that, for a sequence B = (bn)n≥1, the discrete derivative is defined by ∆bn := bn+1 − bn. Fix
0 < ε < 1. A sequence B = (bn)n≥1 is called ε-friendly (or friendly) if it satisfies the following five growth
conditions:

(i) For some constant C and all n,
bn ≤

∑
i≤εn+C

bi.

(ii) limn→∞∆bn =∞.

(iii) limi→∞
B(2i+1)−B(2i)

i =∞.

(iv) There exists 0 < c < 1 such that c∆bi ≤ ∆bj for all i < j. Moreover, if bj < 2bi, then ∆bj ≤ 1
c∆bi.

(v) B is strictly increasing.

By Theorem 4.1, condition (i) is necessary for an increasing sequence of positive integers to be ε-complete.
The other growth conditions are mild assumptions that will be helpful in proving the existence of an
ε-complete sequence A = (an)n≥1 which interlaces B, that is, for which bn ≤ an ≤ bn+1 for all n.

Let b1, b2, . . . , bt be any finite strictly increasing sequence of positive integers. Let {x} = x−bxc denote
the fractional part of x. If we define B = (bn)n≥1 recursively by

bn = b{εn}bdεnec+
∑
i≤εn

bi

for n > t, then it is easy to check that such a sequence is friendly and satisfies bn = Θ(fn), where,
following the introduction, F = (fn)n≥1 is any sequence of positive integers for which fn =

∑
i≤εn fi for

all sufficiently large n. We note that the term b{εn}bdεnec is added as a “discrete interpolation” factor to
guarantee conditions (ii) and (iv) of friendly sequences.

Claim 4.2. If B = (bn)n≥1 is a friendly sequence and n is a sufficiently large positive integer, then
b2n/c+1 ≥ 2bn+1, where c is the constant in condition (iv) of friendly sequences.
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Proof. We have

bn+1 = b1 +

n∑
i=1

∆bi ≤ b1 + nmax
i≤n

∆bi (9)

and

b2n/c+1 = bn+1 +

2n/c∑
i=n+1

∆bi

≥ bn+1 + (2n/c− n) min
j≥n

∆bj

≥ bn+1 + (n/c) · cmax
i≤n

∆bi + (n/c− n) min
j≥n

∆bj

≥ bn+1 + (n/c) · cmax
i≤n

∆bi + b1

≥ 2bn+1.

Here we used condition (iv) of friendly sequences to deduce the second inequality, the third inequality
follows from (n/c− n) minj≥n ∆bj > b1 for n sufficiently large and the last inequality is by (9).

The next theorem is our main result on ε-complete sequences and completes the proof of Theorem 1.3.
We remark that since condition (i) of friendly sequences only gives an upper bound on bn, this result also
allows us to find sequences that are considerably denser than (fn)n≥1 that are ε-complete.

Theorem 4.3. Let 0 < ε < 1 and B = (bn)n≥1 be a friendly sequence as defined above. Then there is
a sequence A = (an)n≥1 of positive integers that interlaces B, i.e., bn ≤ an < bn+1 for all n, which is
ε-complete.

Proof. Let ε0 > 0 be sufficiently small. We pick the sequence A by taking, for j sufficiently large, aj to be
a uniform random integer in [bj , bj+1) which has no prime factor at most (max(1/ε, 1/ε0))4000. For small
j this might not be possible, as the interval [bj , bj+1) might not contain any integer with no prime factor
at most (max(1/ε, 1/ε0))4000, so we let aj be any integer in [bj , bj+1) in this case. This guarantees that A
interlaces B.

For a positive integer i, let h(i) be the smallest integer for which bh(i) ≥ 2i. Note that bh(i+1)−1 is the
largest element of B which is less than 2i+1. Let Ai := A ∩ [bh(i), bh(i+1)−1), so Ai consists of all but at
most two elements of A∩ [2i, 2i+1). By condition (iii) of friendly sequences, for any C and for i sufficiently
large depending on C, |Ai| ≥ C max(1/ε, 1/ε0)i. The following lemma is a close relative of Lemma 2.8.
The proof of the lemma, which is an appropriate modification of the proof of Lemma 2.8, is deferred to
Appendix A.2.

Lemma 4.4. There exist positive constants ε0, C1 and C2 such that the following holds. For i sufficiently
large, with positive probability, the set Ai has the property that, for any subset A′i ⊂ Ai with |A′i| ≥
(min(ε, ε0)/4)|Ai|, A′i contains a subset A′′i with |A′′i | ≤ C1i such that Σ(A′′i ) contains every integer in the
interval [y, 2y], where y = C22ii.

Since the choices of Ai for different i are mutually independent, we can guarantee and will assume that
Ai satisfies the conclusion of Lemma 4.4 for each sufficiently large i.

Our goal now is to show that if A′ is any subsequence of A with |A′(n)| ≥ ε|A(n)| for all sufficiently
large n, then A′ is complete. We first show that for each n0 there is n ≥ n0 such that A′ is complete or
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A′ contains only roughly εn elements among the first n elements of A. We then go through a very similar
argument using this additional structure to conclude that A′ is complete.

Let i0 be a sufficiently large positive integer and m = A(2i0). The number of elements in A which are
at most 2i0 and not in any Ai is at most 2i0 ≤ ε

4m. Let A′i = Ai ∩ A′. So the set
⋃
i≤i0 A

′
i of elements in

A′ which are at most 2i0 and in some Ai has size at least εA(2i0)− ε
4m ≥

3ε
4 m. Let i1 ≤ i0 be the largest

positive integer for which |A′i1 | ≥
ε
4 |Ai1 |, which exists by the observation just made. The set

⋃
i1<i≤i0 A

′
i

has cardinality at most ε
4 |
⋃
i1<i≤i0 Ai| ≤

ε
4m, so there are at least 3ε

4 m−
ε
4m = ε

2m elements in
⋃
i≤i1 A

′
i.

In particular, A(2i1+1) ≥ A′(2i1+1) ≥ ε
2m.

Since Ai1 satisfies the conclusion of Lemma 4.4 and |A′i1 | ≥ (ε/4)|Ai1 | ≥ (min(ε, ε0)/4)|Ai1 |, there
is A′′i1 ⊂ A′i1 with |A′′i1 | ≤ C1i1 such that Σ(A′′i1) contains every integer in the interval [y, 2y] where
y = C22i1i1. Label the elements in A′ \A′′i1 in increasing order as a′1, a′2, . . ..

By Lemma 2.1, if, for each j, we have a′j ≤ 2y− y+ a′1 + · · ·+ a′j−1, then Σ(A′ \A′′i1) + [y, 2y) contains
all integers at least y and, as Σ(A′) is a superset of Σ(A′ \ A′′i1) + [y, 2y), A′ would be complete. So we
may assume that there is some j for which

a′j > y + a′1 + · · ·+ a′j−1. (10)

In particular, a′j ≥ 2i1+1 ≥ a ε
2
m ≥ ε

2m, so that j can be made sufficiently large by taking i0 and, hence,
m sufficiently large.

As a′j ∈ A′ \ A′′i1 ⊂ A, there is a positive integer n for which a′j = an, where, again, n can be made
sufficiently large by taking i0 sufficiently large. We have∑

i≤j−1

a′i < an < bn+1 ≤
∑

i≤ε(n+1)+C

bi ≤
∑

i≤ε(n+1)+C

ai,

where the first inequality follows from (10), the second and fourth inequalities are by the fact that A
interlaces B and the third inequality follows from condition (i) of friendly sequences. This implies that
j − 1 ≤ ε(n+ 1) + C, so

A′(an − 1) ≤ |A′′i1 |+ j − 1 ≤ C1i1 + ε(n+ 1) + C < C1i0 + εn+ C + 1. (11)

That is, the number of elements of A′ amongst the first n elements of A is roughly εn.
We next give a similar argument, but using the extra information that there are many elements

as ∈ A\A′ with s ≤ n in order to conclude that A′ is complete. Let N = 8(n+1)/(ε2c). Let i2 be the least
positive integer such that 2i2 ≥ aN and letm′ = A(2i2), som′ ≥ N . As a2N/c+1 ≥ b2N/c+1 ≥ 2bN+1 > 2aN ,
where the middle inequality follows from Claim 4.2, there is a perfect power of two which is at least aN
and less than a2N/c+1, so m′ = A(2i2) ≤ 2N/c. Furthermore, since an = a′j ≥ a ε2m, we have that n ≥ ε

2m.
Thus, N = 8(n + 1)/(ε2c) > m, so A(2i2) ≥ N > m = A(2i0). In particular, we obtain that i2 ≥ i0.
Hence, N , i2 and m′ may be made sufficiently large by taking i0 and, hence, n sufficiently large.

We also have A′(2i2) ≥ εA(2i2) = εm′, so A′ contains at least εm′ elements as ≤ 2i2 . Let i3 ≤ i2 be
the largest positive integer such that |A′i3 | ≥

ε
4 |Ai3 |. Recall that, for each positive integer i, the number of

elements of A in [2i, 2i+1) \ [bh(i), bh(i+1)−1) is at most two. It follows that A′ ∩ [2i2 ] \
⋃
i<i2

[bh(i), bh(i+1)−1)

has cardinality at most 2i2 ≤ εm′

4 , where the last inequality follows from condition (iii) of friendly sequences
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and the fact that i2 is sufficiently large. Hence, at least a fraction ε− ε
4 −

ε
4 = ε

2 of the elements of A up
to 2i2 are greater than aεN/4 and in A′ ∩

⋃
i<i2

[bh(i), bh(i+1)−1) and, therefore, i3 satisfies 2i3+1 > aεN/4.
Since Ai3 satisfies the conclusion of Lemma 4.4 and |A′i3 | ≥ (min(ε, ε0)/4)|Ai3 |, there is A′′i3 ⊂ A

′
i3
with

|A′′i3 | ≤ C1i3 such that Σ(A′′i3) contains every integer in the interval [y′, 2y′] where y′ = C22i3i3. Label the
elements in A′ \ A′′i3 in increasing order as a′1, a′2, . . ., noting that we have relabeled most of the elements
in A′.

Again, by Lemma 2.1, if, for each j, we have a′j ≤ 2y′− y′+ a′1 + · · ·+ a′j−1, then Σ(A′ \A′′i3) + [y′, 2y′)

contains all integers at least y′ and, as Σ(A′) is a superset of Σ(A′ \A′′i3) + [y′, 2y′), A′ would be complete.
So we may assume that there is some j′ for which

a′j′ > y′ + a′1 + · · ·+ a′j′−1.

Note in particular that a′j′ ≥ y′ ≥ 2i3+1 ≥ aεN/4. Let n′ be such that an′ = a′j′ , so

n′ ≥ εN/4. (12)

By condition (i) of friendly sequences, we have

a′j′ = an′ < bn′+1 ≤
∑

i≤ε(n′+1)+C

bi ≤
∑

i≤ε(n′+1)+C

ai.

Note also that, for i ≥ εn′, we have

ai ≥ aεn′ ≥ bεn′ ≥ 2bcεn′/2 > 2acεn′/2−1 ≥ 2acε2N/8−1 ≥ 2an. (13)

Here the first inequality follows from A being increasing, the second and fourth inequalities follow from
the fact that A interlaces B, the third inequality follows from Claim 4.2, the fifth inequality follows from
(12) and the last inequality follows from the choice of N and the fact that A is increasing.

Since A′ has at least εn′ elements up to an′ , we have j′ ≥ εn′ − |A′′i3 |. It follows that∑
k<j′

a′k ≥ −
∑

a∈[an]∩(A\A′)

a+
∑

k≤εn′−|A′′i3 |−1+n−A′(an)

ak

≥ −an(n−A′(an)) +
∑

k≤εn′−|A′′i3 |−1+n−A′(an)

ak

≥ −1

2
aεn′(n−A′(an)) +

∑
k≤εn′−|A′′i3 |−1+n−A′(an)

ak

≥
∑

k≤εn′−|A′′i3 |−1+ 1
2

(n−A′(an))

ak,

where the first inequality uses that A is an increasing sequence and
∑

k<j′ a
′
k +

∑
a∈[an]∩(A\A′) a is a

sum of at least εn′ − |A′′i3 | − 1 + n − A′(an) distinct terms of A, which is at least the sum of the first
εn′ − |A′′i3 | − 1 + n−A′(an) terms in A. The second inequality follows from A being increasing, the third
inequality follows from using (13) and the last inequality follows from A being increasing and the following
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estimate showing that 1
2(n−A′(an))− |A′′i3 | − 1 > 0. We have

−|A′′i3 |−1+
1

2

(
n−A′(an)

)
≥ −C1i3−1+

1

2
(n− (C1i0 + εn+ C + 2)) ≥ −2C1i2+

1

2
(1−ε)n−C + 2

2
> C+1,

where the first inequality is by (11), the second inequality uses i0, i3 ≤ i2 and i2 is sufficiently large, while
the last inequality uses n ≥ ε2cN/10, N ≥ cm′/2, condition (i) of friendly sequences, the fact that A
interlaces B, m′ = A(2i2), i2 is sufficiently large and m′ ≥ 2

√
(2 log2(1/ε)+o(1))i2 from Appendix A.1, from

all of which it follows that i2 � n. However, this implies that

bn′+1 > an′ = a′j′ >
∑
k<j′

a′k >
∑

k≤εn′+C+1

ak ≥
∑

k≤εn′+C+1

bk ≥
∑

k≤ε(n′+1)+C

bk,

contradicting condition (i) of friendly sequences.

Theorem 1.4 is obtained similarly, by replacing Lemma 4.4 in the above proof by an appropriate
analogue of Lemma 2.9. As indicated in the introduction, we omit the details.

5 Monochromatic subset sums

5.1 Proof of the lower bound in Theorem 1.6

Throughout this section, we use the convention that products and sums indexed by p run over primes.
Recall that pi is the ith prime, W (ρ) =

∏ρ
i=1 pi and τ(ρ,m) = φ(W (ρ)m)/(W (ρ)m) =

∏
p|W (ρ)m(1− 1/p).

We recall from the introduction that, for positive integers n and m with m ∈ [n,
(
n
2

)
], we define ρ(n,m) to

be the smallest positive integer ρ such that ρ/τ(ρ,m) ≥ n2/φ(m). Let ψ(n,m) = m1/3(m/φ(m))

(logn)1/3(log logn)2/3
and

R(n,m) = min (ψ(n,m), ρ(n,m)). By Claim B.3 in Appendix B.2, we note that R(n,m) = Θ (ψ(n,m))

when m = O
(
n3/2(log logn)1/2

(logn)1/2

)
and R(m,n) = Θ(ρ(n,m)) otherwise.

We aim to prove that f(n,m), the minimum r such that there exists an r-coloring of [n − 1] where
m cannot be written as a sum of distinct monochromatic elements, is bounded below by R(n,m) up to a
constant factor, giving the lower bound in Theorem 1.6. The main result of this subsection is the following
lemma, from which the required lower bound easily follows.

Lemma 5.1. There exist positive constants c and C such that the following holds. Let n be sufficiently
large and m ∈ [n,

(
n
2

)
] be such that r = cR(n,m) is at least C. Let y < n/2 be such that

m ∈
[
y2(m/φ(m))τ(r,m)

25r
,
y2(m/φ(m))τ(r,m)

15r

]
and let Y be the set of integers in [y, 2y) of the form qu, where u|m, u ≤ y1/16 and q is coprime to W (r)m.
Then, in any r-coloring of Y , there exists a monochromatic subset sum which equals m.

By Claim B.4 in Appendix B.2, for any m ∈ [n,
(
n
2

)
], there exists a choice of y ∈ [max(r2, n3/5), n/2)

satisfying the required condition. We may therefore apply the lemma to conclude that if R(n,m) ≥ C/c,
then f(n,m) ≥ cR(n,m). That is, the lower bound in Theorem 1.6 holds in this case. On the other
hand, if R(n,m) < C/c, we have the trivial bound f(n,m) ≥ 1 ≥ C−1cR(n,m), so the lower bound in
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Theorem 1.6 also holds in this case. For the same reason, we can and will assume throughout that r is
sufficiently large.

We will build towards the proof of Lemma 5.1 through a series of reductions and intermediate results.
For convenience, we will often use objects and notation in the lemma statements without repeating their
definitions from earlier. We begin with the following number-theoretic estimate, whose proof may be found
in Appendix B.1.

Lemma 5.2. Let r, n and m be positive integers such that m ∈ [n,
(
n
2

)
], r ≤ n and r is sufficiently

large. For any interval I = [x, 2x) with x ≥ n1/4, there are at most 8(m/φ(m))τ(r,m)x integers in I of
the form qu, where u|m, u ≤ x1/16 and q is coprime to W (r)m. If also x ≥ r2, then there are at least
1
8(m/φ(m))τ(r,m)x integers in I of this form.

By Lemma 5.2, the set Y defined in Lemma 5.1 satisfies

|Y | ≥ 1

8
(m/φ(m))τ(r,m)y.

By the pigeonhole principle, in any r-coloring of Y , there is one color class whose size is at least
1
8(m/φ(m))τ(r,m)yr . Let Q0 be the elements of Y in this color class. We will prove that m ∈ Σ(Q0).

Call a set X of integers k-diverse if, for each v ≥ 2, there are at least k elements of X which are
not divisible by v. If Q0 is not y1/4-diverse, there exists v0 ≥ 2 such that at most y1/4 elements of Q0

are not divisible by v0. We replace Q0 by Q1 = {a/v0 : a ∈ Q0, v0|a} ⊆ [y/v0, 2y/v0). We then iterate
this process. For i ≥ 1, if Qi is not y1/4-diverse, we can remove at most y1/4 elements of Qi so that the
remaining elements are divisible by some vi ≥ 2. We then let Qi+1 = {x/vi : x ∈ Qi, vi|x}. We stop the
process once we reach a set Qs which is y1/4-diverse. Note that there can be at most log2 n iterations, so
there must be at least 1

8(m/φ(m))τ(r,m)yr − y
1/4 log2 n elements in Qs.

By the process defining Qs, there exists v such that Qs = {x/v : x ∈ Q0, v|x}. Let Q = Qs. Then
Q is a subset of [y/v, 2y/v) of size at least 1

8(m/φ(m))τ(r,m)yr − y
1/4 log2 n which is y1/4-diverse. Let

z = 1
8(m/φ(m))τ(r,m)yr − y

1/4 log2 n. Note that

1

8
(m/φ(m))τ(r,m)

y

r
≥ z ≥ 1

10
(m/φ(m))τ(r,m)

y

r
≥ 1

10
τ(r,m)

√
y > y1/3, (14)

where we used that y ≥ max(r2, n3/5), which is inequality (35) of Claim B.4 in Appendix B.2, and
τ(r,m) ≥ 1/(8 log n log logn) by inequality (33) in Appendix B.2. In particular, for r sufficiently large,

|Q| = z ≥ 1

10
(m/φ(m))τ(r,m)

y

r
> 64(m/φ(m))τ(r,m)

y

r log r
.

The next lemma shows that v|m.

Lemma 5.3. If there exist at least 64(m/φ(m))τ(r,m) y
r log r elements in Y which are divisible by v, then

v|m and v ≤ y1/16. Furthermore, all elements of Y which are divisible by v have the form qvu, where
(vu)|m, vu ≤ y1/16 and gcd(q,W (r)m) = 1.

Proof. Note that if gcd(q,W (r)m) = 1 and q 6= 1, then any prime factor of q is at least pr > r log r/8 for
sufficiently large r. Recall that elements of Y have the form qu, where u|m, u ≤ y1/16 and gcd(q,W (r)m) =
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1. Assume that there exists v such that either v - m or v > y1/16 and at least 64(m/φ(m))τ(r,m) y
r log r

elements in Y are divisible by v. We claim that v must have a prime factor p which is coprime to
W (r)m. Indeed, if this were not the case, then v only has prime factors which are divisors of W (r)m, so
gcd(v, q) = 1 for any q coprime to W (r)m. Thus, if an element of the form qu with u|m, u ≤ y1/16 and
gcd(q,W (r)m) = 1 is divisible by v, then v|u, so v|m and v ≤ y1/16, contradicting our assumption. Thus,
v has a prime factor p which is coprime to W (r)m. In particular, p ≥ pr > r(log r)/8.

We have that at least 64(m/φ(m))τ(r,m) y
r log r elements of Y are divisible by p. For each element qu

of Y which is divisible by p, since p is coprime to W (r)m, we must have p|q, so q = q′p for q′ coprime
to W (r)m. Hence, elements of Y which are divisible by p have the form pq′u where u|m, u ≤ y1/16 and
gcd(q′,W (r)m) = 1. If y/p ≥ n1/4, Lemma 5.2 implies that the number of such elements is at most
8(m/φ(m))τ(r,m)yp < 64(m/φ(m))τ(r,m) y

r log r . If y/p < n1/4, then the number of such elements is at
most y/p < n1/4 < 64(m/φ(m))τ(r,m) y

r log r , where the second inequality is verified as inequality (36)
of Claim B.4 in Appendix B.2. In either case, we have a contradiction, so we must have that v|m and
v ≤ y1/16.

Since v|m, we have gcd(v,W (r)m) = v, so each element of the form qu where u|m, u ≤ y1/16 and
gcd(q,W (r)m) = 1 which is divisible by v must have v|u. Hence, qu = qvu′ where (vu′)|m, vu′ ≤ y1/16

and gcd(q,W (r)m) = 1, establishing the second claim in the lemma.

Since |Q| > 64(m/φ(m))τ(r,m) y
r log r and {vx : x ∈ Q} is a subset of Y , Lemma 5.3 implies that each

element of Q can be written in the form qu, where (vu)|m, vu ≤ y1/16 and gcd(q,W (r)m) = 1. Let

Yv = {t ∈ [y/v, 2y/v) : t = qu, u|(m/v), u ≤ y1/16/v, gcd(q,W (r)m) = 1}.

We have that vt ∈ Y for all t ∈ Yv and Q ⊆ Yv.
Let V be a random subset of Q of size z/8. The next lemma implies that V is y1/4/16-diverse with

probability at least 1/2. From now, we fix V to be a subset of Q of size z/8 which is y1/4/16-diverse.

Lemma 5.4. Let k and h be positive integers with h 6= 1 and N = exp(k/16h). Let A be a set of t integers
in [N ] which is k-diverse. Let B be a uniformly random subset of A of size t/h. Then B is k/(2h)-diverse
with probability at least 1− 1/N .

Proof. For each d ∈ [N ] with d > 1, let Xd be the set of elements in A which are not divisible by d. By our
assumption, |Xd| ≥ k for each d. The number of elements in B∩Xd follows a hypergeometric distribution.
As the hypergeometric distribution is at least as concentrated as the corresponding binomial distribution
(for a proof, see Section 6 of [29]), we can apply the Chernoff bound to obtain that the probability that
|B ∩Xd| < |Xd|/(2h) is at most exp(−|Xd|/8h) ≤ exp(−k/8h) = N−2. By taking a union bound over all
d ∈ [N ] with d > 1, we conclude that the probability B is not k/(2h)-diverse is at most N ·N−2 = N−1.

The following lemma is the key to proving Lemma 5.1.

Lemma 5.5. Let ` = d32/ξe, where ξ is the constant in Lemma 2.4. Let A be a subset of Yv of size
z/(8`) which is y1/4/(32`)-diverse. Then |Σ(A)| ≥ yz/(`2v) and Σ(A) is not a subset of an arithmetic
progression with common difference greater than 1.

Before moving on to the proof of Lemma 5.5, we show how Lemma 5.1 follows from it.
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Proof of Lemma 5.1 assuming Lemma 5.5. Recall that we have fixed a subset V of Q of size z/8 which is
y1/4/16-diverse. We will prove that Σ(V ) contains an interval J = [a, b] of length at least 2y/v. To see
why this suffices, first note that

vb ≤ v ·max Σ(V ) < 2y · z
8
≤ 2y · (m/φ(m))τ(r,m)y

8 · 8r
< m,

where the third inequality follows from (14) and the last inequality follows since y2 ≤ 25rm
(m/φ(m))τ(r,m) by

the choice of y. If now we can find the required interval J , Lemma 5.1 follows since each element of Q
is at most 2y/v and, hence, by Lemma 2.1, Σ(Q) = Σ(V ∪ (Q \ V )) contains an interval whose smallest
element is a < m/v by the inequality above and whose largest element is

b+
∑
i∈Q\V

i >
y

v
· z(1− 1/8) ≥ y

v
· 7(m/φ(m))τ(r,m)y

8 · 10r
>
m

v
,

where the last inequality follows since y2 ≥ 15rm
(m/φ(m))τ(r,m) by the choice of y. Hence, Σ(Q0) contains the

progression {va, v(a+ 1), . . . , v(m/v)}, which contains m.
We partition V randomly into ` sets V1, V2, . . . , V` of size z/(8`). By Lemma 5.4 and the union bound,

the probability that Vi is y1/4/(32`)-diverse for all i ∈ [`] is at least 1/2. Hence, we can fix a partition of
V into ` sets V1, V2, . . . , V` of size z/(8`), where Vi is y1/4/(32`)-diverse for each i ∈ [`].

For each i ∈ [`], Σ(Vi) is a subset of the interval [0, z/(8`) · 2y/v] = [0, yz/(4`v)]. By Lemma 5.5,
|Σ(Vi)| ≥ yz/(`2v) and Σ(Vi) is not a subset of an arithmetic progression with common difference greater
than 1. Therefore, by Lemma 2.2, Σ(V1)+· · ·+Σ(V`) contains an interval of length at least yz/(2`v) > 2y/v

for n sufficiently large, as required.

We have therefore reduced the task of proving the lower bound in Theorem 1.6 to Lemma 5.5. The
strategy for proving Lemma 5.5 is now as follows. We partition A into two subsets A1 and A2 of size
z/(16`), observing that we can choose A1 and A2 to be y1/4/(128`)-diverse by Lemma 5.4. We then show
that Σ(A1) contains elements in many different congruence classes modulo t for all t in A2, allowing us
to apply Lemma 2.5 repeatedly (as in the proofs of our results on completeness) to conclude that each
element of A2 introduces many new elements to the set of subset sums.

The next lemma is the main step in the proof of Lemma 5.5. Recall that

Σt(A) =

{∑
x∈S

x mod t : S ⊆ A

}

and ξ is the absolute constant defined in Lemma 2.4.

Lemma 5.6. Let t ∈ [y/v, 2y/v). Let A be a subset of Yv of size z/(16`) which is y1/4/(128`)-diverse.
Then |Σt(A)| ≥ min(ξ, 32/`)t.

To show that the set of mod t subset sums is large, we prove the following structural lemma, stating
that the set of elements whose inclusion does not expand the set of mod t subset sums must either be
small or additively structured. We will then use this additive structure to show that the corresponding
set in Z must contain a small number of integers of the form qu, which we will see is impossible.
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Lemma 5.7. Let t be an integer. Let A ⊆ Zt be such that 8d < |A| < ξt. Let Gd ⊆ Zt be the set of x such
that |(A+ x)∪A| ≤ |A|+ d. Then either Gd is contained in a proper subgroup of Zt, |Gd| ≤ 20|A|

(|A|/2d)1.02
or

there is a subgroup H of Zt such that Gd is contained in a set of size at most 128d which is an arithmetic
progression of H-cosets.

Proof. By Lemma 2.7, kGd ⊆ Gkd, where kGd = {x1 + x2 + · · · + xk : x1, x2, . . . , xk ∈ Gd}. Let
i = blog2(|A|/2d)c and let k = 2i, noting that kd ≤ |A|/2. Therefore, applying Lemma 2.6 to Gkd, we get

|kGd| ≤ |Gkd| ≤
|A|2

|A| − kd
≤ 2|A|. (15)

Assume that Gd is not contained in a proper subgroup of Zt. Let j be such that 0 ≤ j < i. Since
0 ∈ Gd by definition, we have Gd ⊂ 2jGd, so 0 ∈ 2jGd and 2jGd is not contained in a proper subgroup
of Zt. Thus, 2jGd is not contained in a coset of a proper subgroup of Zt. By Lemma 2.3, |2iGd| ≥
min{t, 2i−j−1|2jGd|} = 2i−j−1|2jGd|, where we used that |2iGd| ≤ 2|A| < 2ξt < t from (15). Thus,

|2jGd| ≤ 21−i+j |2iGd| < 2ξt. (16)

Assume now that |2j+1Gd| = |2jGd + 2jGd| ≤ 2.04|2jGd| for some 2 ≤ j < i. By Lemma 2.4, there
exists a proper subgroup H of Zt such that one of the following holds:

(i) 2jGd is contained in a set of size at most `
`−1 · 1.04|2jGd| which is an arithmetic progression of

H-cosets of length ` ≥ 2,

(ii) 2jGd meets exactly three H-cosets which are terms of an arithmetic progression of H-cosets of length
` and (min(`, 4)− 1)|H| ≤ 1.04|2jGd| or

(iii) 2jGd is contained in one H-coset.

We have already seen that the third case cannot happen, that is, that 2jGd is not contained in a coset
of a proper subgroup of Zt.

Suppose that we are in the second case. Then 2jGd is contained in a union of three H-cosets, so
4Gd is contained in a union of three H-cosets. Since 0 ∈ Gd and Gd is not contained in an H-coset, the
image of Gd in Zt/H is a subset S of Zt/H of size at least 2 such that 0 ∈ S and 4S has size at most
3. This can only happen if S is contained in a subgroup of Zt/H of size at most 3. In this case, Gd is
contained in a subgroup of Zt of size at most 3|H|. Since |H| ≤ (min(`, 4)− 1)|H| ≤ 1.04|2jGd|, we have
3|H| ≤ 3.12|2jGd| < 6.24ξt < t, so Gd is contained in a proper subgroup of Zt, a contradiction. Thus, the
second case cannot happen.

We now consider the first case, where 2jGd is contained in a set of size at most `
`−1 · 1.04|2jGd| ≤

2.08|2jGd| which is an arithmetic progression of H-cosets of length `. As 0 ∈ Gd, this progression of
H-cosets contains 0. Let m be such that H = {x ∈ Zt : m|x}. Then the H-cosets can be identified with
elements of Zm. The common difference of the progression of H-cosets must be coprime to m, as otherwise
2jGd would be contained in a proper subgroup of Zt. Thus, by rescaling if necessary, we may assume that
the common difference of the progression of H-cosets is 1. Let Pj be the interval in Zm which corresponds
to the H-cosets in the progression containing 2jGd. Note that 0 ∈ Gd, so that 2h−1Gd ⊆ 2hGd for all h.
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Hence, for each h ≤ j, we can choose intervals Ph around 0 in Zm such that 2h(Gd/H) ⊆ Ph, Ph ⊆ Pj and
2j−hPh ⊆ Pj . The length ` of Pj is at most m/2, since otherwise |2jGd| ≥ t/2

2.08 , contradicting (16). We
can thus deduce that, for all h ≤ j, Ph is an interval of length at most 1 + 2h−j(|Pj | − 1) around 0 in Zm,
since, for two intervals I, I ′ around 0 of length |I| ≤ |I ′| ≤ m/2 with 2I ⊆ I ′, we have |I| ≤ (|I ′|+ 1)/2.
Hence, Gd/H is a subset of an interval of length at most 1 + (|Pj | − 1)/2j . Since Gd is not contained in a
proper subgroup of Zt, (|Pj | − 1)/2j ≥ 1. Thus, we have 1 + (|Pj | − 1)/2j ≤ |Pj |/2j−1. Therefore, Gd is
contained in a union of H-cosets of size at most

|H||Pj |/2j−1 ≤ `

`− 1
· 1.04|2jGd| · 21−j ≤ `

`− 1
· 1.04 · 23−i|A| ≤ 128d,

where, in the second inequality, we used (15) and (16) and, in the final inequality, we used that i =

blog2(|A|/2d)c and ` ≥ 2.
If there does not exist j ∈ [2, i) such that |2j+1Gd| ≤ 2.04|2jGd|, then

|2iGd| ≥ 2.04i−2|Gd| ≥ (|A|/2d)1.02|Gd|/10.

Combining this with (15), we deduce that |Gd| ≤ 20|A|
(|A|/2d)1.02

.

Besides Lemma 5.7, we need several other ingredients for the proof of Lemma 5.6. We begin with the
following result, which will also be useful to us in subsequent sections. For this section, the key corollary
is that if A is k-diverse for k ≥ d− 1, then Σd(A) = Zd.

Lemma 5.8. Let d be a positive integer. Let A be a set of integers such that, for each d′|d, at least d′ − 1

elements of A are not divisible by d′. Then Σd(A) = Zd. Furthermore, if A contains at least d−1 elements
which are not divisible by d, then Σd(A) contains a non-zero subgroup of Zd.

Proof. We will use the following simple claim.

Claim. If S is a subset of Zt and X ⊆ Zt is such that |(S + x)∪ S| = |S| for all x ∈ X, then S is a union
of cosets of the subgroup of Zt spanned by X.

Proof. If |(S + x) ∪ S| = |S|, then S + x = S. Thus, by induction, we have that S + x1 + · · · + xk = S

for all k ∈ N and x1, . . . , xk ∈ X. In particular, we have S + 〈X〉 = S, where 〈X〉 is the subgroup of Zt
spanned by X. Since S + 〈X〉 is a union of cosets of 〈X〉, we obtain the desired conclusion.

Note that Σt(S ∪ {x}) = Σt(S) ∪ (Σt(S) + x). From the claim, if S is a multiset in Zt and x ∈ Zt is
coprime to t, then we have |Σt(S ∪ {x})| ≥ min(|Σt(S)| + 1, t), as either |Σt(S ∪ {x})| ≥ |Σt(S)| + 1 or
Σt(S) is a union of cosets of xZt = Zt, so Σt(S) = Zt. Thus, if B = {b1, . . . , bt−1} is a multiset of size
t− 1 consisting of elements in Zt coprime to t, then Σt(B) = Zt. Indeed, this follows easily from the fact
that Σt(∅) = {0} and, for each i ≥ 1, |Σt({b1, . . . , bi})| ≥ min(|Σt({b1, . . . , bi−1})|+ 1, t).

Suppose now that A is a set of integers such that, for each d′|d, at least d′ − 1 elements of A are not
divisible by d′. We will prove that Σd′(A) = Zd′ for all d′|d by induction on the number of prime factors
(counted with repeats) of d′. When d′ is a prime, the conclusion follows from the observation above.
Assume now that the conclusion holds whenever d′ has at most j prime factors, for some j ≥ 1.

Let d′ be a divisor of d with j + 1 prime factors. Let A0 be the multiset of elements in A not
divisible by d′, considered modulo d′. By our assumption, A0 has size at least d′ − 1. Observe that
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Σd′(A) = Σd′(A0). Assume that |Σd′(A0)| < d′. Let Σd′(0) = {0}. We consider the following iterative
process. At step i ≥ 1, we choose ai ∈ Ai−1 so that |(Σd′(i − 1) + ai) \ Σd′(i − 1)| is maximized and let
Σd′(i) = Σd′(i− 1)∪ (Σd′(i− 1) + ai) and Ai = Ai−1 \ {ai}. Note that we consider the Ai as a multiset of
elements of Zd′ and the Σd′(i) as subsets of Zd′ .

Let i ≤ |A0| be the first step where |Σd′(i)| ≤ |Σd′(i − 1)|. Note that i must exist since, otherwise,
|Σd′(|A0|)| ≥ |Σd′(0)|+|A0| = 1+|A0| ≥ d′, contradicting our assumption that |Σd′(|A0|)| = |Σd′(A0)| < d′.
Since i is the first step with |Σd′(i)| ≤ |Σd′(i − 1)|, we must have that |Σd′(j)| ≥ |Σd′(j − 1)| + 1 for all
j < i. Thus, |Σd′(i)| ≥ 1 + i − 1 = i. In step i, we have |(Σd′(i − 1) + a) ∪ Σd′(i − 1)| = |Σd′(i − 1)|
for all a ∈ Ai−1, so, by the claim, Σd′(i − 1) is a union of cosets of the subgroup of Zd′ spanned by
Ai−1. Let d′′ be the largest divisor of d′ which divides all elements in Ai−1. Then the subgroup of Zd′
spanned by Ai−1 is d′′Zd′ and we have that Σd′(i− 1) is a union of d′′Zd′-cosets. Note that d′′ 6= d′, since
the elements of A0 are not divisible by d′ and Ai−1 contains at least one element in A0. Thus, d′′ < d′

and, hence, d′′ has at most j prime factors. By the induction hypothesis, Σd′′(A0) = Zd′′ . Note that
Σd′′(A0) = Σd′′({a1, . . . , ai−1}), since all remaining elements of A0 are divisible by d′′. Thus, Σd′(i − 1)

contains an element in each d′′Zd′-coset of Zd′ . Since Σd′(i− 1) is a union of d′′Zd′-cosets and contains an
element in each d′′Zd′-coset of Zd′ , Σd′(i−1) contains all elements of Zd′ . Thus, Σd′(A) = Σd′(i−1) = Zd′ ,
completing the induction.

For the second statement, observe, by the claim, that if |Σd(S ∪ {x})| = |Σd(S)|, then Σd(S) is a
union of cosets of xZd and, as 0 ∈ Σd(S), we have that Σd(S) contains the subgroup xZd of Zd. Thus, if
A contains at least d − 1 integers a1, . . . , ad−1 not divisible by d and Σd(A) does not contain a non-zero
subgroup of Zd, then we must have |Σd({a1, . . . , ai})| ≥ |Σd({a1, . . . , ai−1})| + 1 for all i ≥ 1. But then
|Σd(A)| ≥ 1 + (d− 1) = d, which means that Σd(A) equals Zd.

We remark that the condition in the above lemma is tight, since if d is prime and A consists of d− 2

elements congruent to 1 modulo d, then Σd(A) does not contain any non-zero subgroup of Zd.
The next lemma gives an upper bound on the number of integers coprime to W (r)/ gcd(W (r),m) in

an arithmetic progression. Note that all integers of the form qu where u|m and gcd(q,W (r)m) = 1 are
coprime to W (r)/ gcd(W (r),m). The proof of this lemma uses the Selberg sieve and may be found in
Appendix B.1.

Lemma 5.9. Let r and n be sufficiently large positive integers and m ∈ [n,
(
n
2

)
]. Let X be an arithmetic

progression of size |X| ≥ r1/16 with common difference b ≤ n. Then the number of elements of X which
are coprime to W (r)/ gcd(W (r),m) is at most

256|X| log logn

log r
.

Furthermore, when b = 1, the number of elements of X which are coprime to W (r)/ gcd(W (r),m) is at
most

256|X|
∏

p|W (r),p-m

(1− 1/p).

Given a cyclic group Zt and an interval of integers [x, x+ t), we have a natural identification ψt : Zt →
[x, x+ t), where ψt(u) is the unique integer in [x, x+ t) which is congruent to u modulo t. The next lemma
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shows that under this identification, for a subgroup H of Zt, a progression of H-cosets is identified with
a large subset of a union of long arithmetic progressions of integers. A variant of this lemma goes back at
least to the proof of Roth’s Theorem [33].

Lemma 5.10. Let H be a subgroup of Zt and let R be an arithmetic progression of H-cosets. Consider
the image ψt(R) of R under the identification ψt : Zt → [x, x + t). Then ψt(R) is contained in a set of
size at most 3|R| which is a union of arithmetic progressions of integers, each of length at least |R|1/3.

Proof. First observe that the image under ψt of each H-coset is an arithmetic progression. Thus, if
|H| ≥ |R|1/3, then ψt(R) is a union of arithmetic progressions, each of length at least |R|1/3.

Assume now that |H| < |R|1/3. Let H = dZt for some divisor d of t. Let ` = |R|/|H| ≥ |R|2/3. By
definition, we can write R =

⋃
i∈[`](x+ iy+H) for some x, y ∈ Zt and y /∈ H. For each H-coset x+ iy+H,

we can choose a representative zi for the coset in [x, x + d). Let P = (z1, z2, . . . , z`). We have that P
(mod d) forms a progression of common difference u in Zd. We show that P is contained in a set of size
at most 3` which is a union of progressions of integers, each of length at least

√
` =

√
|R|/|H| ≥ |R|1/3.

From this claim, the conclusion of the lemma easily follows.
We claim that there exists s ∈ [1, b

√
`c] such that su is congruent to an integer in [−d/d

√
`e, d/d

√
`e]

modulo d. Partition Zd into a union of intervals [kd/d
√
`e, (k + 1)d/d

√
`e) for k = 0, 1, . . . , d

√
`e −

1. Suppose that there does not exist s ∈ [1, b
√
`c] such that su (mod d) ∈ [−d/d

√
`e, d/d

√
`e]. Then

u, 2u, . . . , b
√
`cu (mod d) must be contained in the intervals [kd/d

√
`e, (k+1)d/d

√
`e) for k = 1, . . . , d

√
`e−

2. Since b
√
`c ≥ d

√
`e − 1, the pigeonhole principle implies that there are 1 ≤ s′ < s′′ ≤ b

√
`c such that

s′u (mod d) and s′′u (mod d) are in the same interval [kd/d
√
`e, (k+ 1)d/d

√
`e). Then s′′− s′ ∈ [1, b

√
`c]

and (s′′− s′)u is congruent to an integer v in [−d/d
√
`e, d/d

√
`e] modulo d, contradicting our assumption.

Suppose now that s ∈ [1, b
√
`c] is such that su is congruent to an integer in [−d/d

√
`e, d/d

√
`e] modulo

d. Since P (mod d) forms a progression of common difference u in Zd, we can partition P into s subsets
P1, P2, . . . , Ps such that Pi (mod d) is a progression with common difference su in Zd. Each set Pi can be
greedily partitioned into progressions of integers with common difference v such that all of the progressions
in the partition, except the first and last ones, have length at least d

√
`e. By extending arbitrarily the

progressions with length less than d
√
`e, we obtain that P is contained in a union of arithmetic progressions

of integers, each of length at least d
√
`e, where the size of the union is at most (d

√
`e−1) ·2s+ |P | ≤ 3|P |.

This verifies the desired claim.

We will also need the following simple lemma in the proof of Lemma 5.6.

Lemma 5.11. Let A be a multiset of elements of Zt and let d be a divisor of t. Then, for any u ∈ Zt/dZt
such that Σt(A) ∩ (u+ dZt) 6= ∅,

|Σt(A) ∩ (u+ dZt)| ≥ |Σt(A ∩ dZt)|.

Proof. Let Su = Σt(A)∩ (u+ dZt). For all non-zero u ∈ Zt/dZt, if Su 6= ∅, then we can find an element x
in Su which is a sum of distinct elements of A which are not in dZt. Thus, each element of x+Σt(A∩dZt)
can be written a sum of distinct elements in A, so x + Σt(A ∩ dZt) ⊆ Σt(A). It is also clear that
x + Σt(A ∩ dZt) ⊆ u + dZt, so x + Σt(A ∩ dZt) ⊆ Su. If u = 0 ∈ Zt/dZt, then letting x = 0, we have
x+ Σt(A ∩ dZt) = Σt(A ∩ dZt) ⊆ Su. Thus, if Su is non-empty, then |Su| ≥ |Σt(A ∩ dZt)|.
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We can now prove Lemma 5.6. We recall the statement, that if t ∈ [y/v, 2y/v) and A is a subset of Yv
of size z/(16`) which is y1/4/(128`)-diverse, then |Σt(A)| ≥ min(ξ, 32/`)t.

Proof of Lemma 5.6. We consider the following iterative process. Let Σt(0) = {0} and A0 = A. At each
step i ≥ 1, we pick an element ai in Ai−1 and let Σt(i) = Σt(i− 1)∪ (Σt(i− 1) + ai) and Ai = Ai−1 \ {ai}.
In particular, Σt(i) = Σt({a1, . . . , ai}) ⊆ Σt(A) for all i ≤ |A|. Let di = gcd(Ai−1). For i ≤ |A|/2, Ai−1

is a subset of Yv of size at least |A|2 ≥
z

32` > 64(m/φ(m))τ(r,m) y
r log r , where we used (14) and assumed

that r is sufficiently large in terms of `. Thus, {vx : x ∈ Ai−1} is a subset of Y of size larger than
64(m/φ(m))τ(r,m) y

r log r whose elements are divisible by vdi. By Lemma 5.3, we obtain vdi ≤ y1/16 and
all elements of Ai−1 have the form qu where u | (m/v), u ≤ y1/16/v ≤ y1/16, di|u and gcd(q,W (r)m) = 1.
We will run the above process for at most |A|/2 steps, so we may assume that i ≤ |A|/2 and these
conclusions hold throughout.

For each i, we say that step i is either a growth phase, an unsaturated phase or a saturated phase. Note
that the cosets of diZt can be indexed by elements of Zdi . For each u ∈ Zdi , let Su = Σt(i−1)∩ (u+diZt).
We say that i is a growth phase if there exists u ∈ Zdi such that Su is non-empty and has size at most
y3/4. We say that i is an unsaturated phase if it is not a growth phase and there exists u ∈ Zdi such
that y3/4 < |Su| < ξt

di
. Finally, if step i is neither a growth phase nor an unsaturated phase, then it is a

saturated phase.
Next we describe how ai is chosen. Let Σ(d, i − 1) = {

∑
j∈S aj (mod t) : S ⊆ [i − 1] ∩ {j : d|aj}}.

Then Σ(d, i − 1) is a subset of the subgroup dZt of Zt, which can be identified with Zt/d. We identify
Σ(d, i − 1) with a subset of Zt/d. Similarly, we can identify Ai−1 with a subset of Zt/di . If i is a growth
phase, we pick ai such that |Σ(di, i)| − |Σ(di, i− 1)| is maximized. Otherwise, if i is not a growth phase,
we pick ai such that |Σt(i)| − |Σt(i− 1)| is maximized.

The following claims capture the key steps in the proof.

Claim 1. The number of growth phases among the first |A|/2 steps is at most (256`y3/4/z + log3/2 t +

2)(log2 y
1/16 + 1).

Claim 2. If i ≤ |A|/2 is an unsaturated phase, then |Σt(i)| − |Σt(i− 1)| > 212y/z.

Claim 2 is the most important step in the proof and will take up most of our time. However, before
proving these claims, let us see how Lemma 5.6 follows from combining them.

First, suppose that there exists i ≤ |A|/2 such that i is a saturated phase. By Lemma 5.8, since A is
y1/4/(128`)-diverse and di < y1/4/(128`), Σdi({a1, . . . , ai−1}) = Σdi(A) = Zdi . Hence, Su is non-empty
for all u ∈ Zdi . Since i is a saturated phase, we have that |Su| ≥ ξt

di
for all u ∈ Zdi , so |Σt(i − 1)| =∑

u∈Zdi
|Su| ≥ ξt. Therefore, |Σt(A)| ≥ |Σt(i− 1)| ≥ ξt, as desired.

Next, suppose that no i ≤ |A|/2 is a saturated phase. In this case, if i ≤ |A|/2 is not a growth phase,
it must be an unsaturated phase and, by Claim 2, we have |Σt(i)| > |Σt(i − 1)| + 212y/z. Since Claim 1
implies that there are at least |A|/2− (256`y3/4/z+ log3/2 t+ 2)(log2 y

1/16 + 1) unsaturated phases in the
first |A|/2 steps and |A| = z/(16`), we have

|Σt(A)| ≥ |Σt(|A|/2)| ≥ 212y

z
·
( z

32`
− (256`y3/4/z + log3/2 t+ 2)(log2 y

1/16 + 1)
)
≥ 212y

64`
≥ 32t

`
,

as required.
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We next give the proofs of Claims 1 and 2, beginning with the simpler of the two.

Proof of Claim 1. First, we show that in each step i ≤ |A|/2, if |Σ(di, i− 1)| < |Ai−1|/2, then

|Σ(di, i)| − |Σ(di, i− 1)| ≥ max
a∈Ai−1

|(Σ(di, i− 1) + a) \ Σ(di, i− 1)| ≥ |Σ(di, i− 1)|/2, (17)

while if |Ai−1|/2 ≤ |Σ(di, i− 1)| ≤ y3/4, then

|Σ(di, i)| − |Σ(di, i− 1)| ≥ max
a∈Ai−1

|(Σ(di, i− 1) + a) \ Σ(di, i− 1)| ≥ |Ai−1|/8. (18)

The first bound (17) follows directly from Lemma 2.6, since the set of elements a ∈ Zt/di for which

|(Σ(di, i− 1) + a) \ Σ(di, i− 1)| < |Σ(di, i− 1)|/2

has size at most 2|Σ(di, i− 1)| < |Ai−1|.
For the second bound (18), assume, for the sake of contradiction, that for some step i ≤ |A|/2 where

|Ai−1|/2 ≤ |Σ(di, i − 1)| ≤ y3/4, |Σ(di, i)| − |Σ(di, i − 1)| < |Ai−1|/8. Then, for all a ∈ Ai−1, we have
|(Σ(di, i− 1) + a) \ Σ(di, i− 1)| < |Ai−1|/8. Let k =

⌊
4|Σ(di,i−1)|
|Ai−1|

⌋
and let

T = {a ∈ Zt/di : |(Σ(di, i− 1) + a) \ Σ(di, i− 1)| < |Ai−1|/8}.

We have Ai−1 ⊆ T and 0 ∈ T . By Lemma 2.7, for any a ∈ kT ,

|(Σ(di, i− 1) + a) \ Σ(di, i− 1)| < |Σ(di, i− 1)|/2.

Hence, by Lemma 2.6, we have |k(Ai−1 ∪ {0})| ≤ |kT | ≤ 2|Σ(di, i − 1)|. Using that vdi ≤ y1/16 and
t ≥ y/v, we have |Σ(di, i− 1)| ≤ y3/4 < t/(2di), so |k(Ai−1 ∪ {0})| < t/di. Identified as a subset of Zt/di ,
Ai−1 is not a subset of any proper subgroup of Zt/di by the definition of di, so Ai−1 ∪{0} is not contained
in any coset of a proper subgroup of Zt/di . Therefore, by Lemma 2.3, we have

|Ai−1 ∪ {0}| ≤
2

k + 1
|k(Ai−1 ∪ {0})| ≤

4|Σ(di, i− 1)|
k + 1

<
4|Σ(di, i− 1)|

4|Σ(di, i− 1)|/|Ai−1|
= |Ai−1|,

a contradiction.
Using (17) and (18), we may quickly complete the proof of Claim 1. Note that, by Lemma 5.11, for any

u such that Su is non-empty, |Su| ≥ |Σ(di, i− 1)|. Thus, if i is a growth phase, then |Σ(di, i− 1)| ≤ y3/4.
Note that di|di+1, so either di+1 = di or di+1 ≥ 2di. As di ≤ y1/16 for i ≤ |A|/2, di can change at most
1+log2 y

1/16 times in the first |A|/2 steps. By (17), if |Σ(di, i−1)| < |Ai−1|/2, then |Σ(di, i)|−|Σ(di, i−1)| ≥
|Σ(di, i− 1)|/2. Thus, for each period among the first |A|/2 steps where di remains constant, the number
of steps where |Σ(di, i−1)| < |Ai−1|/2 is at most 1+log3/2 t, since, in each such step, |Σ(di, i−1)| grows by
a factor of at least 3/2. For the remaining steps in this period, where |Ai−1|/2 ≤ |Σ(di, i− 1)| ≤ y3/4, (18)
implies that |Σ(di, i)|−|Σ(di, i−1)| ≥ |Ai−1|/8 ≥ z/(256`) in each step, so there are at most 1+256`y3/4/z

more growth phases where di stays constant. Thus, the number of growth phases among the first |A|/2
steps in each period where di stays constant is at most 256`y3/4/z + log3/2 t + 2. Since di can change at
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most 1+log2 y
1/16 times in the first |A|/2 steps, there are at most (256`y3/4/z+log3/2 t+2)(log2 y

1/16 +1)

growth phases in the first |A|/2 steps.

Finally, we give the proof of Claim 2, thereby completing the proof of Lemma 5.6.

Proof of Claim 2. Let i be an unsaturated phase with i ≤ |A|/2. Assume, for the sake of contradiction,
that |Σt(i)| − |Σt(i− 1)| ≤ 212y/z. Since i is not a growth phase and not a saturated phase, there exists
u ∈ Zdi such that y3/4 < |Su| < ξt

di
.

We now view Su and Ai−1 as subsets of Zt/di . Note that, by the definition of di, Ai−1 is not a subset
of any proper subgroup of Zt/di . Let B be the set of elements a of Zt/di such that |(Su+a)\Su| ≤ 212y/z.
By our choice of ai and our assumption that |Σt(i)| − |Σt(i − 1)| ≤ 212y/z, we have Ai−1 ⊆ B. Since
|Su| < ξt

di
and |Su| > y3/4 > 8 ·212y/z by (14), we can apply Lemma 5.7 to conclude that either the set B is

contained in a proper subgroup of Zt/di , B has size at most 20(213y/z)1.02

|Su|0.02 or there is a subgroup H of Zt/di
such that B is contained in a set of size at most 220y/z which is an arithmetic progression of H-cosets.
The first possibility cannot hold, since B contains Ai−1 which is not a subset of any proper subgroup of
Zt/di . The second possibility also cannot hold, since

20(213y/z)1.02

|Su|0.02
≤ 25+13·1.02y1.005

z1.02
< |A|/2 ≤ |Ai−1| ≤ |B|,

where we used the bound |Su| > y3/4. Therefore, there is a subgroup H of Zt/di such that Ai−1, identified
as a subset of Zt/di , is contained in a set R of size at most 220y/z which is an arithmetic progression of
H-cosets. We can identify the elements of Zt/di with elements in [y/v, y/v + t) ⊇ [y/v, 2y/v) which are
divisible by di. Under this identification, R is identified with a set of integers which contains Ai−1.

By Lemma 5.10, under the above identification, the image of R is contained in a set of integers of size
at most 3|R| which is a union of arithmetic progressions Ps, s ∈ S, of integers, each of length at least
|R|1/3. We have |R| ≥ |Ai−1| ≥ z/(32`). Thus, Ai−1 is contained in a set of size at most 222y/z which is
a union of arithmetic progressions Ps of integers, each of length at least (z/(32`))1/3 ≥ r1/16, by (14) and
(35) from Appendix B.2. Recall that Ai−1 is a subset of [y/v, 2y/v) consisting of elements of the form qu,
where u|m, u ≤ y1/16, di|u and gcd(q,W (r)m) = 1. Note that each element of the form qu where u|m and
gcd(q,W (r)m) = 1 is coprime to W (r)/ gcd(W (r),m). Since each arithmetic progression Ps has length
at least r1/16 and common difference at most n, Lemma 5.9 implies that the number of elements in Ps of
the form qu, where u|m, u ≤ y1/16 and gcd(q,W (r)m) = 1, is at most

256|Ps| ·
log logn

log r
.

Thus, the number of elements of R (identified with a subset of [y/v, y/v + t)) of the form qu, where u|m,
u ≤ y1/16 and gcd(q,W (r)m) = 1, is at most

256(
∑
s∈S
|Ps|) ·

log log n

log r
≤ 256 · 222y

z
· log logn

log r
.
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We claim that

256 · 222y

z
· log log n

log r
<

z

32l
.

This holds if r ≥ 10 logm/ log logm, since then, from (34) in Appendix B.2, τ(r,m) ≥ 1/(4 log r) and

`y log log n

z2 log r
≤ 100`yr2(log log n)

(log r)(m/φ(m))2y2τ(r,m)2
≤ 100`r2(log log n)

(log r)τ(r,m)2(m/φ(m))2
·
√
τ(r,m)(m/φ(m))

15mr

≤ 100`

√
64r3(log r)(log log n)2

m(m/φ(m))3
≤ 100`

√
64c3 ≤ 2−40,

where we used (14) in the first inequality, the definition of y in the second inequality, the bound τ(r,m) ≥
1/(4 log r) in the third inequality, the bound r ≤ cψ(n,m) = c m1/3(m/φ(m))

(logn)1/3(log logn)2/3
in the fourth inequality

and, in the last inequality, we assumed a sufficiently small choice of c (depending on `). Next, assume that
r < 10 logm/ log logm. In this case, we have that r = cR(n,m) = cρ(n,m). Furthermore, m ≥ n2

(logn)2
as,

for n3/2(log logn)1/2

(logn)1/2
≤ m ≤ n2

(logn)2
, r = cρ(n,m) = Θ

(
n2/φ(m)

log(n2/φ(m))

)
by Claim B.3, so r > 10 logm/ log logm

for sufficiently large n, contradicting our assumption. We also have that τ(r,m) ≥ (φ(m)/m)/(2 log r) by
(32) in Appendix B.2, so

`y log logn

z2 log r
≤ 100`r2(log log n)

(log r)τ(r,m)2(m/φ(m))2
·
√
τ(r,m)(m/φ(m))

15mr

≤ 100`

√
8r3(log r)(log log n)2

m
≤ 100`

√
105(log n)3

n2/(log n)2
≤ 2−40,

assuming that n is sufficiently large, where in the third inequality we used r < 10 logm/ log logm <

20 log n/ log logn. Thus, in both cases,

256 · 222y

z
· log log n

log r
<

z

32`
.

This is a contradiction since there are at least z
32` integers of the form qu where u|m,u ≤ y1/16 and

gcd(q,W (r)m) = 1 contained in R. Hence, in each step i ≤ |A|/2 which is an unsaturated phase, |Σt(i)|
grows by at least 212y/z.

Using Lemma 5.6, we can now give the proof of Lemma 5.5, thus completing our proof of the lower
bound in Theorem 1.6. Again we recall the statement, that if ` = d32/ξe and A is a subset of Yv of size
z/(8`) which is y1/4/(32`)-diverse, then |Σ(A)| ≥ 3yz/(4`2v) and Σ(A) is not a subset of an arithmetic
progression with common difference greater than 1.

Proof of Lemma 5.5. Using Lemma 5.4, we can partition A into two sets A1, A2 such that |A1| = |A2| =
z/(16`) and A1 is y1/4/(128`)-diverse. By Lemma 5.6, for each t in A2, |Σt(A1)| ≥ min(ξ, 32/`)t. Recall
that we chose ` = d32/ξe, so |Σt(A1)| ≥ 32t/`. Therefore, by repeated applications of Lemma 2.5,

|Σ(A)| = |Σ(A1 ∪A2)| ≥
∑
t∈A2

32t

`
≥ |A2| ·

32y

`v
>

yz

`2v
.

46



Finally, we prove that Σ(A) is not contained in an arithmetic progression with common difference d larger
than 1. Indeed, if Σ(A) were contained in an arithmetic progression with common difference d larger than
1, then all elements of Σ(A) would be in the same congruence class modulo d, which in turn implies that
all elements of A would be divisible by d. But this is impossible since A is y1/4/(32`)-diverse.

5.2 Proof of the upper bound in Theorem 1.6

In this section, we show how to improve on the construction of Alon and Erdős [2] described in the
introduction. We begin with the following simple claim.

Claim 5.12. There exists a positive constant κ such that the following holds. For each positive integer
m, let dm be the product of all the primes at most (logm)/64 which are not prime divisors of m, where
dm = 1 if the product is over an empty set. Then, for m sufficiently large, dm ≤ m1/32, gcd(dm,m) = 1

and m
φ(m) ·

dm
φ(dm) ≥ κ log logm.

Proof. It is easy to see that dm ≤ m1/32. Furthermore,

m

φ(m)
· dm
φ(dm)

≥
∏

p≤(logm)/64

p

p− 1
≥ exp

 ∑
p≤(logm)/64

1

p


≥ exp(log log((logm)/64)− κ′) ≥ κ log logm,

for some absolute constants κ′, κ.

We are now ready to prove the upper bound in Theorem 1.6. For the sake of easy reference, we recall
the statement, that, for all n sufficiently large and m ∈ [n,

(
n
2

)
],

f(n,m) = O (R(n,m)) ,

where R(n,m) = min (ψ(n,m), ρ(n,m)). Here ψ(n,m) = m1/3(m/φ(m))

(logn)1/3(log logn)2/3
and ρ(n,m) is the smallest

positive integer ρ such that ρ
∏
p|W (ρ)m(1 − 1/p)−1 ≥ n2/φ(m), where W (ρ) is the product of the first

ρ primes. We also recall from the previous subsection that when m = O
(
n3/2(log logn)1/2

(logn)1/2

)
, we have

R(n,m) = Θ (ψ(n,m)) and when m = Ω
(
n3/2(log logn)1/2

(logn)1/2

)
, we have R(m,n) = Θ(ρ(n,m)).

Proof of the upper bound in Theorem 1.6. We first consider the case where m ≤ n3/2(log logn)1/2

(logn)1/2
. Let r =

Cψ(n,m) = Cm1/3(m/φ(m))

(logn)1/3(log logn)2/3
for a sufficiently large constant C. Note that r ≥ n1/3

(logn)2/3
. Our aim is to

construct an r-coloring of [1, n − 1] such that the set of subset sums of each color class does not contain
m. We will do this in four steps.

Step 1. For k = 2, 3, . . . , r2 , we form a color class S1(k) = {d m
k+1e, d

m
k+1e+ 1, . . . , bmk c}∩ [n−1], while, for

k = 1, we take S1(1) = {dm2 e, d
m
2 e+ 1, . . . ,m− 1}∩ [n− 1]. As defined, the color classes may overlap, but

we can safely assign any element in the overlap to any color class that includes it. Crucially, no subset
sum of S1(k) can contain m, since the sum of at most k elements from S1(k) is less than m, while any
sum of k + 1 elements from S1(k) is larger than m. Let X1 =

⋃r/2
k=1 S1(k).
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Step 2. For each of the first r/4 primes p which are coprime to m, we form a color class S2(p) = {kp :

k ∈ N} ∩ [1, n− 1], noting that no subset sum of S2(p) can contain m, since each element of Σ(S2(p)) is a
multiple of p. Let X2 =

⋃
p≤pr/4,p-m S2(p).

Step 3. Let R = [1, n− 1] \ (X1 ∪X2). The construction in [2] also uses color classes like those defined in
Steps 1 and 2. They then arbitrarily partition the remaining elements R so that the sum of the elements in
each of the classes is smaller thanm. For our improvement, we need to be more careful. Note that elements
in the remainder set R are natural numbers t ≤ 2m

r such that t is coprime to W (r/4)/ gcd(W (r/4),m),
that is, all prime divisors of t which are at most pr/4 are also prime divisors of m. In particular, t is
coprime to the integer dm given by Claim 5.12, since dm has only prime factors at most (logm)/64 < r/4

which are not prime divisors of m.
With κ also as in Claim 5.12, we next show that there exists a multiple d of dm such that

κ(φ(m)/m)r(log log n)/64 ≤ d ≤ κ(φ(m)/m)r(log log n)/32, (19)

gcd(d,m) = 1 and the largest prime factor of d is at most pr/4. Let x = κ(φ(m)/m)r log logn
50dm

. Note that
x ≥ κr

100dm log logn > n1/4, since r ≥ n1/3/(log n)2/3 and dm ≤ m1/32 ≤ n1/16. Since m has at most
logm ≤ 2 log n distinct prime factors, there exists a prime p < n1/100 such that p does not divide m. Let
k be the smallest positive integer such that x/pk < n1/100. Then x/pk−1 ∈ [n1/100, n2/100] and, by the
prime number theorem, the interval [(1−1/100)x/pk−1, (1+1/100)x/pk−1] has at least 10−3n1/100/(log n)

primes for sufficiently large n. Thus, there exists a prime p′ in this interval which does not divide m.
Then p′pk−1 ∈ [(1−1/100)x, (1+1/100)x] and gcd(p′pk−1,m) = 1, since p′ and p are primes which do not
divide m. We can now verify that d = p′pk−1dm satisfies (19), gcd(d,m) = 1 and the largest prime factor
of d is at most 2n2/100 < pr/4 (noting that all prime factors of dm are at most (logm)/64 < 2n2/100).
Since dm|d, we also have d/φ(d) ≥ dm/φ(dm). Furthermore, all elements of R are coprime to d, since any
element in R is coprime to W (r/4)/ gcd(W (r/4),m), whereas d is coprime to m and all prime factors of
d are at most pr/4.

Fix s ∈ Z×d . Then there exist k integers congruent to s (mod d) that sum to m only if sk ≡ m

(mod d). Let xs be the positive integer in [d] that is congruent to s−1m (mod d). Consider now the color
classes

Ss,1 =

{
t : t ∈ R, t ≡ s (mod d), t ≥ m

xs

}
,

Ss,2 =

{
t : t ∈ R, t ≡ s (mod d),

m

d+ xs
≤ t < m

xs

}
.

If a sum of k elements in Ss,1 is equal to m (mod d), then k ≥ xs. But then the sum of the k elements
is larger than m. Similarly, if a sum of k elements in Ss,2 is equal to m (mod d), then k = xs or
k ≥ d + xs. But the sum of k elements is less than m if k = xs and larger than m if k ≥ d + xs. Thus,
m /∈ Σ(Ss,1) ∪Σ(Ss,2). Note that in this step we have in total defined 2φ(d) color classes of the form Ss,1

and Ss,2 for s ∈ Z×d .

Step 4. Let R′ = R \ (
⋃
s∈Z×d

(Ss,1 ∪ Ss,2)). Then all elements of R′ are less than m/d. Thus, if we
arbitrarily partition R′ into sets of size at most d, then no set contains a subset sum which is equal to m.
Hence, we need at most |R′|/d colors to color R′ so that no color class contains m as a subset sum. Recall
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that any element in R′ is coprime to W (r/4)/ gcd(W (r/4),m). By the second part of Lemma 5.9, applied
to the interval [1,m/d], we have

|R′| ≤ 256(m/d)
∏

p|W (r/4),p-m

(1− 1/p)

≤ 256(m/d)
∏

p|W (r/4)

(1− 1/p)
∏

p|m,p≤r/4

(1− 1/p)−1

<
500m(m/φ(m))

d log r
,

where we used that r is sufficiently large, so that
∏
p|W (r/4)(1 − 1/p) ≤ 1.1/ log r, and

∏
p|m,p≤r/4(1 −

1/p)−1 ≤ m/φ(m). Therefore, the number of color classes used in Step 4 is at most

500m(m/φ(m))

d2 log r
≤ 642 · 500m(m/φ(m))3

κ2r2(log r)(log logn)2

<
r

16
,

where the first inequality follows from (19) and in the second inequality we have assumed that the constant
C is chosen sufficiently large.

Combining all four steps, the total number of colors we have used is at most

r

2
+
r

4
+ 2φ(d) +

r

16
≤ 13r

16
+

2md

κφ(m) log log n
≤ 7r

8
,

where we have used Claim 5.12, so that d/φ(d) ≥ dm/φ(dm) ≥ κ(log logm)φ(m)/m ≥ κ(log log n)φ(m)/m,
and the bound (19). Thus, we can use at most r colors to color [1, n − 1] such that no monochromatic
subset sum is equal to m, as required.

Next we consider the case m ∈
[
n3/2(log logn)1/2

(logn)1/2
,
(
n
2

)]
. Let r = Cρ(n,m), where C is a sufficiently large

absolute constant. We construct the coloring as follows.

Step 1. For each of the first 7r/8 primes p that do not divide m, we construct a color class S1(p) = {kp :

k ∈ N}. Let X1 =
⋃
p≤p7r/8,p-m S1(p).

Step 2. Let R = [1, n − 1] \ X1. The set R consists of those integers less than n which are coprime to
W (7r/8)/ gcd(W (7r/8),m). By Lemma 5.9, the number of elements of R is at most

256n
∏

p|W (7r/8),p-m

(1− 1/p) ≤ 256n
∏

p|W (ρ(n,m))m

(1− 1/p) ·
∏

p| gcd(m,W (ρ(n,m)))

(1− 1/p)−1

≤ 256n(m/φ(m))
∏

p|W (ρ(n,m))m

(1− 1/p),

where in the first inequality we used that 7r/8 = 7Cρ(n,m)/8 > ρ(n,m), which holds by choosing the
constant C to be sufficiently large, and in the second inequality we used

∏
p| gcd(m,W (ρ(n,m)))(1− 1/p)−1 ≤∏

p|m(1− 1/p)−1 = m/φ(m).
Since each element of R is less than n, if a color class contains at most m/n elements, then no sum of
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elements from the color class can equal m. Thus, we can use at most

|R|
m/n

≤ 256n2/φ(m) ·
∏

p|W (ρ(n,m))m

(1− 1/p) ≤ 256ρ(n,m)

colors to color the elements of R so that no monochromatic subset sum equalsm. The second inequality fol-
lows from the definition of ρ(n,m), which is the smallest positive integer such that ρ(n,m)

∏
p|W (ρ(n,m))m(1−

1/p)−1 ≥ n2/φ(m). Hence, the total number of colors we used is at most

7r

8
+ 256ρ(n,m) ≤ r,

assuming that C is a sufficiently large absolute constant.

6 Long homogeneous progressions in subset sums

In this section, we prove Theorem 1.9, strengthening Theorem 1.8, Szemerédi and Vu’s result [40] on
arithmetic progressions in subset sums, by showing that the progression may be taken to be homoge-
neous. For our application to the Erdős–Graham problem in Section 7, we will need a somewhat technical
strengthening of this result, for which it will be useful to have the notation

Σ[h](A) =

{∑
s∈S

s : S ⊆ A, |S| ≤ h

}
.

The main result of this section, which includes Theorem 1.9 as a special case, is now as follows. To gain
some intuition, we remark that for a typical set A which is not dominated by multiples of an integer at
least 2, we will simply have d = 1.

Theorem 6.1. There exists an absolute constant C > 0 such that the following holds. For any subset A of
[n] of size m ≥ C

√
n, there exists d ≥ 1 such that, for A′ = {x/d : x ∈ A, d|x} and k = 250n/m, Σ[k](A′)

contains an interval of length at least n. Furthermore,

|A| − |A′| ≤ 230(log n)3 +
230n

m
.

Theorem 1.9 immediately follows from Theorem 6.1 by noticing that Σ(A) contains the set {dy : y ∈
Σ[k](A′)}, which is a homogeneous arithmetic progression with common difference d.

As a crucial step in the proof of Theorem 6.1, we first show that subsets of Zb satisfying a diversity
condition have a large set of subset sums. We will need to use the mod b analogue of Σ[h](A), namely,

Σ
[h]
b (A) =

{∑
s∈S

s mod b : S ⊆ A, |S| ≤ h

}
.

Lemma 6.2. Let b be a positive integer. Let A be a subset of Zb of size m ∈ (80(log b)2, b] such that, for
each d|b with d ∈ [2, 4b/m], there are at least 64(log b)2 + 8d elements in A which are not divisible by d.
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Let k = 1280b/m. Then
|Σ[k+1]
b (A)| ≥ min(m2/256, b/4).

Proof. Let A′ be a uniformly random subset of A of size 3m/4 and A′′ = A \A′. Let E1 be the event that
for some d|b with d ∈ [2, 4b/m], there are at most 8(log b)2 +d elements in A′ which are not divisible by d.
Recall that for each d|b and d ∈ [2, 4b/m], at least 64(log b)2 + 8d elements of A are not divisible by d. By
the Chernoff bound for hypergeometric distributions, the probability that there are at most 8(log b)2 + d

elements in A′ which are not divisible by d is at most exp(−64(log b)2/32) ≤ 1/b2. By taking a union
bound over all d|b, the probability that E1 happens is then at most 1/b < 1. We may therefore fix a choice
of A′ and A′′ so that E1 does not hold.

We consider the following iterative process. Let Σb(0) = A′′ and let A0 = A′. At each step i ≥ 1, we
pick an element ai in Ai−1 and let Ai = Ai−1 \ {ai} and Σb(i) = Σb(i− 1)∪ (Σb(i− 1) + ai). Observe that
the elements in Σb(i) can be written as the sum of one element in A′′ and a subset of A′ of size at most i, so
Σb(i) ⊆ Σ

[i+1]
b (A). Let di|b be such that 〈Ai−1〉 = diZb ∼= Zb/di , where 〈X〉 denotes the subgroup generated

by X. Note that, by definition, di|dj if i ≤ j. Furthermore, |Ai−1| ≤ b/di and |Ai−1| = 3m/4−i+1 ≥ m/4
for i ≤ m/2, so di ≤ 4b/m for i ≤ m/2. We will run the above process for at most m/2 steps, so we only
consider i ≤ m/2 throughout.

For each i, we say that step i is either a growth phase, an unsaturated phase or a saturated phase. For
each u ∈ Zb/diZb ∼= Zdi , let Su = Σb(i− 1)∩ (u+ diZb). We then say that step i is a growth phase if there
exists u ∈ Zb/diZb ∼= Zdi such that Su is non-empty and has size at most |Ai−1|/4. We say that step i is
an unsaturated phase if it is not a growth phase and there exists u ∈ Zb/diZb such that |Ai−1|

4 < |Su| < b
4di

.
Finally, if step i is neither a growth phase nor an unsaturated phase, then it is a saturated phase. We
remark that if di = d for all steps i in an interval [x, y], then the interval can be partitioned into three
(possibly empty) intervals such that the steps in the first interval are all growth phases, the steps in the
second interval are all unsaturated phases and the steps in the third interval are all saturated phases.

We next discuss how to pick ai, which depends on the type of phase. For d|b, let Σ(d, i − 1) =

Σb({a1, . . . , ai−1} ∩ dZb). If step i is a growth phase, we pick ai which maximizes |Σ(di, i)| − |Σ(di, i− 1)|.
If step i is an unsaturated or saturated phase, we pick ai which maximizes |Σb(i)| − |Σb(i− 1)|.

The following claims record important properties of the process we have defined.

Claim 1. The first (log b)2 steps are not growth phases.

Proof. Consider i ≤ (log b)2. Note that i ≤ m/2. Since, for each d|b with d ∈ [2, 4b/m], there are more
than 8(log b)2 elements in A′ which are not divisible by d, there must be at least 7(log b)2 elements in
Ai−1 which are not divisible by d. Hence, di = 1. Thus, there is only one coset u of diZb in Zb and
|Su| ≥ |Σb(0)| = m/4 ≥ |Ai−1|/4, so i is not a growth phase.

Claim 2. There are at most 20(log b)(log(4b/m)) growth phases among the first m/2 steps.

Proof. Suppose that step i is a growth phase. By Lemma 5.11, for u ∈ Zb/diZb, if Su is non-empty, then
|Su| ≥ |Σ(di, i − 1)|. Since we are in a growth phase, there is some u such that Su is non-empty and
|Su| ≤ |Ai−1|/4. This implies that |Σ(di, i− 1)| ≤ |Ai−1|/4. By Lemma 2.6, the set of a ∈ diZb such that
|(Σ(di, i − 1) + a) \ Σ(di, i − 1)| ≤ 1

2 |Σ(di, i − 1)| has size at most 2|Σ(di, i − 1)| ≤ |Ai−1|/2. Thus, there
exists ai ∈ Ai−1 such that |Σ(di, i)| ≥ 3

2 |Σ(di, i − 1)|. As |Σ(di, i)| ≤ b for all i, there can be at most
1 + log3/2 b successive growth phases with di = d. Since d1 ≤ d2 ≤ · · · ≤ dm/2 ≤ 4b/m and di+1 ≥ 2di
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if di+1 6= di, di can take at most 1 + log2(4b/m) distinct values. This shows that there can be at most
(1 + log3/2 b)(1 + log2(4b/m)) < 20(log b)(log(4b/m)) growth phases among the first m/2 steps.

Claim 3. Let i be an unsaturated phase. Then |Σb(i)| − |Σb(i− 1)| ≥ |Ai−1|
16 .

Proof. Note that if a ∈ Ai−1, then a ∈ diZb, since Ai−1 ⊆ diZb. Thus, for each u ∈ Zb/diZb and x ∈ Zb,
x + a ∈ u + diZb if and only if x ∈ u + diZb. Hence, (Σb(i − 1) + a) ∩ (u + diZb) = (Σb(i − 1) ∩ (u +

diZb)) + a = Su + a and ((Σb(i− 1) + a) \ Σb(i− 1)) ∩ (u + diZb)) = (Su + a) \ Su. Let u0 be such that
|Su0 | = maxu:|Su|<b/4di |Su|. We have

|(Σb(i− 1) + a) \ Σb(i− 1)| =
∑

u∈Zb/diZb

|((Σb(i− 1) + a) \ Σb(i− 1)) ∩ (u+ diZb)|

=
∑

u∈Zb/diZb

|(Su + a) \ Su|

≥ |(Su0 + a) \ Su0 |.

Let ki = 1 +
⌊

4|Su0 |
|Ai−1|

⌋
∈
[
2,

8|Su0 |
|Ai−1|

]
, noting that |Su0 | > |Ai−1|/4 since step i is not a growth phase. Let

Pi−1 ⊆ diZb be the set of elements a ∈ diZb such that |(Su0 +a)\Su0 | < 1
2ki
|Su0 |. Note that 0 ∈ Pi−1 and,

by Lemma 2.7, for any a ∈ kiPi−1, |(Su0 + a) \Su0 | < 1
2 |Su0 |. Therefore, by Lemma 2.6, |kiPi−1| ≤ 2|Su0 |.

Suppose now that Ai−1 ⊆ Pi−1. Since di is defined so that 〈Ai−1〉 = diZb ∼= Zb/di , Ai−1 is not a subset of
a proper subgroup of Zb/di and, since 0 ∈ Pi−1, Pi−1 is not contained in a coset of a proper subgroup of
Zb/di . Thus, by Lemma 2.3 and the fact that |kiPi−1| ≤ 2|Su0 | < b

2di
< |Zb/di |, |Pi−1| ≤ 2|kiPi−1|

ki
≤ 4

ki
|Su0 |.

However, by our choice of ki, |Ai−1| > 4
ki
|Su0 |, which is a contradiction. Therefore, Ai−1 ∩ P ci−1 6= ∅ and,

since ai is chosen so that |Σb(i)| − |Σb(i− 1)| = |(Σb(i− 1) + ai) \ Σb(i− 1)| is maximized,

|(Σb(i− 1) + ai) ∪ Σb(i− 1)| ≥ |Σb(i− 1)|+ 1

2ki
|Su0 |

≥ |Σb(i− 1)|+ |Ai−1|
16|Su0 |

|Su0 |

= |Σb(i− 1)|+ |Ai−1|
16

.

Thus, over any unsaturated phase i, |Σb(i)| − |Σb(i− 1)| ≥ |Ai−1|
16 .

Claim 4. For each step i ≤ m/2, Su = Σb(i− 1) ∩ (u+ diZb) is non-empty for every u ∈ Zb/diZb.

Proof. The claim holds trivially if di = 1. Assume that di > 1. Since i ≤ m/2, we have di|b and di ≤ 4b/m.
For each d|di with d > 1, we have d|b and d ∈ [2, 4b/m], so A′ contains at least d− 1 elements which are
not divisible by d. By Lemma 5.8,

Σdi({a1, . . . , ai−1}) = Σdi(A
′) = Zdi ,

where we used that the elements of A′ \ {a1, . . . , ai−1} are all divisible by di. The claim follows upon
noting that we can identify Zb/diZb with Zdi and, under this identification, Su is non-empty if and only
if u ∈ Σdi({a1, . . . , ai−1}).

We now complete the proof of the lemma using these claims. First, assume that there is no saturated
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phase i with i ≤ min(m/2, k). Then, among the first min(m/2, k) steps, from Claims 1 and 2, at least
max(min(m/2, k)− 20(log b)(log(4b/m)),min((log b)2, k)) steps are unsaturated phases. Note that if k =

1280b/m ≤ 80(log b)2, then (log b)2 ≥ k/80 and

max(min(m/2, k)− 20(log b)(log(4b/m)),min((log b)2, k)) ≥ min((log b)2, k) ≥ k/80.

If k = 1280b/m ≥ 80(log b)2, then 20(log b)(log(4b/m)) ≤ k/2 and 20(log b)(log(4b/m)) ≤ m/4 by our
assumption on m, so

max(min(m/2, k)− 20(log b)(log(4b/m)),min((log b)2, k)) ≥ min(m/2, k)− 20(log b)(log(4b/m))

≥ min(m/4, k/2).

In either case, we have

max(min(m/2, k)− 20(log b)(log(4b/m)),min((log b)2, k)) ≥ min(m/4, k/80).

For each step i which is an unsaturated phase, we have, by Claim 3, that |Σb(i)|−|Σb(i−1)| ≥ |Ai−1|/16 ≥
m/64. Hence, recalling that k = 1280b/m, we get

|Σ[k+1]
b (A)| ≥ |Σb(min(m/2, k))| ≥ min

(
m

4
,
k

80

)
· m

64
= min

(
m2

256
,
b

4

)
.

If, instead, there is a saturated phase i0 with i0 ≤ min(m/2, k), then, for each u ∈ Zb/di0Zb with
Su = Σb(i0 − 1) ∩ (u + di0Zb) non-empty, |Su| ≥ b

4di0
. But Claim 4 implies that Su is non-empty for all

u ∈ Zb/di0Zb, so that

|Σ[k+1]
b (A)| ≥ |Σb(i0)| ≥

∑
u∈Zb/di0Zb

|Su| ≥
b

4di0
· di0 =

b

4
.

Hence, the desired conclusion holds in both cases.

Let ` = 215. We say that a subset A of [n] of size m is nice if the following conditions hold:

(i) There is no d ∈ [2, 8`n/m] such that all but at most 512`(log n)2 + 64`d elements of A are divisible
by d.

(ii) For each dyadic interval Ij = [2j−1, 2j) ∩ [n], either |A ∩ Ij | = 0 or |A ∩ Ij | ≥ 64`(log n).

The next lemma says that any large subset of [n] contains a multiple of a large nice set.

Lemma 6.3. There exists a constant C > 0 such that the following holds. Let A be a subset of [n] of size
m ≥ Cn1/2. Then there is an integer d and a set A′ of integers such that

• A′ is nice,

• {dx : x ∈ A′} ⊆ A and

• |A| − |A′| ≤ 1000`(log n)3 + 256`n
m .
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Proof. We consider the following iteration. Let A0 = A and n0 = n. Note that A0 ⊆ [n0]. For each
i ≥ 0, if |Ai| < m/2, we stop. If Ai is nice, we let A′ = Ai and stop. Otherwise, Ai ⊆ [ni] is not nice and
|Ai| ≥ m/2. If (i) does not hold, we let Ai+1 = {x/di : x ∈ Ai, di|x}, where di ∈ [2, 8`n/|Ai|] is such that
all but at most 512`(log n)2 + 64`di elements of Ai are divisible by di. Note that di ≤ 8`n/|Ai| ≤ 16`n/m.
Let ni+1 = ni/di. Then

|Ai+1| ≥ |Ai| − 512`(log n)2 − 64`di

and Ai+1 ⊆ [ni+1]. If (i) holds and (ii) does not hold, we remove all elements in Ai which are contained
in dyadic intervals Ij with |A ∩ Ij | < 64`(log n) and let Ai+1 be the resulting set. Let ni+1 = ni, so
Ai+1 ⊆ [ni+1], and let di = 1. In this case, |Ai+1| ≥ |Ai| − 64`(log n)(1 + log2 n).

We show that we will always stop and output a nice set with the required properties. Let s be the
step where we stop. Note that there can be at most log2 n steps where (i) does not hold. Furthermore,
the number of steps where (ii) does not hold is at most one more than the number of steps where (i) does
not hold. Thus, we have

|As| ≥ |A0| − (1 + log2 n)(512`(log n)2 + 64`(log n)(1 + log2 n))− 64`
∑

i≤s−1:di>1

di. (20)

Furthermore, ns = n/(
∏
i≤s−1 di), so As ⊆ [n/(

∏
i≤s−1 di)]. We also have that

|As| ≥ |As−1| −max(64`(log n)(1 + log2 n), 512`(log n)2 + 64`ds−1)

≥ |As−1| − 512`(log n)2 − 1024`2n/m

≥ m/4,

where we used that ds−1 ≤ 16`n/m, |As−1| ≥ m/2, m ≥ C
√
n for a sufficiently large constant C and n is

sufficiently large. Hence, ∏
i≤s−1

di ≤ n/|As| ≤ 4n/m.

Since di ≥ 2 for each i ≤ s−1 with di > 1, we have
∑

i≤s−1:di>1 di ≤
∏
i≤s−1 di ≤ 4n/m. Hence, combining

with (20),

|As| ≥ |A0|−(1+log2 n)(512`(log n)2 +64`(log n)(1+log2 n))−64` · 4n
m
≥ m−1000`(log n)3− 256`n

m
≥ m

2
,

assuming that m ≥ C
√
n for C sufficiently large and n is sufficiently large. This implies that the iteration

stops at step s because As is nice. The set A′ = As then satisfies all of the required properties.

We are now in a position to prove the main result of this section, Theorem 6.1.

Proof of Theorem 6.1. By Lemma 6.3, we can find a nice set A′ and an integer d such that {dx : x ∈
A′} ⊆ A and

|A| − |A′| ≤ 1000`(log n)3 +
256`n

m
.

In particular, |A′| ≥ 5|A|/8 for n sufficiently large. Partition A′ into ` sets A′1, . . . , A′` as follows. Let
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A′< be the set consisting of the 7|A′|/8 smallest elements in A′ and let A′> be the remaining elements.
Partition A′< into ` sets A′<,1, . . . , A′<,`, each of size |A′<|/`, and partition A′> into ` sets A′>,1, . . . , A′>,`,
each of size |A′>|/`, uniformly at random. Let A′i = A′<,i ∪A′>,i.

Let bi,1, bi,2, . . . , bi,|A′>,i| be a uniformly random enumeration of A′>,i and we then define two sets
Bi,1 = {bi,1, bi,2, . . . , bi,|A′>,i|/2} and Bi,2 = {bi,|A′>,i|/2+1, . . . , bi,|A′>,i|}. Let k

′ = 2560`n/m+1. Theorem 6.1
will follow easily from the next two claims.

Claim 1. Suppose that C and n are sufficiently large. Then, with probability at least 3/4, for all i ∈ [`]

and all j ∈ [|A′>,i|/2 + 1, |A′>,i|],

|Σ[k′]
bi,j

(A′<,i ∪Bi,1)| ≥ bi,j
4
.

Claim 2. Let M(i) be the sum of the largest k′ elements in Bi,2, let M(i) be the sum of the largest 2k′

elements in A′i and let M be the sum of the largest 2`k′ elements in A′. Then, with probability at least
3/4, for all i ∈ [`],

M(i) ≥ M

8`

and
M(i) ≤ 4M

`
.

Before proving these claims, we show how to complete the proof of Theorem 6.1 assuming that their
conclusions both hold, which happens with probability at least 1/2. For any subset J of [|A′>,i|/2+1, |A′>,i|]
of size k′, let J = {j1, j2, . . . , jk′} for j1 < j2 < · · · < jk′ . A straightforward adaptation of Lemma 2.5 shows
that for any set of integers A and any integer m /∈ A, we have |Σ[h+1](A ∪ {m})| ≥ |Σ[h](A)| + |Σ[h]

m (A)|.
For each v ≤ k′, apply this statement with h = k′+v−1, m = bi,jv and A = A′<,i∪Bi,1∪{bi,j1 , . . . , bi,jv−1}
to conclude that

|Σ[k′+v](A′<,i ∪Bi,1 ∪ {bi,j1 , . . . , bi,jv})|

≥ |Σ[k′+v−1](A′<,i ∪Bi,1 ∪ {bi,j1 , . . . , bi,jv−1})|+ |Σ
[k′+v−1]
bi,jv

(A′<,i ∪Bi,1 ∪ {bi,j1 , . . . , bi,jv−1})|

≥ |Σ[k′+v−1](A′<,i ∪Bi,1 ∪ {bi,j1 , . . . , bi,jv−1})|+ |Σ
[k′]
bi,jv

(A′<,i ∪Bi,1)|.

Thus,

|Σ[2k′](A′<,i ∪Bi)| ≥ |Σ[2k′](A′<,i ∪Bi,1 ∪ {bi,j1 , . . . , bi,jk′})| ≥
∑
v≤k′
|Σ[k′]
bi,jv

(A′<,i ∪Bi,1)|.

By Claim 1, we have, for each v ≤ k′, that |Σ[k′]
bi,jv

(A′<,i ∪Bi,1)| ≥ bi,jv/4. Thus,

|Σ[2k′](A′<,i ∪Bi)| ≥
1

4

∑
v≤k′

bi,jv =
1

4

∑
j∈J

bi,j .

By choosing J to be the set of indices of the k′ largest elements of Bi,2, we obtain that

|Σ[2k′](A′i)| ≥
1

4
M(i).
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Therefore, by Claim 2, we have that, for all i ∈ [`],

|Σ[2k′](A′i)| ≥
M

32`
≥ 1

128

4M

`
.

Also by Claim 2, Σ[2k′](A′i) ⊆ [M(i)] ⊆ [4M/`]. Therefore, by Lemma 2.2 with q = 4M/` and n = q/128,
Σ[2k′](A′1) + · · ·+ Σ[2k′](A′`) contains an interval of length at least

1

256
· 4M

`
· ` =

1

64
M ≥ 1

128
`k′m > n,

where we used that M is the sum of the largest 2`k′ < |A′|/2 elements of A′, so that M ≥ 2`k′|A′|/2 >
`k′m/2, the bound k′ ≥ 2560`n

m and ` = 215. Thus, Σ[2`k′](A′) contains an interval of length at least n.

Proof of Claim 1. Assume that, for some i ∈ [`] and j ∈ [|A′>,i|/2 + 1, |A′>,i|],

|Σ[k′]
bi,j

(A′<,i ∪Bi,1)| < min

(
m2

1024`2
,
bi,j
4

)
. (21)

Note that the size of the set A′<,i ∪Bi,1, considered as a subset of Zbi,j , is at least
7|A′|

8` > m
2` and at most

|A′|
` < m

` , since all elements of A′<,i are smaller than bi,j and, hence, are distinct modulo bi,j . But then,
since m

2` > 80(log bi,j)
2, Lemma 6.2 with b = bi,j and A = A′<,i ∪Bi,1 implies that if (21) holds, there must

be some d ∈ [2, 8`n/m] such that all but at most 64(log n)2 + 8d elements of A′<,i ∪Bi,1 are divisible by d.
Since A′ is nice, for each d ∈ [2, 8`n/m], at least 512`(log n)2 + 64`d elements of A′ are not divisible

by d. By the pigeonhole principle, we obtain that, for each d ∈ [2, 8`n/m], either A′> or A′< contains at
least 256`(log n)2 + 32`d elements not divisible by d.

Note that A′<,i is distributed as a uniformly random subset of A′< of size |A′<|/` andBi,1 is distributed as
a uniformly random subset of A′> of size |A′>|/(2`). Consider the event E(i) that, for some d ∈ [2, 8`n/m],
A′<,i ∪ Bi,1 contains at most 64(log n)2 + 8d elements which are not divisible by d. By the argument
of Lemma 5.4 and a union bound over all d ≤ 8`n/m ≤ n, E(i) happens with probability at most
n exp(−256`(log n)2/(16`)) < 1/n. Thus, by a union bound over all i ∈ [`], for sufficiently large n, the
probability of the event

⋃
i∈[`] E(i) is at most 1/4.

By our earlier observations, (21) cannot hold under the complement of the event
⋃
i∈[`] E(i), so, provided

m ≥ C
√
n for sufficiently large C,

|Σ[k′]
bi,j

(A′<,i ∪Bi,1)| ≥ min

(
m2

1024`2
,
bi,j
4

)
=
bi,j
4

holds for all i ∈ [`] and all j ∈ [|A′>,i|/2 + 1, |A′>,i|] with probability at least 3/4.

Proof of Claim 2. Since A′ is nice, for each dyadic interval Ij in [n], either A′ is disjoint from Ij or A′

intersects Ij in at least 64`(log n) elements. Note that there exists j0 such that the dyadic intervals Ij
which intersect A′ have at least 64`(log n) common elements with A′> for j > j0, |Ij0∩A′>| < 64`(log n) and
Ij∩A′> = ∅ for j < j0. As in the proof of Lemma 5.4, Chernoff’s inequality for hypergeometric distributions
implies that the probability |A′>,i ∩ Ij | > 2|A′> ∩ Ij |/` is at most exp(−|A′> ∩ Ij |/(3`)) ≤ exp(−2 log n).
Similarly, the probability that |Bi,2∩Ij | < |A′>∩Ij |/(4`) is at most exp(−|A′>∩Ij |/(32`)) ≤ exp(−2 log n).
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Thus, by a union bound, with probability at least 3/4, for each i ∈ [`] and j > j0,

|Bi,2 ∩ Ij | ≥
1

4`
|A′> ∩ Ij | (22)

and
|A′>,i ∩ Ij | ≤

2

`
|A′> ∩ Ij |. (23)

Assume now that (22) and (23) hold for all i ∈ [`] and j > j0. Note that since k′ = 2560`n/m+ 1 and
m ≥ C

√
n, we have |A′>| > 2`k′ + 64`(log n). Let X be the set consisting of the largest 2`k′ elements of

A′>, which is the same as the set of the largest 2`k′ elements of A′. Observe that there is j1 > j0 such
that, for all j > j1, X ⊇ A′> ∩ Ij and, for all j < j1, X ∩ Ij = ∅. Since, for each j ≥ j1 > j0 and i ∈ [`],
|Bi,2 ∩ Ij | ≥ 1

4` |A
′
> ∩ Ij | ≥ 1

4` |X ∩ Ij |, we have that Bi,2 contains a subset with
⌈

1
4` |X ∩ Ij |

⌉
elements in Ij

for each j ≥ j1. We next show that
∑

j≥j1
⌈

1
4` |X ∩ Ij |

⌉
< k′. Indeed, let t be the number of indices j ≥ j1

such that X ∩ Ij 6= ∅. Note that
∑

j≥j1 |X ∩ Ij | = |X| = 2`k′ > 256` and, for each j > j1 for which X ∩ Ij
is non-empty, |X ∩ Ij | = |A′> ∩ Ij | ≥ 64`(log n). Thus,

t ≤ 1 +
|X|

64`(log n)
<
k′

16
. (24)

Therefore, ∑
j≥j1

⌈
1

4`
|X ∩ Ij |

⌉
≤ t+

∑
j≥j1

1

4`
|X ∩ Ij | <

k′

16
+
k′

2
< k′.

Since Bi,2 contains a subset of size less than k′ with at least
⌈

1
4` |X ∩ Ij |

⌉
elements in Ij for each j ≥ j1

and M(i) is the sum of the k′ largest elements of Bi,2, one has

M(i) ≥
∑
j≥j1

2j−1 · 1

4`
|X ∩ Ij | =

1

8`

∑
j≥j1

2j · |X ∩ Ij | ≥
M

8`
.

We also have |A′>,i ∩ Ij | ≤ 2
` |A
′
> ∩ Ij | = 2

` |X ∩ Ij | for all j > j1. Moreover,

∑
j≥j1

⌊
2

`
|X ∩ Ij |

⌋
≥
∑
j≥j1

2

`
|X ∩ Ij | − t ≥ 4k′ − k′

16
> 2k′,

where we used the bound (24). Thus, there exists a set of size at least 2k′ containing
⌊

2
` |X ∩ Ij |

⌋
elements

in Ij for each j ≥ j1 such that the elements of this set dominate the 2k′ largest elements of A′>,i. Hence,

M(i) ≤
∑
j≥j1

2j · 2

`
|X ∩ Ij | ≤

4M

`
,

completing the proof of Claim 2.

Both Sárközy [35] and Szemerédi and Vu [41] also state results which apply to

Σ(h)(A) =

{∑
s∈S

s : S ⊆ A, |S| = h

}
,
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the set of subset sums formed by adding exactly h distinct elements from A. By a small modification of
our proof, we can also derive the following variant of Theorem 6.1 that applies in this context.

Theorem 6.4. There exists an absolute constant C > 0 such that the following holds. For any subset A of
[n] of size m ≥ C

√
n, there exists d ≥ 1 and r ∈ [0, d−1] such that, for A′ = {(x−r)/d : x ∈ A, d|(x−r)}

and k ≥ Cn/m, Σ(k)(A′) contains an interval of length at least n. Furthermore,

|A| − |A′| ≤ C((log n)3 + n/m).

That is, if A ⊂ [n] has size m ≥ C
√
n and k ≥ Cn/m, then Σ(k)(A) contains an arithmetic progression

of length at least n. Since we do not need this variant and the proof is rather similar to that of Theorem 6.1,
we omit the details.

Instead, we conclude the section by proving Corollary 1.10, that there is a constant C such that H(n)

and h(n) are both at most C
√
n, where we recall that H(n) is the largest integer for which there are two

subsets of [n] of size H(n) whose sets of subset sums have no non-zero common element and h(n) is the
size of the largest non-averaging subset of [n].

Proof of Corollary 1.10. For the bound on H(n), we need to show that for any two subsets S1, S2 ⊂ [n],
each of sizem ≥ C

√
n, there are non-empty subsets S′1 ⊂ S1 and S′2 ⊂ S2 such that

∑
s1∈S′1

s1 =
∑

s2∈S′2
s2.

To this end, order the elements of S1 ∪ S2 in increasing order and let M be the median. Without loss of
generality, we may assume that the smallest m/2 elements from S1 are each at most M and the largest
m/2 elements from S2 are each at least M . Let R1 ⊂ S1 consist of the smallest m/2 elements from S1

and R2 ⊂ S2 consist of the largest m/2 elements of S2.
Applying Theorem 6.1 to R1, we see that, provided C is sufficiently large, Σ[k](R1) with k = 252n/m

contains a homogeneous arithmetic progression P of common difference d ≤ 4M/m and length at least
2n whose minimum element is at most kM . Note now, by the pigeonhole principle, that any d element
sequence contains a subsequence (consisting of consecutive terms) whose sum is divisible by d. We may
therefore partition R2 greedily into subsets T1 ∪ · · · ∪ Ts, each of size at most d, such that for each i < s

the sum of the elements in Ti is a multiple of d. Note that the sum of the elements in any Ti is at most
dn, while the sum of all the elements in R2 \ Ts is at least (m/2− d)M ≥ kM . It therefore follows that,
for some j, the sum

∑j
i=1

∑
t∈Ti t, which is a sum of elements from S2, lies in the homogeneous arithmetic

progression P .
For the bound on h(n), we apply Straus’ inequality h(n) ≤ 2H(n)+2 (see [39]), whose proof we include

for completeness. Indeed, suppose that we have a subset of [n] of size p = 2H(n) + 3, say {a1, a2, . . . , ap}
with a1 < a2 < · · · < ap. Writing q = H(n) + 2, we see that aq is the median element and the sets
{aq − ai : 1 ≤ i < q} and {aj − aq : q < j ≤ p} are both subsets of [n] of size H(n) + 1. Therefore, by the
definition ofH(n), there must be sets I ⊂ [q−1] and J ⊂ [q+1, p] such that

∑
i∈I(aq−ai) =

∑
j∈J(aj−aq).

Rearranging, we see that aq = 1
|I|+|J |

∑
i∈I∪J ai, so the set is not non-averaging.

7 Subsets avoiding a given subset sum

Recall that g(n,m) is the maximum size of a subset of [n] with no subset sum equal to m. Using the
results of Section 6, we now prove Theorem 1.7, giving the precise value of g(n,m). Theorem 1.7 states
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that there is a constant C such that if m ∈
[
Cn(log n), n2

12(logn)2

]
, then

g(n,m) = s(n,m) :=

⌊
n

snd(m)

⌋
+ snd(m)− 2,

where snd(m) is the smallest positive integer which is not a divisor ofm. Moreover, ifm ∈
[

n2

12(logn)2
,
(
n+1

2

)]
,

then g(n,m) = max
(
s(n,m), (1 + o(1))

√
2m
)
.

Proof of Theorem 1.7. We consider the cases m ≤ n2

12(logn)2
and m > n2

12(logn)2
separately.

Case 1. Cn(log n) ≤ m ≤ n2

12(logn)2
for C sufficiently large.

Let A ⊆ [n] be such thatm /∈ Σ(A). Assume that |A| ≥ s(n,m)+1. We claim that snd(m) ≤ 1.01 logm

for m sufficiently large. Indeed, if snd(m) > 1.01 logm, then m ≥ lcm(1, 2, . . . , 1.01 logm). It is easy
to see that lcm(1, 2, . . . , 1.01 logm) = exp

(∑
x≤1.01 logm Λ(x)

)
, where Λ is the von Mangoldt function

given by Λ(x) = log p if x = pk is a prime power and Λ(x) = 0 otherwise. But, by the prime number
theorem,

∑
x≤1.01 logm Λ(x) ≥ 1.005 logm for m sufficiently large, so that m ≥ lcm(1, 2, . . . , 1.01 logm) ≥

exp(1.005 logm), a contradiction. Thus, snd(m) ≤ 1.01 logm ≤ 2.02 log n and, in particular, |A| ≥
n

2.02 logn .
Let A∗ be a random subset of A where each element is chosen independently with probability 1/10.

By Hoeffding’s inequality, |A|/9 ≥ |A∗| ≥ |A|/11 with high probability. Suppose that 2 ≤ d ≤ n is such
that there are at least (log n)3 elements in A which are not divisible by d. Again by Hoeffding’s inequality,
the probability that the number of elements in A which are not divisible by d is more than 20 times
larger than the number of elements in A∗ which are not divisible by d is at most exp(−(log n)3/800).
Thus, by the union bound, the probability that there exists d ∈ [2, n] such that there are at least (log n)3

elements in A which are not divisible by d and the number of elements in A which are not divisible by
d is at least 20 times larger than the number of elements in A∗ which are not divisible by d is at most
n exp(−(log n)3/800) < 1/4. Denote this latter event by E and assume from here on that A∗ has been
chosen so that |A|/9 ≥ |A∗| ≥ |A|/11 and E does not hold.

By Theorem 6.1, there exists d such that, for A′ = {x/d : x ∈ A∗, d|x}, we have |A′| ≥ |A∗| −
230(log n)3 − 230n

|A∗| and Σ[k](A′) contains an interval I of length at least n for k = 250n/h, where h = |A∗|.
Note that |A′| ≥ |A∗| − 230(log n)3− 230n

|A∗| ≥ |A
∗| − 240(log n)3, as |A∗| ≥ |A|11 ≥

n
22.22 logn . Since E does not

hold, there are at most 250(log n)3 elements in A which are not divisible by d.
Let A′′ = {x/d : x ∈ A \ A∗, d|x}. Since |A∗| ≤ |A|/9 and there are at most 250(log n)3 elements in A

which are not divisible by d, the size of A′′ is at least |A|−|A∗|−250(log n)3 ≥ 8|A|/9−250(log n)3 ≥ 0.87|A|.
Note that the smallest element of I is at most nk/d ≤ 250 n

h ·
n
d and each element in A′′ is at most n/d ≤ n.

Therefore, by Lemma 2.1, Σ[k+|A′′|](A′ ∪A′′) contains the interval [250 n
h ·

n
d ,
∑

x∈A′′ x). We have

∑
x∈A′′

x ≥ |A
′′|2

2
≥ |A|

2

2.7
≥ n2

12(log n)2

and
n

h
· n ≤ 30n(log n).

59



Hence, Σ(A) contains all multiples z of d with 260n(log n) ≤ z ≤ n2d
12(logn)2

. In particular, if m /∈ Σ(A),
then d - m. Thus, d ≥ snd(m). Recall that at most 250(log n)3 elements of A are not divisible by d.
Therefore, if d ≥ snd(m) + 1, then

|A| ≤ 250(log n)3 +
⌊n
d

⌋
≤ 250(log n)3 +

n

snd(m) + 1
<

n

snd(m)
− n

4snd(m)2
< s(n,m),

a contradiction. Thus, d = snd(m).
Since |A| ≥

⌊
n

snd(m)

⌋
+ snd(m)−1 and at most

⌊
n

snd(m)

⌋
elements in A are divisible by d, there exist at

least d− 1 elements in A which are not divisible by d. Let Ā be a set of d− 1 such elements. Note that Ā
is disjoint from {dx : x ∈ A′ ∪A′′}. By Lemma 5.8, Σd(Ā) contains a non-zero subgroup d′Zd of Zd. Since
d = snd(m), d′|m for any d′|d and d′ 6= d. Thus, there exists a subset of Ā whose sum y is congruent to
m modulo d. Furthermore, y is at most dn since |Ā| = d− 1 and all elements of Ā are at most n. Noting
that d ≤ 4 log n, we have m − y ≥ Cn(log n) − nd ≥ 260n(log n) for sufficiently large C. We also have
m− y ≤ m ≤ n2

12(logn)2
. Hence, m− y ∈ Σ({dx : x ∈ A′∪A′′}), so m ∈ Σ({dx : x ∈ A′∪A′′}∪ Ā). Thus, if

|A| ≥ s(n,m) + 1, then m ∈ Σ(A). Hence, g(n,m) ≤ s(n,m). Since we already noted in the introduction
that g(n,m) ≥ s(n,m), this completes the proof in this case.

Case 2. n2

12(logn)2
≤ m ≤

(
n+1

2

)
.

Let A ⊆ [n] be such that m /∈ Σ(A). Assume that

|A| ≥ 1 + max
(
s(n,m),

√
2m(1 + 250(log n)2/n1/3)

)
.

Let A∗ be a random subset of A where each element is chosen independently with probability n−1/3. By
Hoeffding’s inequality, 0.9|A|/n1/3 ≤ |A∗| ≤ 1.1|A|/n1/3 with high probability. As in the case above, we
can again define an event E , in this case that there exists d ∈ [2, n] such that there are at least n1/3(log n)2

elements in A which are not divisible by d and the number of elements in A which are not divisible by d
is at least 2n1/3 times larger than the number of elements in A∗ which are not divisible by d, and show
that it happens with probability at most 1/4. We now fix A∗ with 0.9|A|/n1/3 ≤ |A∗| ≤ 1.1|A|/n1/3 such
that E does not hold.

By Theorem 6.1, there exists d such that, for A′ = {x/d : x ∈ A∗, d|x}, we have |A′| ≥ |A∗| −
230(log n)3− 230n

|A∗| and Σ(A′) contains an interval I of length at least n. Note that |A| > s(n,m) ≥ n
2.02 logn ,

so |A∗| ≥ 0.9|A|
n1/3 ≥ 0.4n2/3

logn and |A′| ≥ |A∗| − 230(log n)3 − 230n
|A∗| ≥ |A

∗| − 240n1/3(log n). Since E does not
hold, there are at most 241n2/3(log n) elements of A which are not divisible by d.

Since |A| ≥ s(n,m) + 1, we must again have d ≤ snd(m). If d = snd(m), then, as above, we can find
at most d − 1 elements of A which are not divisible by d and whose sum is congruent to m modulo d.
If d < snd(m), then d|m. In either case, there is a (possibly empty) sum y of at most d − 1 elements
of A not divisible by d such that d|(m − y). Therefore, to show that m ∈ Σ(A), it suffices to show that
(m− y)/d ∈ Σ({x/d : x ∈ A, d|x}).

Note that Σ(A′) contains an interval I where the largest element of I is at most
∑

x∈A′ x ≤ 1.1n5/3/d

and each element in {x/d : x ∈ A\A∗, d|x} is at most n/d. By Lemma 2.1, Σ({x/d : x ∈ A, d|x}) contains
the interval [1.1n5/3/d,

∑
z∈A\A∗,d|z z/d]. The number of elements in A \A∗ which are divisible by d is at

least |A| − |A∗| − 241n2/3(log n) ≥ |A| − 1.1|A|/n1/3 − 241n2/3(log n) ≥ |A|(1− 242n−1/3(log n)2) >
√

2m.
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Hence, ∑
z∈A\A∗,d|z

z/d ≥
d
√

2me∑
i=1

i ≥ m.

Thus, Σ({x/d : x ∈ A, d|x}) contains (m − y)/d, since (m − y)/d ≥ (m − dn)/d > 1.1n5/3/d and
(m− y)/d < m.

Hence,
g(n,m) ≤ max

(
s(n,m),

√
2m(1 + 250(log n)2/n1/3)

)
.

Since g(n,m) ≥ s(n,m) and g(n,m) ≥ b
√

2mc as the interval [b
√

2mc − 1] does not have a subset sum
which equals m, we have

g(n,m) = max
(
s(n,m),

√
2m(1 +O((log n)2/n1/3))

)
,

completing the proof.
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A Supplementary results for Section 4

A.1 The growth rate of F

In Section 4, we consider a sequence of positive integers F = (fn)n≥1 which satisfies fn =
∑

i≤εn fi for all
n ≥ n0. Here we establish the asymptotic for F claimed in the introduction.

Claim A.1. Let F = (fn)n≥1 be a sequence of positive integers which satisfies fn =
∑

i≤εn fi for all

n ≥ n0. Then fn = exp
((

1
2 log(1/ε) + o(1)

)
(log n)2

)
.

Proof. We first show by induction that there is a constant C for which fn ≤ exp
(

1
2 log(1/ε)((log n)2 + C)

)
for all positive integers n, which would imply the upper bound in the claim. We can choose C sufficiently
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large so that this holds for all n ≤ max(n0, 10/ε). Let m > max(n0, 10/ε). If fn ≤ exp
(

(logn)2+C
2 log(1/ε)

)
for all

n ≤ m− 1, then

fm =
∑
i≤εm

fi ≤ εm · exp

(
1

2 log(1/ε)
((log(εm))2 + C)

)
= exp

(
1

2 log(1/ε)
((logm− log(1/ε))2 + C + 2 log(1/ε) log(εm))

)
≤ exp

(
1

2 log(1/ε)
((logm)2 + C)

)
,

completing the induction proof of the desired upper bound on fn.
We now turn to proving the desired lower bound on fn in the claim. Let C ′ = 100 log(1/ε). Let

g̃(x) = exp
(

(log x)2−C′ log x log log x
2 log(1/ε)

)
. Note that there is x0 > 0 depending only on ε such that (log x)2 −

C ′ log x log log x is increasing for all x ≥ x0. Let m(ε) be the least positive integer such that, for all
m ≥ m(ε),

εg̃(m) ≤ g̃(m− 1/ε)− g̃(x0/ε).

It is easy to verify that suchm(ε) exists. Let g(x) = exp
(

(log x)2−C′ log x log log x−C
2 log(1/ε)

)
, where C is a sufficiently

large constant to be chosen later. We next show by induction that, for an appropriate choice of C, fn ≥ g(n)

for all n ≥ 2. We choose C sufficiently large that the above claim holds for all n ≤ max(n0, x0,m(ε)). Let
m ≥ max(n0, x0,m(ε)). If fn ≥ g(n) for all n ≤ m− 1, then

fm =
∑
i≤εm

fi ≥
∑
i≤εm

g(i)

≥
∫ εm−1

x0

g(x)dx =

∫ m−1/ε

x0/ε
εg(εy)dy,

where in the last step we used the change of variable y = x/ε. Note now that

g′(y) = exp

(
1

2 log(1/ε)
((log y)2 − C ′ log y log log y − C)

)
· 2 log y − C ′ − C ′ log log y

2y log(1/ε)

≤ exp

(
1

2 log(1/ε)

[
(log y)2 − C ′ log y log log y − C − 2 log(1/ε) log y + 2 log(1/ε) log(log y/ log(1/ε))

])
.

Thus,

g′(y)/g(εy)

≤ exp

(
1

2 log(1/ε)

[
(log y)2 − C ′ log y log log y − C − 2 log(1/ε) log y + 2 log(1/ε) log(log y/ log(1/ε))

])
· exp

(
1

2 log(1/ε)

[
−(log(εy))2 + C ′ log(εy) log log(εy) + C

])
≤ exp

(
1

2 log(1/ε)

[
2 log(1/ε) log(log y/ log(1/ε)) + C ′ log(ε) log log y

])
≤ exp(−C ′(log log y)/4) ≤ ε2,
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where in the last inequality we used the fact that C ′ = 100 log(1/ε). Then

fm ≥
∫ m−1/ε

x0/ε
εg(εy)dy ≥

∫ m−1/ε

x0/ε

g′(y)

ε
dy ≥ g(m− 1/ε)− g(x0/ε)

ε
≥ g(m),

where in the last inequality we used the definition of m(ε) and the fact that m ≥ m(ε). This completes
the induction.

A.2 Proof of Lemma 4.4

In this subsection, we give the proof of Lemma 4.4, which is a key component in the proof of Theorem 4.3.
First, we recall the setting and the statement of the lemma. Let ε0 > 0 be a sufficiently small constant.
Let B = (bn)n≥1 be an ε-friendly sequence. For j sufficiently large, we choose aj to be a uniform random
integer in [bj , bj+1) which has no prime factor at most (max(1/ε, 1/ε0))4000 and let A = (aj)j≥1. For small
j, we choose aj to be an arbitrary integer in [bj , bj+1). We let h(i) be the smallest integer for which
bh(i) ≥ 2i and Ai = A ∩ [bh(i), bh(i+1)−1).

Lemma 4.4. There exist positive constants ε0, C1 and C2 such that the following holds. For i sufficiently
large, with positive probability, the set Ai has the property that, for any subset A′i ⊂ Ai with |A′i| ≥
(min(ε, ε0)/4)|Ai|, A′i contains a subset A′′i with |A′′i | ≤ C1i such that Σ(A′′i ) contains every integer in the
interval [y, 2y], where y = C22ii.

The proof of this lemma has been consigned to an appendix because of its similarity to the proof
of Lemma 2.8. Indeed, the difference between the two proofs consists mainly of minor modifications to
account for the non-uniformity in the distribution of the elements of Ai. However, for completeness, we
give the proof in full, beginning with the following lemma, which is the analogue of Lemma 3.1 in this
context.

Lemma A.2. For a sufficiently large positive constant C0, the following holds. Assume that ε > 0 is
sufficiently small. Let i be sufficiently large and let m be an integer in [2i, 2i+1) with no prime factor at
most ε−4000. If S is a uniformly chosen random subsequence of Ai of size C0i, then |Σm(S)| < 2i−2 with
probability less than ε1000C0i.

Proof. Let w = ε−4000. Denote by X the set of integers [bh(i), bh(i+1)−1) with no prime divisor at most w.
For each j ∈ [h(i), h(i+ 1)− 1), let Xj be the set of integers in [bj , bj+1) with no prime divisor at most w.
Let t = h(i + 1) − h(i) − 1, which is the number of intervals [bj , bj+1) in [bh(i), bh(i+1)−1). Note that for
each interval I of integers of sufficient length, the number of elements in the interval which are coprime to
all the primes at most w is (τ + o(1))|I|, where τ = φ(W )/W with W being the product of all primes at
most w. Since B is a friendly sequence, we have bj+1− bj ≤ (bj′+1− bj′)/c for all j ∈ [h(i)−1, h(i+ 1)−1]

and j′ ∈ [h(i), h(i+ 1)− 2]. Thus,

2i ≤ bh(i+1) − bh(i)−1 ≤ (1 + 2/(ct))(bh(i+1)−1 − bh(i)).

Since t tends to infinity as i tends to infinity, we have that bh(i+1)−1 − bh(i) ≥ 7
82i for sufficiently large i.

Hence, for large i, we have that

|X| ≥ 2iτ

2
. (25)
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Again by properties of friendly sequences, the length of the intervals [bj , bj+1) for j ∈ [h(i), h(i+1)−1) are
within a factor 1/c of each other and the minimum length of an interval [bj , bj+1) with j ∈ [h(i), h(i+1)−1)

tends to infinity as i tends to infinity. We thus obtain that all |Xj | with j ∈ [h(i), h(i+ 1)− 1) are within
a factor 2/c of each other for i sufficiently large. Hence,

|Xj | ≥
c|X|
2t

. (26)

Let D be the distribution of a random integer in [bh(i), bh(i+1)−1), where the probability that an element
a ∈ Xj is chosen is 1

|Xj |t . Observe that the random sequence S is a sequence of C0i random integers with
distribution D, subject to the condition that no two elements come from the same interval [bj , bj+1).

Let q = C0i. Let S = (s1, s2, . . . , sq). Let Sj = (s1, s2, . . . , sj) denote the sequence consisting of the
first j elements of S. Let δ = 1/w. Call j ∈ [2, q] bad if

• |Σm(Sj)| ≤ 3
2 |Σm(Sj−1)| and |Σm(Sj−1)| ≤ 2i

w or

• |Σm(Sj)| ≤ (1 + δ)|Σm(Sj−1)| and 2i

w < |Σm(Sj−1)| < 2i−2.

The following two claims will allow us to complete the proof of the lemma.

Claim 1. The probability that j is bad conditioned on the choice of Sj−1 is at most p := 16
cwτ .

Claim 2. If |Σm(S)| < 2i−2, then all but fewer than 2i integers in [2, q] are bad.

Assuming Claim 1, for any B ⊂ [2, q], the probability that all elements in B are bad is at most p|B|.
By Merten’s third theorem, we have τ = (e−γ + o(1))/ logw ≥ 1/(2 logw) for sufficiently small ε, so

p ≤ 32 logw

cw
. (27)

From Claim 2, if |Σm(S)| < 2i−2, then there is a set B of q − 2i integers i ∈ [2, q] which are bad. Taking
a union bound over all such choices of B, the probability that |Σm(S)| < 2i−2 is at most(

q

q − 2i

)
p|B| =

(
q

2i

)
p|B| < (eC0)2i

(
32 logw

cw

)C0i−2i

< ε1000C0i,

where in the first inequality we used (27) and in the second inequality we assume a sufficiently large choice
of C0 and note that w = ε−4000 with ε sufficiently small.

To complete the proof, it remains to verify Claims 1 and 2.

Proof of Claim 1. Fix Sj−1 = (s1, . . . , sj−1). Conditioned on this choice of Sj−1, we bound the probability
that j is bad. Let T be the set of k such that [bk, bk+1) contains at least one of s1, . . . , sj−1. Observe that
conditioned on s1, . . . , sj−1, the distribution of sj is supported on

⋃
k∈[h(i),h(i+1)−1)\T Xk and, for xk ∈ Xk

with k ∈ [h(i), h(i+ 1)− 1) \ T , the conditional probability that sj is equal to xk is

1

|Xk|(t− |T |)
≤ 2

|Xk|t
≤ 4

c|X|
,

where we used (26).
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If |Σm(Sj−1)| ≥ 2i−2, then j cannot be bad (so the event that j is bad has probability zero). We may
therefore restrict attention to the two cases |Σm(Sj−1)| ≤ 2i/w and 2i/w < |Σm(Sj−1)| < 2i−2.

For the first case, note, by Lemma 2.6, that the number of s with |Σm(Sj−1 ∪ {s})| ≤ 3
2 |Σm(Sj−1)|

is at most |Σm(Sj−1)|2
|Σm(Sj−1)|/2 = 2|Σm(Sj−1)|. Therefore, if |Σm(Sj−1)| ≤ 2i/w, the probability that j is bad

conditioned on Sj−1 is at most

2|Σm(Sj−1)| · 4

c|X|
≤ 16

cwτ
= p,

where in the inequality we used (25).
Suppose now that 2i/w < |Σm(Sj−1)| < 2i−2. For a positive integer D, let GD be the set of s such that

|Σm(Sj−1 ∪{s})| ≤ |Σm(Sj−1)|+D. Let d = bδ|Σm(Sj−1)|c, so j is bad in this case if and only if sj ∈ Gd.
Let k = b 1

2δ c, so kd ≤ |Σm(Sj−1)|/2. By Lemma 2.7, kGd ⊆ Gkd, so |kGd| ≤ |Gkd| ≤ 2|Σm(Sj−1)| < 2i−1,
where the middle inequality is again by the consequence of Lemma 2.6 noted above.

If |Gd| ≤ m
w , then |Gd| ≤

m
w ≤

2i+1

w = 2δ2i. Otherwise, |Gd| > m
w . In this case, since m has no prime

divisor at most w, no subgroup of Zm has size larger than m
w . Thus, Gd cannot be contained in a coset of

a non-trivial subgroup. By Lemma 2.3, since |kGd| ≤ 2i−1 < m, we must have |kGd| ≥ (k + 1)|Gd|/2 ≥
|Gd|/(4δ). Hence, |Gd| ≤ 4δ|kGd| ≤ 4δ2i−1 = 2δ2i. Thus, in either case, conditioned on the choice of
Sj−1, the probability that j is bad, which is the same as the probability that sj ∈ Gd, is at most

|Gd| ·
4

c|X|
≤ 16δ

cτ
= p,

where we again used (25).

Proof of Claim 2. As Sj−1 ⊂ Sj for j ∈ [2, q], Σm(Sj−1) ⊂ Σm(Sj) and, hence, 1 ≤ |Σm(S1)| ≤ · · · ≤
|Σm(Sq)| = |Σm(S)| < 2i−2. Therefore, the number of j which are not bad with |Σm(Sj−1)| ≤ 2i/w

and |Σm(Sj)| ≥ 3
2 |Σm(Sj−1)| is at most log3/2 2i = i log 2

log(3/2) , as we get a factor of 3/2 for each such

j. Moreover, since (1 + δ)δ
−1 log2 w ≥ 2log2 w = w, the number of elements j which are not bad with

2i−2 > |Σm(Sj−1)| > 2i/w and |Σm(Sj)| ≥ (1 + δ)|Σm(Sj−1)| is at most δ−1 log2w = w log2w, as we
get a factor of 1 + δ for each such j. Therefore, the number of j ∈ [2, q] which are not bad is at most
i log 2

log(3/2) + w log2w < 2i for sufficiently large i.

We are now ready to prove Lemma 4.4.

Proof of Lemma 4.4. By replacing ε with min(ε, ε0), we only need to prove Lemma 4.4 for ε ≤ ε0. Thus,
by choosing ε0 sufficiently small, it suffices to prove that the following holds for sufficiently small ε. If i
is sufficiently large, then any subset A′i of Ai with |A′i| ≥ (ε/4)|Ai| contains a subset A′′i with |A′′i | ≤ C1i

such that Σ(A′′i ) contains every integer in the interval [y, 2y], where y = C22ii.
For a given C1 and i sufficiently large, we have that |Ai| ≥ 400ε−1C1i. Consider a random partition

of Ai into subsets of size 4ε−1C1i and consider a uniform random ordering of each subset as a sequence of
integers. Let the obtained sequences be Ai,1, . . . , Ai,u.

We will show that for an appropriate choice of C1, there exists a positive constant C2 such that, with
positive probability, the following event E holds. For all k ≤ u and all subsequences A′i,k of Ai,k of size
(ε/4)|Ai,k|, Σ(A′i,k) contains the interval [y, 2y] for y = C22ii.

Fix k ≤ u and fix a subset I ′ of [4ε−1C1i] of size C1i. Let A′i,k be the subsequence of Ai,k consisting
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of elements with index in I ′. Let ` be a constant to be chosen later. We partition I ′ into a subset I ′′

of size 7C1i/8 and ` subsets I ′′k,1, . . . , I
′′
k,` of equal size such that each subset in the partition consists of

consecutive terms from I ′. Let A′′i,k be the elements with index in I ′′ and, for each j ∈ [`], let Sk,j be the
elements with index in I ′′k,j . Let J ′k,j be the first |I ′′k,j |/2 elements of I ′′k,j and let J ′′k,j be the remaining
elements. Let S′k,j be the elements with index in J ′k,j and let S′′k,j be the elements with index in J ′′k,j . Then
S′k,j has the same distribution as a random subsequence of Ai of length |Sk,j |/2. We choose C1 = 16`C0, so
that |S′k,j | = C0i, where C0 is the constant defined in Lemma A.2. By Lemma A.2 and a union bound, we
have that |Σm(S′k,j)| ≥ 2i−2 for all m ∈ [2i, 2i+1) with no prime factor at most ε−4000 with probability at
least 1−2iε1000C0i > 1− ε800C0i, assuming that ε is sufficiently small. Thus, by another union bound, with
probability at least 1− `ε800C0i, |Σm(S′k,j)| ≥ 2i−2 for all j ≤ ` and all m ∈ S′′k,j . By repeated application
of Lemma 2.5, we have that

|Σ(Sk,j)| = |Σ(S′k,j ∪ S′′k,j)| ≥ |S′′k,j |2i−2 ≥ 1

16
2i|A′i,k|/(4`).

We also have that Σ(Sk,j) is a subset of the interval [0, 2i|A′i,k|/(4`)]. Furthermore, Σ(Sk,j) is not contained
in any arithmetic progression with common difference greater than 1, as otherwise there exists 1 < d ≤ 16

such that all elements of Sk,j are divisible by d, contradicting the fact that elements of Ai do not have
prime factors at most ε−4000. Thus, choosing ` = 33, by Lemma 2.2, we have that Sk,1 + . . .+Sk,` contains
an interval of length at least 2i|A′i,k|/(4`). Hence, Σ(A′i,k \A′′i,k) contains an interval [a, b] of length at least
2i|A′i,k|/(4`) > 2i+1. Note that a < b ≤ 2i−2|A′i,k|. By Lemma 2.1, we then have that Σ(A′i,k) contains the
interval [a, b+

∑
x∈A′′i,k

x] ⊃ [y, 2y] for y = 1
42i|A′i,k| =

C1
4 2ii. Let C2 = C1

4 .
By taking a union bound over all possible choices of I ′, the probability that there exists a subsequence

A′i,k of Ai,k of size (ε/4)|Ai,k| such that Σ(A′i,k) does not contain the interval [y, 2y] for y = C22ii is at
most

( |Ai,k|
(ε/4)|Ai,k|

)
`ε800C0i. By a union bound over all k ≤ u, we then obtain that the event E holds with

probability at least

1− u
(
|Ai,k|

(ε/4)|Ai,k|

)
`ε800C0i ≥ 1− 2i+7(4e/ε)C1iε800C0i ≥ 1− ε200C0i > 0,

where we used that ε is sufficiently small, C1 = 16`C0 with C0 sufficiently large, ` = 33 and u ≤ 2i+1.
Assume now that the event E holds. For any subset A′i of Ai such that |A′i| ≥ (ε/4)|Ai|, there exists

k ≤ u such that |A′i ∩ Ai,k| ≥ (ε/4)|Ai,k|. Thus, defining A′′i to be an arbitrary subset of A′i ∩ Ai,k of size
(ε/4)|Ai,k| = C1i, we have that Σ(A′′i ) contains the interval [y, 2y] for y = C22ii, as required.

B Supplementary results for Section 5

B.1 Number-theoretic estimates

This short section contains the proofs of some number-theoretic estimates which were used in Section 5.
We will need the following simple lemma.
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Lemma B.1. One has

m

ζ(2)φ(m)
≤
∏
p|m

(
1 +

1

p

)
≤
∑
u|m

1

u
≤
∏
p|m

(
1 +

1

p− 1

)
=

m

φ(m)
.

Proof. By considering the squarefree divisors of m, we have

∑
u|m

1

u
≥
∏
p|m

(
1 +

1

p

)
.

On the other hand, ∑
u|m

1

u
≤
∏
p|m

(
1 +

1

p
+

1

p2
+ · · ·

)
=
∏
p|m

(
1 +

1

p− 1

)
.

Furthermore,

∏
p|m

(
1 +

1

p

)
=
∏
p|m

(
1 +

1

p− 1

)
·
∏
p|m

(
1− 1

p2

)
=

m

φ(m)

∏
p|m

(
1− 1

p2

)
≥ m

ζ(2)φ(m)
.

Our first aim is to prove Lemma 5.2, which gives upper and lower bounds on the number of integers
in an interval with certain number-theoretic properties. The following lemma, of a similar flavor, is a
key component in the proof. Recall that W (r) =

∏r
i=1 pi, where pi is the ith prime, and τ(r,m) =

φ(W (r)m)/(W (r)m) =
∏
p|W (r)m(1− 1/p).

Lemma B.2. Let r, n and m be positive integers such that m ∈ [n,
(
n
2

)
], r ≤ n and r is sufficiently large.

For any interval I = [x, 2x) with x ≥ n1/6, the number of integers in I which are coprime to W (r)m is at
most 8τ(r,m)x. If also x ≥ r1.5, then the number of integers in I which are coprime to W (r)m is at least
1
4τ(r,m)x.

Proof. By [32, Theorem 7.11], for each interval I = [x, 2x) with x ≥ pr/2, the number of integers in I

which are coprime toW (r) is at most (1+o(1)) x
log pr

≤ 2τ(r, 1)x, where we used that pr = (1+o(1))r log r

and (31). For x < pr/2, the number of integers in I which are coprime to W (r) is 0 < 2τ(r, 1)x. If also
x ≥ r1.5 > pr, then the number of integers in I which are coprime to W (r) is at least

(
1
2 − o(1)

)
x

log pr
≥

1
2τ(r, 1)x, again using (31).

Consider the case r ≥ (logm)/100. Then τ(r, 1) ≤ 1/ log r ≤ 4τ(r,m) by (31) and (34), so the number
of integers in I which are coprime to W (r)m is at most 8τ(r,m)x. For x ≥ r1.5, we have seen that there
are at least 1

2τ(r, 1)x integers in I which are coprime to W (r). For each prime factor p of m that is
larger than pr > r, the number of integers in I divisible by p and coprime to W (r) is the same as the
number of integers in [x/p, 2x/p) coprime to W (r), which is at most 2τ(r, 1)x/p. Since there are at most
(logm)/(log r) such prime factors, the number of integers in I which are coprime to W (r)m is at least

1

2
τ(r, 1)x− logm

log r
· 2τ(r, 1)x

r
≥ 1

2
τ(r, 1)x− 200rτ(r, 1)x

r log r

> τ(r,m)x/4,

where, in the first inequality, we used the assumption r ≥ (logm)/100 and, in the second inequailty, we
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used that r is sufficiently large and τ(r,m) ≤ τ(r, 1) by (30).
Next, consider the case r < (logm)/100. By the inclusion-exclusion principle, the number of integers

in I = [x, 2x) which are coprime to W (r)m is

x+
M∑
k=1

(−1)k
∑

p1<p2<···<pk,
p1,p2,...,pk|W (r)m

x

p1p2 · · · pk
+O(2M ),

which is within an additive O(2M ) of x
∏
p|W (r)m(1− 1/p), where M is the number of distinct primes that

divide W (r)m. Since M ≤ r + 2(logm)/(log logm) < (log n)/10 and x ≥ n1/6, the number of integers in
I coprime to W (r)m is at least 1

2τ(r,m)x and at most 2τ(r,m)x.

Lemma 5.2. Let r, n and m be positive integers such that m ∈ [n,
(
n
2

)
], r ≤ n and r is sufficiently

large. For any interval I = [x, 2x) with x ≥ n1/4, there are at most 8(m/φ(m))τ(r,m)x integers in I of
the form qu, where u|m, u ≤ x1/16 and q is coprime to W (r)m. If also x ≥ r2, then there are at least
1
8(m/φ(m))τ(r,m)x integers in I of this form.

Proof. Observe that for x ≥ n1/4 and each fixed u|m with u ≤ x1/16, Lemma B.2 implies that the number
of integers in I of the form qu where q is coprime to W (r)m, which is the same as the number of integers
in [x/u, 2x/u) which are coprime to W (r)m, is at most 8τ(r,m)x/u, where we used that x/u ≥ n1/6. If
also x ≥ r2, then Lemma B.2 similarly implies that the number of integers in I of the form qu where q is
coprime to W (r)m is at least 1

4τ(r,m)x/u, where we used that x/u ≥ r1.5.
Hence, the number of integers in I of the form qu, where u|m, u ≤ x1/16 and q is coprime to W (r)m,

is at least

1

4
τ(r,m)

∑
u|m,u≤x1/16

x

u
≥ 1

4
τ(r,m)

∑
u|m

1

u
− σ(m)

x1/16

x

≥ 1

4
τ(r,m) · m

2φ(m)
x

≥ 1

8
(m/φ(m))τ(r,m)x,

where σ(m) is the number of positive divisors of m, which is smaller than m1/100 for m sufficiently large,
and we used Lemma B.1 in the second inequality. Similarly, the number of integers in I of the form qu,
where u|m, u ≤ x1/16 and q is coprime to W (r)m, is at most

8τ(r,m)
∑

u|m,u≤x1/16

x

u
≤ 8(m/φ(m))τ(r,m)x,

where we again used Lemma B.1.

We now prove Lemma 5.9, which gives an upper bound on the number of integers in an arithmetic
progression which are coprime to W (r)/ gcd(W (r),m). The proof employs the Selberg sieve.

Lemma 5.9. Let r and n be sufficiently large positive integers and m ∈ [n,
(
n
2

)
]. Let X be an arithmetic

progression of size |X| ≥ r1/16 with common difference b ≤ n. Then the number of elements of X which
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are coprime to W (r)/ gcd(W (r),m) is at most

256|X| log logn

log r
.

Furthermore, when b = 1, the number of elements of X which are coprime to W (r)/ gcd(W (r),m) is at
most

256|X|
∏

p|W (r),p-m

(1− 1/p).

Proof. First, we prove the lemma in the case where the elements of the arithmetic progression are coprime
to b. By the Selberg sieve [32, Theorem 3.8], applied with q = b and P = W (r)/ gcd(W (r), bm), which
is coprime to b, the number of integers coprime to W (r)/ gcd(W (r), bm) contained in any arithmetic
progression of length k ≥ r1/16 and common difference b is at most

2k
∏

p|(W (r)/ gcd(W (r),bm)), p≤
√
k

p− 1

p
≤ 2k

∏
p|(W (r)/ gcd(W (r),bm)), p≤r1/32

p− 1

p
.

Since each prime p ≤ r1/32 < r is either a divisor of gcd(W (r), bm) or a divisor of W (r)/ gcd(W (r), bm),
for r sufficiently large, we have that ∏

p| gcd(W (r),bm)

p− 1

p

 ·
 ∏
p|(W (r)/ gcd(W (r),bm)), p≤r1/32

p− 1

p

 ≤ ∏
p≤r1/32

p− 1

p
≤ 32

log r
,

where we used Mertens’ third theorem. Since W (r)/ gcd(W (r), bm) |W (r)/ gcd(W (r),m), the number of
integers coprime to W (r)/ gcd(W (r),m) contained in any arithmetic progression of length k ≥ r1/16 and
common difference b is at most ∏

p| gcd(W (r),bm)

p

p− 1

 · 64k

log r
=

gcd(W (r), bm)

φ(gcd(W (r), bm))
· 64k

log r
, (28)

assuming that the elements of the arithmetic progression are coprime to b.
If the elements of X are not coprime to b, let d be the greatest common divisor of b and the ele-

ments of X. Let Y = {x/d : x ∈ X}. Then Y is an arithmetic progression of size |X| and common
difference b/d whose elements are coprime to b/d. Furthermore, the number of elements of X coprime to
W (r)/ gcd(W (r),m) is at most the number of elements of Y coprime to W (r)/ gcd(W (r),m). By (28),
the number of elements of Y coprime to W (r)/ gcd(W (r),m) is at most

gcd(W (r), bm/d)

φ(gcd(W (r), bm/d))
· 64|Y |

log r
≤ gcd(W (r), bm)

φ(gcd(W (r), bm))
· 64|X|

log r
,

where we used that

gcd(W (r), bm/d)

φ(gcd(W (r), bm/d))
=

∏
p| gcd(W (r),bm/d)

p

p− 1
≤

∏
p| gcd(W (r),bm)

p

p− 1
=

gcd(W (r), bm)

φ(gcd(W (r), bm))
.
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Thus, for any arithmetic progression X with common difference b, the number of integers coprime to
W (r)/ gcd(W (r),m) in X is at most

gcd(W (r), bm)

φ(gcd(W (r), bm))
· 64|X|

log r
. (29)

The first claim in the lemma follows immediately upon noticing that bm ≤ n3, so gcd(W (r),bm)
φ(gcd(W (r),bm)) <

2 log log(bm) < 4 log log n.
The second claim in the lemma follows from (29) by observing that when b = 1,

φ(gcd(W (r), bm))

gcd(W (r), bm)
· log r ≥

∏
p| gcd(W (r),m)

p− 1

p
· 1

2τ(r, 1)

=
1

2

∏
p| gcd(W (r),m)

p− 1

p

∏
p|W (r)

p

p− 1

=
1

2

∏
p|W (r),p-m

(1− 1/p)−1,

where we used (31) in the first inequality.

B.2 Further estimates for Subsection 5.1

In this subsection, we collect several important estimates that are used throughout Subsection 5.1. To
this end, let n be a sufficiently large positive integer and m ∈ [n,

(
n
2

)
]. For a positive integer ρ, recall that

W (ρ) =
∏ρ
i=1 pi and τ(ρ,m) = φ(W (ρ)m)/(W (ρ)m) =

∏
p|W (ρ)m(1 − 1/p). We define ρ(n,m) to be the

smallest positive integer ρ such that
ρ/τ(ρ,m) ≥ n2/φ(m).

Note that ρ/τ(ρ,m) is increasing as a function of ρ and

m

φ(m)
· W (ρ)

φ(W (ρ))
≥ 1

τ(ρ,m)
≥ max

(
m

φ(m)
,
W (ρ)

φ(W (ρ))

)
. (30)

For sufficiently large ρ, we have, by Mertens’ third theorem, that

1

τ(ρ, 1)
=

W (ρ)

φ(W (ρ))
∈ [1.6 log ρ, 1.8 log ρ]. (31)

Thus,

τ(ρ,m) ≥ φ(m)/m

2 log ρ
. (32)

Hence, for ρ sufficiently large with ρ ≤ n,

1

τ(ρ,m)
≤ 4 log ρ log logm ≤ 8 log n log log n. (33)
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Furthermore, for ρ ≥ 10 logm/ log logm, noting that m has at most 2 logm/ log logm distinct prime
factors larger than 10 logm/ log logm, we have

∏
p|m,p>pρ

(1− 1/p)−1 ≤
(

1− log logm

10 logm

)−2 logm/ log logm

≤ 2,

so
1

τ(ρ,m)
∈ [log ρ, 4 log ρ]. (34)

The next claim gives the order of ρ(n,m) when m ≤ n2/(log n)2.

Claim B.3. For m ≤ n2/(log n)2,

ρ(n,m) = Θ

(
n2/φ(m)

log(n2/φ(m))

)
.

Proof. Since m ≤ n2/(log n)2, we have n2/φ(m) > n2/m ≥ (log n)2. Moreover, if ρ is a positive integer
such that ρ < 10 logm/ log logm, then, by (33), we have that

ρ/τ(ρ,m) ≤ 10 logm

log logm
· 4 log ρ log logm < (log n)2 < n2/φ(m).

Thus, we must have ρ(n,m) ≥ 10 logm/ log logm.
If now ρ is a positive integer such that ρ ≥ 10 logm/ log logm, we have τ(ρ,m)−1 ∈ [log ρ, 4 log ρ] by

(34). Therefore, if ρ ≥ 16 n2/φ(m)
log(n2/φ(m))

, then, by monotonicity of ρ 7→ ρ
τ(ρ,m) ,

ρ

τ(ρ,m)
≥

16 n2

φ(m) · log
(

16n2/φ(m)
log(n2/φ(m))

)
log(n2/φ(m))

≥ 8
n2

φ(m)

and so ρ(n,m) ≤ 16 n2/φ(m)
log(n2/φ(m))

. On the other hand, if 10 logm/ log logm ≤ ρ ≤ 1
16

n2/φ(m)
log(n2/φ(m))

, then

ρ

τ(ρ,m)
≤

n2

φ(m) · 4 log
(

n2/φ(m)
16 log(n2/φ(m))

)
16 log(n2/φ(m))

≤ 1

4

n2

φ(m)

and so ρ(n,m) ≥ 1
16

n2/φ(m)
log(n2/φ(m))

, as required.

Recall that ψ(n,m) = m1/3(m/φ(m))

(logn)1/3(log logn)2/3
and R(n,m) = min (ψ(n,m), ρ(n,m)). Using Claim B.3, it

is easy to show that R(n,m) = Θ (ψ(n,m)) when m = O
(
n3/2(log logn)1/2

(logn)1/2

)
and R(m,n) = Θ(ρ(n,m))

when m = Ω
(
n3/2(log logn)1/2

(logn)1/2

)
.

Recall that in Subsection 5.1, we define r = cR(n,m) for a sufficiently small absolute constant c. The
next claim establishes the existence of the integer y used in Lemma 5.1.

Claim B.4. Let n and m ∈ [n,
(
n
2

)
] be positive integers such that n and ρ(n,m) are sufficiently large. Let
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r = cR(n,m), where c > 0 is sufficiently small. Then there exists an integer y < n/2 with

m ∈
[
y2(m/φ(m))τ(r,m)

25r
,
y2(m/φ(m))τ(r,m)

15r

]
.

Moreover, one may choose y such that
y ≥ max(r2, n3/5) (35)

and
64(m/φ(m))τ(r,m)

y

r log r
> n1/4. (36)

Proof. We consider the cases n ≤ m ≤ n3/2(log logn)1/2

(logn)1/2
and n3/2(log logn)1/2

(logn)1/2
< m ≤

(
n
2

)
separately.

Case 1: n ≤ m ≤ n3/2(log logn)1/2

(logn)1/2
.

In this case, we have n1/3

(logn)2/3
≤ r ≤ cCm1/3(m/φ(m))

(logn)1/3(log logn)2/3
, where C is some absolute constant independent

of all other parameters. Since r ≥ n1/3

(logn)2/3
, by (34), we have 1/τ(r,m) ∈ [log r, 4 log r]. We also have

√
mr log r

m/φ(m)
≤

√
cCm4/3 log n

(log n)1/3(log log n)2/3
≤ n
√
cC.

Thus, for sufficiently small c, there exists an integer y such that y <
√

25mr
(m/φ(m))τ(r,m) < n

2 and y >√
15mr

(m/φ(m))τ(r,m) . This integer y then satisfies y < n/2 and

m ∈
[
y2(m/φ(m))τ(r,m)

25r
,
y2(m/φ(m))τ(r,m)

15r

]
.

Furthermore, we have
r3(m/φ(m))

m(log n)
≤ (cC)3m(m/φ(m))4

m(log n)2(log log n)2
< 1/2. (37)

Since r ≥ n1/3

(logn)2/3
> n3/10, we also have

y >

√
15mr log r

m/φ(m)
>

√
mr log n

m/φ(m)
> r2 > n3/5,

where we used (37) in the third inequality.

Case 2: n3/2(log logn)1/2

(logn)1/2
< m ≤

(
n
2

)
.

In this case, we have cC−1ρ(n,m) ≤ r ≤ cCρ(n,m), where C is again an absolute constant and we
assume that ρ(n,m) is sufficiently large. By the definition of ρ(n,m),√

mr/τ(r,m)

m/φ(m)
≤

√
2cCmn2/φ(m)

m/φ(m)
≤ n
√

2cC.

Thus, for sufficiently small c, there exists an integer y such that y <
√

25mr
(m/φ(m))τ(r,m) < n

2 and y >
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√
15mr

(m/φ(m))τ(r,m) . This integer y then satisfies y < n/2 and

m ∈
[
y2(m/φ(m))τ(r,m)

25r
,
y2(m/φ(m))τ(r,m)

15r

]
.

If n3/2(log logn)1/2

(logn)1/2
< m < n7/4, we have ρ(n,m) ≥ n1/8, so τ(ρ(n,m),m) ≤ 1/ log ρ(n,m) ≤ 10/ log n

by (34). Using this, we obtain

φ(m)2 ≥ m2

4(log logm)2
≥ n3

16(log log n)(log n)
≥ 4τ(ρ(n,m),m)2n3.

If m ≥ n7/4, we also easily have

τ(ρ(n,m),m)2n3 ≤ n3 ≤ 1

4
φ(m)2.

Since ρ(n,m)
τ(ρ(n,m),m) ∈ [ n2

φ(m) ,
2n2

φ(m) ] by the definition of ρ(n,m), we obtain ρ(n,m) ≤
√
n in both ranges

n3/2(log logn)1/2

(logn)1/2
< m < n7/4 and n7/4 ≤ m ≤

(
n
2

)
. Moreover, since r ≥ cC−1ρ(n,m),

τ(r,m) = τ(ρ(n,m),m)
∏

i∈(r,ρ(n,m)],pi-m

(1− 1/pi)
−1 ≤ 1.8 log ρ(n,m)

1.6 log r
τ(ρ(n,m),m) ≤ 25τ(ρ(n,m),m),

where we used that ρ(n,m) is sufficiently large. Hence,

y ≥
√

mr

25(m/φ(m))τ(r,m)
≥
√
cC−1

25

√
mρ(n,m)

(m/φ(m))τ(ρ(n,m),m)
≥ n
√
cC−1

25
≥ c2C2ρ(n,m)2 ≥ r2, (38)

where we used the definition of ρ(n,m), the bound ρ(n,m) ≤
√
n and assumed c is sufficiently small.

Furthermore, from (38), for n sufficiently large, we have

y ≥ n
√
cC−1

25
> n3/5.

Thus, in both Case 1 and Case 2, there exists a choice of y < n/2 with

m ∈
[
y2(m/φ(m))τ(r,m)

25r
,
y2(m/φ(m))τ(r,m)

15r

]
such that (35) also holds. Moreover, (36) holds, since

64(m/φ(m))τ(r,m)
y

r log r
≥ 32y1/2

(log n)2
> n1/4,

where we used that y ≥ max(r2, n3/5), log r ≤ log n and, by (32), (m/φ(m))τ(r,m) ≥ 1
2 log r ≥

1
2 logn .
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