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Abstract

We develop novel techniques which allow us to prove a diverse range of results relating to subset sums
and complete sequences of positive integers, including solutions to several longstanding open problems.
These include: solutions to the three problems of Burr and Erdés on Ramsey complete sequences, for
which Erdés later offered a combined total of $350; analogous results for the new notion of density
complete sequences; the solution to a conjecture of Alon and Erddés on the minimum number of colors
needed to color the positive integers less than n so that n cannot be written as a monochromatic sum;
the exact determination of an extremal function introduced by Erd&s and Graham on sets of integers
avoiding a given subset sum; and, answering a question reiterated by several authors, a homogeneous

strengthening of a seminal result of Szemerédi and Vu on long arithmetic progressions in subset sums.

1 Introduction

Many of the most famous problems and results in mathematics concern the representation of positive
integers as the sum of elements from a sparse sequence. For example, the long open Goldbach conjecture
states that every even integer at least four is the sum of two primes, while Vinogradov’s theorem states that
every sufficiently large odd integer is the sum of three primes (and was recently extended by Helfgott [28§]
to cover all odd integers at least seven). Some other notable results of this type include Lagrange’s four-
square theorem that every positive integer is the sum of four squares, Gauss’ Eureka theorem that every
positive integer is the sum of three triangular numbers and the Hilbert—Waring theorem.

While these problems concern the representation of integers as the sum of a bounded number of terms
from a particular sequence, there are many results and open problems which do not stipulate a bound
on the number of terms. A prominent example of such a result is a theorem of Szemerédi and Vu [40)],
confirming an old conjecture of Erdés [14], which says that there is a constant C' such that if A = (a,)02,
is an infinite increasing sequence of integers with |AN[n]| > C'y/n for all sufficiently large n which intersects
every infinite arithmetic progression of integers, then we can represent any sufficiently large integer as a
sum of distinct terms from the sequence. In this paper, we develop general methods which solve many

open problems of precisely this type.
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To be more precise, given a set or a sequence A of integers, we define the set of subset sums ¥(A) to

be the set of all integers representable as a sum of distinct elements from A. That is,

E(A)_{ZS:SQA}.

seS

Our contribution then is to solve several open problems on conditions which guarantee that ¥(A) contains
either a particular integer or all sufficiently large integers. In particular, we answer several old questions of
Burr and Erdés [9] on the density of so-called Ramsey complete sequences, for whose solution Erdgs [19]
later offered $350. We also solve a conjecture of Alon and Erdds [2] on the minimum number of colors
needed to color the positive integers less than n so that n cannot be written as a monochromatic sum and
determine exactly the answer to an extremal question first studied by Alon, Erdés and Graham [11 [18] on
the maximum size of a set avoiding a particular subset sum. Finally, answering a question reiterated by
several groups of authors, including Erdds and Sarkozy [22], Sarkozy [36] and Tran, Vu, and Wood [42],
we prove a homogeneous strengthening of another result of Szemerédi and Vu [40] from which the Erdés
conjecture mentioned above was derived.

What unites these seemingly disparate topics is a common proof framework that allows us to show the

existence of a long interval in the set of subset sums of an integer set S. This framework has several steps:

(i) We partition S into ¢ parts Si, ..., Sy of roughly equal size for an appropriate choice of £.

(ii) We further partition each part S; into two parts S/ and S/’ of appropriate size and show that, for

any s € S!, the set of subset sums of S] modulo s is large.
(iii) Using step (ii), we show that X(S;) = X(S; U S/) is dense in some long interval.
(iv) Using step (iii), we show that X(S) = ¥(S1 U--- U Sy) contains a long interval.

Step (ii) is the heart of the method and must be appropriately tailored to each application, drawing
variously on the probabilistic method, on structural results from additive number theory and on estimates
from analytic number theory. We will say more about our methods in Section [2] For now, we will focus

on describing our main results, along with several extensions, variations and applications, in more detail.

1.1 Ramsey completeness and density completeness

We say that a sequence of positive integers A is complete if every sufficiently large positive integer is in
Y(A) and entirely complete if every positive integer is in X(A). For example, the powers of two are entirely
complete, while the powers of three are incomplete. A far less simple example, due to Birch [6], is that
the sequence {piqj : 4,7 > 0} is complete whenever p,q > 2 are coprime integers. For more on the rich
history of complete sequences (and some open problems), we refer the interested reader to |10} 21].

Our starting point here is with the observation that the completeness property can be surprisingly
fragile. Indeed, removing any element from the powers of two turns an entirely complete sequence into
an incomplete one. For this reason, Burr and Erdés [8, O] began the study of more robust notions of

completeness. We will be concerned with two such notions here, namely, robustness under partitioning,



known as Ramsey completeness in the literature, and robustness under taking subsets, a new concept

which we refer to as density completeness.

1.1.1 Ramsey completeness

Following Burr and Erdds [9], we say that a sequence of positive integers A is r-Ramsey complete if,
whenever the sequence is partitioned into r classes Ay, As, ..., A,, every sufficiently large positive integer
is in |J;_; 3(A;) and entirely r-Ramsey complete if every positive integer is in (J;_, X(A4;). Equivalently, A
is entirely r-Ramsey complete if, for any coloring of A using r colors, every positive integer can be written
as a monochromatic subset sum.

In their paper introducing these concepts, Burr and Erdés [9] constructed an entirely 2-Ramsey com-
plete sequence A with the property that [AN[n]| < Clog®n for all n, where C is an absolute constant. In
the other direction, they were able to show that there is a constant ¢ > 0 for which there is no 2-Ramsey
complete sequence with |A N [n]| < clog?n for all sufficiently large n. They also asked whether it might
be possible to narrow the gap between these two estimates and Erddgs [19] later offered $100 for such an
improvement.

For r > 3, the results of Burr and Erdds clearly imply that there is no r-Ramsey complete sequence with
|A N [n]| < clog?n for all sufficiently large n. However, even for r = 3, they were unable to construct an
r-Ramsey complete sequence with |AN[n]| = n°). Given the lack of progress on this problem, Erdés [19]
later offered $250 for any non-trivial result. Our first theorem solves both this problem and that above
at once, by determining the growth rate of the sparsest possible r-Ramsey complete sequence up to an

absolute constant factor.

Theorem 1.1. There is a constant C' such that, for every integer r > 2, there is an r-Ramsey complete
sequence A with |A N [n]| < Crlog?n for all n. Furthermore, there is a constant ¢ > 0 such that no

sequence A with |AN [n]| < erlog®n for all sufficiently large n is r-Ramsey complete.

Note that the lower bound, that is, the statement that there is a constant ¢ > 0 such that no sequence
A with |A N [n]| < erlog®n for all sufficiently large n is r-Ramsey complete, already improves on Burr
and Erdés’ result, which had no dependency on r. We note also that a standard compactness argument
implies that if A is an r-Ramsey complete sequence, then there is n(A) such that, for every r-coloring
of A, every positive integer at least n(A) can be written as a sum of distinct monochromatic elements.
We may therefore enlarge the r-Ramsey complete sequence A constructed in Theorem to an entirely
r-Ramsey complete sequence by including all positive integers less than n(A).

The key to proving Theorem [I.1]is a density-type result, Lemma[2.8] saying that, with high probability,
a random sequence of Ce~1logx elements chosen from those elements of the interval [z, 2z) with no small
prime factor has the property that any subset of size C'log x contains a particular long interval in its set of
subset sums. This density statement already improves a result of Spencer [37] from 1981 by showing that,
for any integers r > 2 and n sufficiently large in terms of r, there is a set of integers S of size C'r logn with
the property that any r-coloring of S contains a monochromatic subset whose elements add to n. More
to the point, by concatenating the sequences given by Lemma one for each dyadic interval [z, 2z), it
is easy to construct the sparse r-Ramsey complete sequence A required by Theorem [L.1]



We also study Ramsey completeness for polynomial sequences. The study of ordinary completeness
for polynomial sequences has a long history, with important contributions by Sprague [38], Roth and
Szekeres [34] and Cassels [1I]. These efforts culminated in a result of Graham [26], who characterized all
real polynomial sequences which are complete (where the definition of completeness extends to real-valued
sequences without alteration). Graham first observed the well-known fact that every real polynomial of

degree k can be written as P(z) = Zf:o ; (%), where (%) is the polynomial %H;;B(x —j)and oy € R
with ai # 0. He then showed that (P(m))m>1 is complete if and only if the following three properties

hold:
(i) ap >0,
(ii) oy = p;/q; for each i, where p; and g; are relatively prime integers, and

(111) ng(p07pla s 7p]€) =1

Given this body of work, it was a natural step for Burr and Erdés [9] to ask which polynomial sequences
are Ramsey complete. According to Erdds [19], Burr subsequently proved that the sequence of k™ powers
is r-Ramsey complete for all » > 2, though this result was never published. Our next theorem subsumes
this result, answering their question completely by showing that all complete polynomial sequences are
r-Ramsey complete for all » > 2. In fact, it gives much more, extending the upper bound in Theorem [I.1]
which corresponds to the case P(z) = x, by showing that every complete polynomial sequence has a
subsequence which is r-Ramsey complete and as sparse as possible. Note again that in this context we
are allowing the sequence to be real-valued, rather than restricting to the integers. The definitions of

completeness and Ramsey completeness should then be adjusted to facilitate this change.

Theorem 1.2. For any positive integer k, there is a constant C(k) such that, for every polynomial P of

degree k for which (P(m))m>1 s complete and every r > 2, there is an r-Ramsey complete subsequence
A C (P(m))m>1 with |AN[n]| < C(k)rlog?n for all n.

1.1.2 Density completeness

We say that a sequence of positive integers A is e-complete if every subsequence A’ of A with the property
that |[A" N [n]| > €¢|A N [n]| for all sufficiently large n is complete. This is the natural density analogue of
Ramsey completeness, though it is not at all obvious that such sequences actually exist. Indeed, since the
even integers are not complete, the set of all positive integers is not (% — 0)-complete for any 6 > 0, an
observation which might suggest that no e-complete sequences exist when ¢ is small. However, by using
the result of Szemerédi and Vu [40], which we will discuss in more detail in Section that there is a
constant C' such that any subset of [n] of size at least C'y/n contains an arithmetic progression of length
n in its set of subset sums, one can show that any sequence of primes A with |A N [n]| > 2Cet\/n for
all sufficiently large n is e-complete. Thus, the correct takeaway is that the property of being e-complete
is not monotone. More concretely, as in the example above where we looked at all positive integers, an
e-complete sequence cannot have an e-proportion of its elements sharing a common divisor.

In keeping with our results about Ramsey completeness, our main result regarding this new notion of

e-completeness is a determination of how sparse an e-complete sequence can be. To state this result, we



need some notation. Let F' = (f,)n>1 be any sequence of positive integers for which f, = ., fi for
all sufficiently large n. It is easy to see that any two such sequences are comparable, growing_within a
constant factor of each other which depends only on the initial terms. In Appendix [A.T] we will show that
any such F' satisfies

1., = el Ttz +o(v) togn)?

or, equivalently,

‘F N [n” _ 6\/(2 log(1/€)+o0(1)) logn.
The promised result now says that the fastest-growing e-complete sequence grows on the same order as F.

Theorem 1.3. Let F' = (fy)n>1 be any sequence of positive integers for which f, = Y .., fi for all
sufficiently large n. Then every e-complete sequence A = (apn)n>1 must satisfy a, = O(fy) and there is an

e-complete sequence with a, = O(f).

Like with Ramsey completeness, we may also prove a generalization regarding e-complete subsequences
of complete polynomial sequences, though in this case we omit the details of the argument, only pointing

to how ideas from the proofs of Theorems [I.2] and [I.3] can be combined to give the required conclusion.

Theorem 1.4. Let P be a polynomial for which the sequence (P(m))m,>1 is complete. Then there is a
subsequence A = (an)p>1 of (P(m))m>1 with an, = ©O(f,) which is e-complete. That is, any complete

polynomial sequence has an e-complete subsequence which is as sparse as an e-complete sequence can be.

1.2 Ensuring a given subset sum

So far, we have discussed problems and results on notions of completeness, where we require that all
sufficiently large integers can be represented as subset sums. We now address the natural problem of
ensuring that a particular integer is a subset sum, again looking at both a Ramsey variant and a density

variant.

1.2.1 Monochromatic subset sums

Given a positive integer n, let f(n) be the minimum integer 7 for which there is an r-coloring of the positive
integers less than n with the property that n cannot be written as a monochromatic sum of distinct integers.
The problem of estimating f(n) was raised by Erdés many times [I5] [16, 7], culminating in a problem
paper [20] where he stated that he could show f(n) = o(n'/?) and asked whether f(n) = n'/37°(). Solving

this problem, Alon and Erdés [2] showed that there are positive constants ¢; and ¢ such that

1/3 1/3

con'/3(loglog n)
(logmi/s

c1n

< f(n) < (1)

10g4/3 n

adding that they suspect the upper bound is closer to the truth. Using his result with Szemerédi [40] on long

cynl/3

arithmetic progressions in subset sums, Vu [43] later refined the lower bound, showing that f(n) > ben

for some positive c¢;.
We improve these results further, determining f(n) up to an absolute constant factor and thereby

confirming Alon and Erdds’ conjecture that their upper bound is close to the true order of magnitude.



As is customary, we write ¢(n) for the Euler totient function, the number of positive integers less than n

which are coprime to n.

Theorem 1.5. For every positive integer n, the minimum number of colors f(n) for which it is possible

to color the positive integers less than n so that n cannot be written as a monochromatic sum of distinct

_ n'(n/¢(n))
fn)=© ((logn)1/3(loglogn)2/3> '

integers satisfies

Standard estimates imply that n/¢(n) € (1,2loglogn) for n sufficiently large, with n/¢(n) large if
and only if n is divisible by many small primes. As a result, f(n) is surprisingly far from being monotone,
exhibiting local multiplicative fluctuations on the order of loglogn. Moreover, though f(n) is indeed close
to the upper bound proved by Alon and Erdds, differing by at most a loglogn factor, their upper bound
is only optimal up to a constant factor when n is divisible by many small primes.

To give some sense of where our improvement comes from, let us briefly describe the coloring that
Alon and Erdds use for their upper bound, using r colors in total. First, they use r/2 colors to color all
integers in [n — 1] larger than 2n/r, with all integers in [n/(j+1),n/j) getting color j. Since any j distinct
integers of color j have sum less than n and any j + 1 distinct integers of color j have sum larger than n,
we see that n is not a sum of distinct elements from any of these color classes. Second, for each of the first
r/4 primes p that are coprime to n, they place all remaining multiples of p in a color class. Since each
sum of multiples of p is itself a multiple of p and each p is coprime to n, we see that n is again not a sum
of elements from any of these color classes. To complete the construction, we group the few remaining
uncolored integers into color classes so that the sum of the elements in any given color class is less than
n. A careful analysis then shows that r can be taken to be the upper bound in .

As in the Alon-Erdgs coloring, our coloring uses r/2 colors to color all integers in [n — 1] larger than
2n/r and then 7/4 colors to color the multiples of each of the first /4 primes which are coprime to n.
However, we then add an additional third step, which makes use of the non-uniform distribution of the
remaining elements in congruence classes modulo d for an appropriate choice of d. Indeed, let d be as
large as possible so that d is coprime to n and ¢(d) < r/32, noting that the prime factors of d must be
among the first r/4 primes coprime to n and so the remaining uncolored integers are all coprime to d. For
each congruence class ¢t (mod d) with ¢ coprime to d, let x; € [d] be such that z; = t~'n (mod d). If a
sum of elements, each congruent to ¢ (mod d), is equal to n, then the sum must involve either z; terms,
d + x4 terms or more than d + x; terms. Therefore, arguing as for the first /2 colors, neither the set of
integers congruent to ¢ (mod d) which are at least n/x; nor the set of integers congruent to ¢t (mod d)
which are at least n/(d + x¢) and less than n/x; can contain a subset sum equal to n. Hence, using at
most 2¢(d) < r/8 additional colors, we may color all integers in [n — 1] larger than n/d in such a way
that n is not a monochromatic sum of distinct elements. To complete the coloring, we again group the
remaining uncolored integers into color classes so that the sum of the elements in any given color class is
less than n. Worked out carefully, this then returns the upper bound in Theorem [I.5 For a sketch of how
we prove the matching lower bound, which is the more difficult aspect of the proof, we refer the reader to
Section 2.3l

In practice, since our methods allow it, we will prove a more general result. For the statement, we

need some notation. For positive integers p and m, writing p; for the i*! prime, we let W(p) = [/, ps



and 7(p,m) = ¢(W(p)m)/(W (p)m). For m € [n, (5)], we then let p(n,m) be the smallest positive integer
p such that p/7(p,m) > n?/p(m). Our generalization of Theorem |1.5|is now as follows.

Theorem 1.6. For every positive integer n and any m € [n, (g)], the minimum number of colors f(n, m)
for which it is possible to color the positive integers less than n so that m cannot be written as a monochro-

matic sum of distinct integers satisfies

mY/3(m/d(m
f(n,m):G)(min(( (m/¢( )))2/3,p(n,m)>>.

logn)/3(loglogn

1.2.2 The largest set avoiding a given subset sum

What is the maximum size g(n,m) of a subset of [n] which has no subset sum equal to m? Variants of
this natural extremal problem, interesting for any positive integers n < m < (";’1), were originally raised
by Erdés and Graham (see, for instance, [21, Page 59| and [I§]), although, in the exact form mentioned
here, the problem was first studied in detail by Alon [I].

If we let snd(m) be the smallest positive integer that does not divide m, an easy lower bound for
g(n,m) is LSHC{“WJ, since the set of all multiples of snd(m) below n does not have n as a subset sum. This
simple observation of Alon [I] was later refined by Alon and Freiman [3], who observed that g(n,m) >
s(n,m) := L%J +snd(m) — 2 by augmenting the example above with snd(m) — 2 additional elements,
each congruent to either 1 or —1 modulo snd(m). Another simple lower bound, better than that above
when m is close to (”;1), is g(n,m) > |v2m — 1/2], following from the fact that the sum of the first
|v/2m — 1/2] positive integers is less than m.

For the upper bound, Alon [I] first showed that if n'*¢ < m < n?/(logn)?, then g(n,m) = O(s(n,m)),
where the implicit constant depends on e. He also conjectured that g(n,m) = (1 + o(1))s(n,m) in
roughly the same range. For Cn(logn)® < m < n'5=°()  this conjecture was proved soon after by
Lipkin [31]. Remarkably, around the same time, Alon and Freiman [3] determined the function exactly

for nb/3+e() < m < establishing that g(n,m) = s(n,m) in this range. More than twenty years

2
20(IZg n)2’
then elapsed before Tran, Vu and Wood [42] proved Alon’s conjecture in full generality by showing that
g(n,m) = (14 0(1))s(n,m) for n(logn)'T°M) <m < m. We improve these results, determining the

n+1).

n’ 7 and asymptotically for all Cnlogn < m < ( 5

function exactly for all Cnlogn < m < o)) Togn)?

Theorem 1.7. There is a constant C such that if n and m are positive integers and g(n,m) is the

mazimum size of a subset of [n] with no subset sum equal to m, then

n

Snd(m)J + snd(m) — 2

g(n,m) = s(n,m) = {
712
form € [C’n log n, 712(10gn)2] and

g(n,m) = max (s(n, m), (1+ 0(1))@)

fOT m € [m, (ngl)] .



Since snd(m) < (1 4+ o(1))logm < (2 + o(1))logn, the theorem in fact implies that g(n,m) =
max (s(n,m), (1 —|—0(1))\/%) = s(n,m) for Cnlogn < m < m, as promised above. On the
other hand, once m < cnlogn for ¢ sufficiently small, we do not generally have the bound g(n,m) =
(1 4+ o(1))s(n,m). Indeed, for 8n < m < n(logn)/8, we can show that there is a subset of [n] of
size h = |[n?/(2m)| with no subset sum equal to m, so if snd(m) > (logn)/2, then g(n,m) > h >
(2—o0(1))s(n,m). To show the existence of the required subset of size h, choose an integer n’ € (h+3n/4,n]
such that m € [n'n/(2h),n'n/(2h) + n/4]. Note that n’ € (h+ 3n/4,n] as n’ < 2mh/n < n and, since
n?/(2m) > h > n?/(2m) — 1, we can verify that, for m € (8n,n(logn)/8) and n sufficiently large,
n' > M > h + 3n/4. Observe now that the set of subset sums of the interval [n’ — h,n’] does
not contain any element from the interval [n'n/(2h),n'n/(2h) + n/4], since any sum of at most n/(2h)
elements from the interval is strictly smaller than n’'n/(2h), while any sum of at least n/(2h) + 1 elements
from the interval is strictly larger than (n’ — h)(n/(2h) +1) =n'n/(2h) +n' —h —n/2 > n'n/(2h) +n/4.
Therefore, the interval [n’ — h, n'] has size at least h and does not contain m as a subset sum, as required.

To say more about how we prove Theorem we must first discuss the main tool used in our proof,

a strengthening of the subset sums result of Szemerédi and Vu [40] which is itself of independent interest.

1.3 Long homogeneous progressions in subset sums

We opened this paper by mentioning Szemerédi and Vu’s proof [40] of a longstanding conjecture of
Erdss [14]. As shown by Folkman [24], this is itself a corollary of the statement that there is a con-
stant C' such that if A = (a,)5%; is an infinite increasing sequence of integers with |[A N [n]| > Cy/n
for all sufficiently large n, then 3(A) contains an infinite arithmetic progression. In proving this latter
statement, Szemerédi and Vu first proved the following finite analogue, which we have already mentioned
several times. Note that this result is clearly best possible, as may be seen by considering the set of all
positive integers up to [v2n — 1/2].

Theorem 1.8 (Szemerédi-Vu [40]). There is a constant C' such that if A C [n] with |A] > C+\/n, then

Y(A) contains an arithmetic progression of length n.

This theorem improved on an earlier result obtained independently by Freiman [25] and Sarkozy [35],
who showed that there is a constant C such that if |A| > Cy/nlogn, then X(A) contains an arithmetic
progression of length at least n. However, it also loses something, because the Freiman—Sarkozy result
gives not only an arithmetic progression, but a homogeneous progression, an arithmetic progression a, a +
d,...,a+ kd where the common difference d divides a and, hence, every other term in the progression.
The natural question then, reiterated by several groups of authors, including Erdés and Sarkozy [22],
Sarkozy [36] and Tran, Vu, and Wood [42], is whether there is a common strengthening of the Szemerédi—

Vu and Freiman—Sarkozy theorems. We answer this question in the affirmative.

Theorem 1.9. There is a constant C such that if A C [n] with |A| > C+/n, then X(A) contains a

homogeneous progression of length n.

For the proof of Theorem [I.7], we need a slightly stronger version of Theorem This result, Theo-
rem states that if A C [n] with |A| > C'/n, then there exists d (which is typically just 1) such that

most elements in A are divisible by d and the set of subset sums formed from adding at most 259n/|A|



elements of A which are divisible by d contains a homogeneous progression with length n and common
difference d.

To prove Theorem suppose now that A is a subset of [n] with s(n,m) + 1 elements and we
wish to show that m € ¥(A). Using Theorem we may conclude that 3(A) contains a homogeneous
progression with length n and common difference d, where d divides most elements of A. Moreover, if
d|m, this progression will contain m, so we may assume that d > snd(m). A simple counting argument
then implies that d must in fact equal snd(m), as otherwise there will not be enough elements in A. Since
s(n,m)+1= Lsndnwj + snd(m) — 1, there must also be at least snd(m) — 1 elements in A which are not
divisible by snd(m). We complete the proof by using these additional elements to show that m € X(A),
as required.

As another corollary of Theorem [1.9] we also obtain an improved bound on an old question of Straus [39]
(see also [23]) regarding the maximum size of a non-averaging subset of [n|, where a subset A of [n] is
said to be non-averaging if no a € A is the average of two or more other elements of A. If we write
h(n) for the maximum size of a non-averaging subset of [n], an elegant construction of Bosznay [7] shows
that h(n) = Q(n'/*). On the other hand, if we write H(n) for the maximum integer for which there
are two subsets of [n] of size H(n) whose sets of subset sums have no non-zero common element, then
a result of Straus [39] says that h(n) < 2H(n) + 2. Using the Freiman—Sarkozy result on homogeneous
progressions, Erdés and Sarkozy [22] were able to show that H(n) = O(y/nlogn), which, by Straus’
observation, also yields a similar upper bound on A(n). By following their method, but using Theorem
instead of the Freiman—Sarkozy result, we improve their bound to H(n) = O(y/n), which is tight up to
the constant factor, as may be seen by considering the sets [1,cy/n] and [n — cy/n, n] for any ¢ < v/2. By
Straus’ inequality, it also provides an improved upper bound h(n) = O(y/n) for the size of the largest

non-averaging subset of [n].

Corollary 1.10. There is a constant C such that H(n) < Cy/n, where H(n) is the largest integer for which
there are two subsets of [n] of size H(n) whose sets of subset sums have no non-zero common element, and

h(n) < Cy/n, where h(n) is the size of the largest non-averaging subset of [n].

Organization of the paper

In the next section, we will elaborate on our methods by giving rough outlines of the proofs of some of our
main results. We then proceed to the formal proofs, proving Theorems and[I.2)on Ramsey completeness
in Section [3 Theorem on density completeness in Section [ and Theorem on monochromatic
subset sums in Section 5] We turn to the proof of Theorem our homogeneous strengthening of the
Szemerédi—Vu theorem, and its consequence Corollary in Section [6] and conclude in Section [7] by
proving Theorem [I.7] on the largest set avoiding a particular subset sum. Several supplementary results

are consigned to the appendices.

Notation

For the sake of clarity of presentation, we omit floor and ceiling signs whenever they are not essential. We

also maintain the convention that all logarithms are natural logarithms unless otherwise specified.



2 Overview of the proofs of the main results

The techniques used to prove Theorems and all share some similarities. In each case, we
reduce a problem over Z to the corresponding problem over Z,,. In the cyclic setting, considering the
structure of the “almost periods”, i.e., those elements whose inclusion does not significantly expand the
subset sum, allows us to transform our questions about subset sums into problems about iterated sumsets.
The literature on iterated sumsets is extensive, allowing us to reach our desired conclusions by combining
existing results on these sumsets with novel arguments from probabilistic combinatorics. In this section, we
say more about the specific ideas that go into the proofs of each of our main theorems. The detailed proofs

of these theorems and the other results described in the introduction are then in subsequent sections.

2.1 Some useful tools

We will repeatedly use the following simple lemma, allowing us to extend intervals in the set of subset

sums by adding new elements. It is essentially Lemma 1 of Graham [26].
Lemma 2.1 (Graham [26]). Let A be a set such that X(A) contains all integers in the interval [z, x + y).

(i) If a is a positive integer with a <y and a ¢ A, then X(AU{a}) contains all integers in the interval
[z,2+y+a).

(ii) If a1,...,as are positive integers such that a; < y + Zj<iaj and a; ¢ A fori = 1,...,s, then

Y(AU{a1,a9,...,as}) contains all integers in the interval [z, x +y + Y ;_q a;).

Proof. For the proof of the first part, note that if v € [z,z + y), then u € ¥(A) C ¥(A U {a}). If
uelr+y,rz+y+a),thenu—acz,x+y) CE(A),s0ou=(u—a)+acX(AU{a}). The second part

follows from the first part by induction on s. O

We will also make repeated use of the following result of Lev [30]. The importance of this result is
that it allows us to find long intervals in a set of subset sums by first finding several dense subsets of
long intervals and then summing these sets. Several weaker versions of this result appeared earlier in the

literature, many of which would also suffice for our purposes.

Lemma 2.2 (Lev [30]). Suppose ¢,q > 1 and n > 3 are integers with £ > 2[(¢q—1)/(n—2)]. If S1,...,S;
are integer sets each having at least n elements, each a subset of an interval of at most ¢ + 1 integers
and none a subset of an arithmetic progression of common difference greater than one, then S1 +---+ Sy

contains an interval of length at least £(n — 1) + 1.

In working with general cyclic groups, the following analogue of the Cauchy—Davenport theorem, a
consequence of Theorem 1.1 from [12], will also be useful to us. Given subsets A and B of an abelian
group G, we define A+ B={a+b: ac A,be Bfand A—B={a—b:ac Abec B}. For k € N, we
define the k-fold sumset kA=A+ A+ ---+ A.

k times

Lemma 2.3 (Cochrane, Ostergaard and Spencer [12]). If A is a subset of an abelian group G which is
not contained in a coset of a proper subgroup of G and r,s are non-negative integers which are not both

zero, then

rA—sA| > min{]G\,(T—’_sgl)w}.
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We will also make use of the following result of Deshouillers and Freiman [I3]. The following corrected
statement of the result appears in [4], where it is also shown that the hypothesis |A + A| < 2.04|A| can be
weakened to |[A + A| < 2.1|A].

Lemma 2.4 (Deshouillers and Freiman [13]). There exists a positive constant § such that if A is a subset
of Ly, of size at most Em with |A + A| < 2.04|A|, then there exists a proper subgroup H C Z, such that

either
(i) A is a subset of an arithmetic progression of H-cosets of length ¢ with (¢ — 1)|H| < |A+ A| — |A],

(ii) A meets exactly three H-cosets and these three H-cosets are terms of an arithmetic progression of
H-cosets of length ¢ with (min(¢,4) — 1)|H| < |A+ A| — |A| or

(11i) A is a subset of an H-coset and |A| > £|H|.

Here an arithmetic progression of H-cosets of length £ is a set of the form Uie[é] (x + id + H), where
z,d € Ly, and d ¢ H.

The following simple lemma is crucial in the proofs of most of our main results.

Lemma 2.5. Let m be an integer. Let A be a set of integers such that m ¢ A and the size of 3(A)
considered modulo m is at least h, then |S(AU{m})| > |E(A4)| + h.

Proof. The lemma follows since each modulo m class containing an element of ¥(A) contributes at least

one new element to (X(A) + {m})\ X(A). O

In showing that there are many subset sums over cyclic groups, we use the following lemma, which

shows that the set of new elements whose inclusion do not expand the set of subset sums is small.

Lemma 2.6. Suppose A C Z,, with d < |A| < m and let G4 be the set of © € Zy, such that |(A+z)UA| <

A2
A+ d. Then |Gq| < 55

Proof. For each © € Zp, |(A+2) N (Zm, \ A)| < |A+z| = |A|, while if x € Gy, [(A+2) N (Zn, \ A)| < d

by definition. Furthermore,

S A+ D) N @\ A =Y & € Zn s at € L\ A} = 3 (m — |A]) = |Al(m — |A]),

TELm, a€A a€A

where the second equality follows since, for each a € A, a + = is an element of Z,, \ A for exactly

|Z, \ A| = m — | A] values of z. Thus,
[Al(m — |A]) < |Gal - d + (m — |Gal)| 4],

from which we get the desired inequality by rearranging. O
We will often use the lemma above in combination with the following simple result.

Lemma 2.7. If A C Zy, and z1,...,x5 € Zy satisfy (A + z;) U A| < |A] +d for all i € [k], then
(A4 214+ -+ k) UA| < |A] + kd.
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Proof. We will show, by induction on 4, that [(A+z1 + -+ x;) UA| < |A|+id for 1 < i < k. This is
clearly true for i = 1. For the induction step, assume that |(A+z1 + - 4+ 2,-1) U A| < |A| 4+ (i — 1)d.
Then

(A+z1+ - +z)UA| = Al =[(A+2z1 4+ +x5) \ 4]
S|A4z 4+ i)\ (A+z)| + [(A+zi) \ 4]
=|(A+x1+-+zi—1) \ A+ |[(A+2) \ 4]
< (i—1)d+d = id.

Thus, [(A+z1 4+ -+ 2;) UA| < |A| +id for 1 <i < E. O

2.2 Outline of the proof of the upper bounds in Theorems and

The upper bound in Theorem states that there exists a constant C' such that, for every r > 2, there is
an r-Ramsey complete sequence A with |A N [n]| < Crlog?n for all n. The following density-type result
is the key to the proof of this statement.

Lemma 2.8. Let C' = 3840 and € € (0,1/2]. Let x be a positive integer. Let X be the set of integers in
[z,22) with no prime divisor at most (logx)/2. If a sequence S of Ce tlogz elements in X is chosen
independently and uniformly at random, then, with high probability (as x — o), S has distinct terms

and, for any subsequence S’ of S of size €|S| = Clogz, the set X(S") contains all integers in the interval
{Cxlogx 7Cx loga:]
4z 8 I

The upper bound in Theorem [I.I] can be easily deduced from Lemma [2.8] as follows.

Proof of the upper bound in Theorem . Let € = 1/r and let xg be large enough that the conclusion of
Lemmaholds with positive probability for this choice of € and x > . Let z; = 2°x¢ and y; = Cx; log ;.
By Lemma , for each dyadic interval [x;, z;41) with ¢ > 0 we can pick a sequence S; of Cr log x; distinct
elements in this interval such that the set of subset sums of any subset of S; of size at least |S;|/r
contains the integers in I; := [y;/4, 7y;/8]. Note that every r-coloring of S; has a color class of size at
least |.S;|/r and so the set of monochromatic subset sums of S; contains the integers in I;. We pick the
sequence A to be the concatenation of the sequences S; for i > 0. Observe that, for all n, we have
A(n) < 3 in<asy, 1Sil < Cr(log n)2. Moreover, since y;11/4 < Ty;/8, the intervals I; cover all integers
at least yo/4. Thus, for every r-coloring of A, every sufficiently large integer can be represented as a

monochromatic subset sum. That is, the sequence A is r-Ramsey complete. ]

We now give an informal sketch of the proof of Lemma [2.8| showing how it follows from an appropriate
combination of the results of Section [2.I] with some further ideas. To begin, we observe that for any
fixed set I of C'logz indices in [Ce~!log ], the elements of the subsequence (s; : i € I) of S of size €S|
are independently and uniformly distributed in X. By taking a union bound, it will therefore suffice to
show that if S is a sequence of C'logx elements chosen independently and uniformly from X, then the

probability that X(S”) does not contain all integers in the interval |

Czxlogx 7Czxlogxy : ., . :
=R, =525 ] s sufficiently small.

For this, for some fixed ¢, we take ¢ disjoint random subsets S7,...,S) of S, each of size |S’|/(8¢),
with the aim being to show that, with appropriately high probability, the set of subset sums 3(S7)

12



is a dense subset of a long interval and is not contained in an arithmetic progression with common
difference larger than 1. Lemma then allows us to conclude that S” = SY U---U S/ is such that
X(8") = X(S7) + - + X(S}/) contains a long interval. Note, moreover, that S” only has size |S’|/8, so
there are at least 7|S’|/8 elements still remaining in $’. Using Graham’s lemma, Lemma [2.1, we can use
these elements to extend the long interval in ¥(S”) to a significantly longer interval containing all of the
required elements.

It only remains to show that E(S’;’ ) is a dense subset of a long interval with appropriately high
probability (showing that it is also not contained in an arithmetic progression with common difference
larger than 1 is reasonably straightforward). For this, we split S;’ randomly into two disjoint pieces P;
and P». The key remaining component is to show that for every m € X, the set of integers in [z, 2x)
with no prime factor at most (logz)/2, the mod m set of subset sums %,,(P;) is large with very high
probability. Very roughly, this follows by exposing the elements of P; one at a time and showing that most
elements expand the mod m set of subset sums significantly. Though we will not give a more detailed
description here, we note that this key step again relies on several results from the previous section,
including the Cauchy—Davenport-type statement, Lemma 2.3 as well as Lemma [2.6] which bounds the
number of almost periods, those = for which (A + z) \ A is small. Finally, once we know that |%,,(P;)|
is, with high probability, large for each m € X, we can apply Lemma [2.5] repeatedly to conclude that
XS > 32 ep, [2m(P1)|, which yields the required lower bound for [¥(S7)|.

The proof of Theorem [I.2] follows a similar scheme. Let P be a complete polynomial. By the char-
acterization due to Graham [26] discussed in the introduction, we can write P(z) = Zf:o o; (%) with
ar > 0 and o = %, where p; and ¢; are relatively prime integers, ¢; > 0 and ged(po,...,pr) = 1. If
L = lem(qo, - - ., qx), then the polynomial L - P has integer coefficients in its binomial representation and
satisfies Graham’s condition, so it is also complete. Furthermore, if ((L-P)(ay))32, is r-Ramsey complete,
then (P(ay))>2 is r-Ramsey complete, so it suffices to work with complete polynomials which have integer
coefficients in their binomial representations. From now on, we will assume that P is such a polynomial.

To prove Theorem we prove the following polynomial analogue of Lemma For a polynomial
P and a sequence T of integers, let P(T') be the sequence where we replace each term ¢ in T' by P(t).

Lemma 2.9. Let P be a complete polynomial of degree k with integer coefficients in its binomial represen-
tation and let C(k) = k2815, Let e € (0,1/2]. Let = be a positive integer. Let X be the set of elements y
in [z, (1+1/k)x) such that P(y) has no prime divisor at most (logz)'/2. If a sequence S of C(k)e 'logx
elements in X is chosen independently and uniformly at random, then, with high probability (as x — 00),
S has distinct terms and, for any subsequence S’ of S of size €|S|, the set X(P(S’)) contains all integers
in the interval [P (z)|S'|, SP(x)|S"]].

We now show how Theorem [I.2] follows from Lemma [2.9] just as the upper bound in Theorem [I.]]

follows from Lemma 2.8

Proof of Theorem . Let € = 1/r. For each positive integer 4, let z; = (1 + 1/k)?, y; = C(k)P(z;) log z;
and I; = [ey;/9,8y;/9]. For i sufficiently large in terms of P and r, Lemma implies that we can pick a
subsequence S; of C(k)rlogx; distinct terms in [z;, (1 + 1/k)xz;) such that any subsequence S of S; with
|S;]/r terms has the property that 3(P(S’)) contains all integers in the interval I;. Therefore, since every

r-coloring of S; has a color class of size at least |S;|/r, the set of monochromatic subset sums of P(S;)
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contains the integers in I;. We pick the sequence A to be the concatenation of the sequences P(S;) with
i sufficiently large. Then, for all n, we have A(n) < >, p(,.y<n |Sil = Ok ((logn)?). Moreover, as ; is
sufficiently large, P(x) is increasing for x > z; and P(z;4+1) = P((1 4+ 1/k)z;) < eP(x;). It follows that,
for ¢ sufficiently large, ey;11/9 < 8y;/9 and the intervals I; and I;;; are overlapping. Hence, the intervals
I; cover all sufficiently large integers. Thus, for every r-coloring of A, every sufficiently large integer can

be represented as a monochromatic subset sum. That is, the sequence A is r-Ramsey complete. ]

The proof of Lemma [2.9] itself follows along broadly similar lines to the proof of Lemma [2.8] The key
additional input, arising in the analogue of the step where we showed that |%,,(P;)| is large with high
probability for each m € X, is the following result on iterated sumsets of a set of polynomial values,
proved through a form of PET induction (see, for example, [5]). For further details, we refer the reader
to Section [3] where the proofs of Lemmas and are given in full.

Lemma 2.10. There exists a constant Cy,, depending only on k, such that if P is a complete polynomial
of degree k with integer coefficients in its binomial representation, = is sufficiently large depending on P,
m is an integer in [z,2z), (logz)™! < o < 1/2 and T is a subset of [x,2x) of size at least ax, then the
iterated sumset 28" P(T) — 2F=1P(T) contains more than a®* P(m) residue classes modulo P(m).

2.3 Outline of the proof of the lower bound in Theorems and

Recall that, for any n < m < (g), f(n,m) is defined as the minimum r for which there is an r-coloring
of [n — 1] such that m cannot be written as a sum of distinct monochromatic elements. In this section,
we sketch the main ideas behind the lower bound in Theorem [I.6] which asymptotically determines the
value of f(n,m). For simplicity, we will focus on the case m = n corresponding to Theorem where

we wish to show that f(n) = f(n,n) =© ( (log:)ll//sg(gé gl(:g)zl)Q /3>. Theorem (1.6 follows from an appropriate

elaboration of these ideas.
We begin by sketching Vu’s argument [43] (itself building on an argument used by Alon and Erdés [2]),

which yields the bound f(n) > cllnoli for some positive constant c¢;. To this end, consider an arbitrary
zn

nl/3

logn

r-coloring of [n] for some 7 < ¢;—. We restrict our attention to the interval [n?/3,2n2/3) and focus on
the color class containing the largest number of primes from this interval. Let () be the set of primes in
this color class, noting that r < 01% implies that |Q| > Cn'/3 for a positive constant C' (which can be
made arbitrarily large by taking ¢; to be sufficiently small). Partition @ into three subsets @1, Q2 and
Qs of roughly equal size. Since |Q1] > %nl/ 3 we can apply the Szemerédi-Vu theorem, Theorem
to @1 to obtain an arithmetic progression of length at least 2n%/? in ¥(Q1). We can then complete this
arithmetic progression of common difference d, say, to a long interval by building a complete modulo d
class using Q2. Provided the parameters have been chosen appropriately, this interval will have length at

2/3 and the minimum number in the interval will be smaller than n. Therefore, by Lemma

least 2n
adding each element of ()3 in turn will expand the interval and, since adding all elements in )3 would
exceed n, the resulting interval in (@1 U Q2 U Q3) must contain n.

To go further, we make two observations about this argument. First, note that we passed immediately
to a subset of the primes. This was in order to avoid the situation where a color class consists entirely of
numbers with a given divisor, as, otherwise, it would be impossible to write any n which is not a multiple

of this divisor as a sum of elements from the color class. Second, the key tool in the proof, Theorem is
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tight up to the constant, since the set of subset sums of the set consisting of the first |v/2n —1/2] positive
integers has size less than n. However, this naive application of Theorem makes no use of the fact that
our set consists entirely of primes. It is here that we are able to gain.

To illustrate the main ideas in our argument, we first restrict to the case where n is prime. Suppose
then that there is an r-coloring of [n — 1], where r satisfies n = Ar3(logr)(loglogr)? for a sufficiently
large constant \. If we let y = O(r?(logr)(loglogr)), the number of primes in the interval [y,2y) is
O(r?loglogr), so, by the pigeonhole principle, there is a monochromatic subset @ of the primes in [y, 2y)
with |Q| = Q(rloglogr). As in Vu’s argument, the plan from this point is to use a subset V of @ of
size O(rloglogr) to build a large interval and then to apply Lemma to expand this interval using the
remaining elements. To show that (V') contains the required interval, we partition V' into a bounded
number of sets Vi, Va, ..., V} of roughly equal size and show that, for each i, ¥(V;) contains a dense subset
of an interval. Given this crucial input, Lemma then implies that (V') contains a long interval.

Quantitatively, for this argument to go through, we need (V) to contain an interval of length
Q(r?(logr)(loglog)). For this to follow from Lemma we need to have |X(V;)| = Q(r2(log ) (log log 1))
for each V;, themselves satisfying |V;| = O(rloglogr). Thus, we need to show that |X(V;)|/|Vi| > rlogr,
say. For this, we prove an inverse result, that if |X(V;)|/|Vi| < rlogr, then a large subset of V; must be
additively structured, in the sense that this subset is contained in a set of size O(|V;|(logr)/(loglogr))
which can be written as a union of long arithmetic progressions. We then use the Selberg sieve to show
that, since V; consists of primes, it is impossible for a large subset of V; to have this structure.

In practice, as in the proofs of Theorems [I.I] and we do much of our work over cyclic groups.
Indeed, to show that ¥(V;) is large, we partition V; into two sets A;; and A; 2 and show that, for each
az € A;2, |X(Ai1) (mod az)| is large. Lemma then allows us to conclude that X(V;) = ¥(A;1 U A4;2)
is large.

To show that |X(A4;1) (mod ag)| is large, we consider an iterative building process which grows the set
of subset sums modulo ay by picking elements in A;; one at a time. We begin with Ty = A;; and 3(0) =
{0} € Zg,. In step j > 1, we choose an element z; from T);_; which maximizes |(X(j —1)+z;) \ X(j —1)],
where the set 3(j —1) is viewed as a subset of Z,,, and then set £(j) = (X(j—1)+2;)UX(j—1) and Tj =
T;_1\{x;}. If, for each j < |A;1]/2, there is a choice of z; such that [(X(j—1)4z;)\X(j—1)| is large, then
|X(A;1) (mod ag)| will be large, as required. If, instead, there is a step j such that [(X(j—1)+z)\2(j—1)|
is small for all z € Tj_1, then, using Lemma (or, rather, its corollary, Lemma , we can show that
T;_1 is additively structured, in the sense that it is contained in a small set which is a union of long
arithmetic progressions. By a version of the Selberg sieve, T;_; cannot then contain too many primes,
contradicting the fact that, as a subset of @), Tj_1 consists entirely of primes.

Several additional ideas are needed to handle the case where n is not prime. For instance, in the prime
case, we could build the required sum n using only primes, but now we must use integers of the form qu,
where wu is a small divisor of n and ¢ is coprime to the first r primes. As before, our first step is to pass
to a large monochromatic subset )y of this set, the goal being to show that n is contained in the set of
subset sums of Jg. In the prime case, we took a subset V of Q = @)y, partitioned it into sets V; and
then partitioned each V; into sets A;; and A; o, before showing that |X(A;1) (mod ag)| is large for each
ap € A;o. However, this argument may not go through in the general case, because, when as is not prime,

we could have that A; 1, and hence ¥(A4; 1), is contained in a small proper subgroup of Z,.
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To overcome this issue, we first apply a preprocessing step to the set g, our aim being to find a closely
related set Q which is k-diverse, by which we mean that, for any d > 2, there are at least k elements of
@ which are not divisible by d. We obtain such a set through a simple iteration. Indeed, if we have a set
which is not k-diverse, then there is some d dividing all but k elements of the set, so we can remove these
elements from the set and divide the remaining elements by d to form a new set. Repeating this procedure
with an appropriate value of k, we eventually arrive at a large k-diverse set @ such that {vz : z € Q} C Qo
for some v|n. Thus, in order to conclude that n is a sum of elements in @y, we only need to show that
n/v is a sum of elements in Q.

A crucial property of diverse sets is that random subsets of a diverse set are themselves diverse with
high probability. Thus, by taking a random subset V of @, randomly partitioning V' into parts V; and
then randomly partitioning each V; into A;1 and A; 2, we have that, with high probability, all of the sets
A; 1 are diverse. We can also show that any common divisor of a large subset of A; 1 must be a small
divisor of n. Proceeding now along the same lines as the prime case, this reduces our task to showing that
|X(A;1) (mod ag)| is large for any diverse subset A;; of A with the additional property that any common
divisor of a large subset of A; 1 is small.

To show that |X(A4;1) (mod ag)| is large, we consider a more refined version of the iterative building
process used in the prime case. The details of this key step are contained in Lemma [5.6] We again begin
with Ty = A; 1 and ¥(0) = {0} C Z,, and, in step j > 1, we again choose an element x; from 7;_; and set
X(y)=EY—-1)+z;)Ux(j—1) and Tj = Tj—1 \ {z;}, but the process for choosing x; is more complex.
To describe it, we let d; be the greatest common divisor of the elements in 7;_1. The choice of z; depends
on the sets S, = X(j — 1) N (u + d;Zg,) with u € Zg,/d;jZq,. We refer to step j as a growth phase, an
unsaturated phase or a saturated phase, depending on whether there exists u such that S, is non-empty
and small, no non-empty .S, is small and at least one is of intermediate size or all non-empty .S, are large,
respectively. If j is a growth phase, we choose z; from T;_; so as to maximize |X(d;, j)| — [X(d;,j — 1)],
where X(dj,t) = {D_pegon (mod ag) : H C [t]N{h : dj|zy}}. If j is an unsaturated or saturated phase,
we choose z; from Tj_1 so as to maximize [(X(j — 1) +z;) \ X(j — 1)|.

If now there is a saturated phase j among the first |A; 1|/2 steps, we can show that [£(A4;1) (mod a2)| >
|X(7 — 1)| is large, as required. On the other hand, we can also show that there are only a small number
of growth phases among the first |A;1]/2 steps. Hence, we can assume that there are many unsaturated
phases. Our aim now is to show that [3(j)| —|X(7 — 1)| is large for any unsaturated phase, since, together
with the fact that there are many unsaturated phases, this will imply that [£(A4;1) (mod ag)| is large, as
required. As in the prime case, this final step proceeds by first showing that if |X(5)| — [2(j — 1) is not
large, then T;_; must be additively structured, again that it is contained in a small set which is a union of
long arithmetic progressions, and then using the Selberg sieve to derive a contradiction, in this case that
T;_1 cannot contain many elements of the form qu, where u is a small divisor of n and ¢ is coprime to the

first r primes.

2.4 Outline of the proof of Theorem (1.9

To prove Theorem that there exists a constant C' such that any A C [n] with |4| > Cy/n has a
homogeneous progression of length n in X(A), we use a variant of the ideas discussed in Subsection

As in that subsection, we apply a preprocessing step to the set A to find a set A’ of size comparable to A
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which is k-diverse for an appropriate k and for which there exists an integer d such that {dz : z € A’} C A.
We also maintain a further property, that A’ intersects each dyadic interval in either the empty set or a
large set. Having obtained the required set A’, we replace A with this set and consider a random partition
of the set into parts X1, Y1,..., Xy, Yy

The key step in the proof is Lemmal[6.2] which roughly says that if X; satisfies an appropriate diversity
condition, then |X(X;) (mod b)| is large for all b € Y;. But since X; is part of a random partition of
the diverse set A, we can, with high probability, guarantee that X; is also diverse and, therefore, by
Lemma that |X(X;) (mod b)| is large for all b € Y;. Then, as in the previous outlines, we apply
Lemma in this case together with what we know about the distribution of A in dyadic intervals, to
show that X(X; UY;) is large, followed by Lemma to conclude that ¥(A) contains a long interval.
Unwinding the preprocessing step, we see that this interval corresponds to a long homogeneous arithmetic
progression in the set of subset sums of the original set, as required.

At first glance, Lemma [6.2] seems to bear close resemblance to one of the key steps in the proofs of
Theorems and described in the previous subsection (and formally encapsulated in Lemma . In
both cases, we wish to show that if X is a sufficiently diverse set, then |X(X) (mod b)| is large for all
b in a certain set Y. The difference lies in the fact that the sets X considered in Theorems [I.5 and [1.6]
are carefully chosen so that we can hope for a stronger guarantee on the size of ¥(X) (mod b) than in
the typical case, whereas here we are concerned precisely with that typical case. The proof of Lemma [6.2
follows from a similar iterative building process to that used in the proof of Lemma [5.6] as described at
the end of the last subsection.

Because we need it for the proof of Theorem our result on the largest subset of [n] avoiding a
particular subset sum, we will actually prove a strengthening of Theorem saying that we can build
the required homogeneous progression using short sums, that is, sums with only a small number of terms.
This strengthening requires a somewhat more careful analysis than that described above. In particular,

we must start with Ty equal to a large random subset of X; and ¥(0) = X; \ T (mod b).

3 Ramsey completeness

3.1 Proof of the upper bound in Theorem [1.1

The goal of this section is to prove the upper bound in Theorem that there exists a constant C' such
that, for every r > 2, there is an 7-Ramsey complete sequence A with |A N [n]| < Crlog?n for all n. As
shown in Section [2.2] this theorem follows from another statement, Lemma [2.8] whose proof will occupy
us in this subsection.

The next lemma, a mod m analogue of Lemma is the key step in proving that lemma. Let %,,(S)

be the set of subset sums of S taken modulo m.

Lemma 3.1. Fiz ¢ > 6 and assume that x is sufficiently large. Let w = (logx)/2 and let X be the set
of integers in [x,2x) with no prime diwvisor at most w. Let m € X. If a sequence S of clogx integers is
chosen uniformly and independently at random from X and viewed as a sequence of elements in Z,,, then
1Xm(S)| < § with probability less than (log g)~(eD)los

Proof. Let W =[], <, p, where the product is taken over primes, and 7 = ¢(W)/W. The prime number

17



theorem implies that W = e(lto)w — z1/2+0(1) " In any interval of length W, there are exactly W
integers with no prime divisor at most w. By Merten’s third theorem, 7 = (e~ 4+ 0(1)) / log w, where ~y

is the Euler—-Mascheroni constant. It follows that

x
X|> -W)> ——.
X] 2 (@ )_210glogx

Let ¢ = clogz. Let S = (s1, S2,...,54) be a sequence of ¢ random elements of X. Let S; = (s1,...,5;)

denote the sequence consisting of the first i elements of S. Let § = loglogz/logx. Call i € [2,q] bad if
o [T (8)] < 2|Zm(Si1)| and S, (Si—1)| < z/log z or
o |X,(S)] < (1+40)|Xm(Si—1)] and z/logz < |, (Si—1)] < z/4.

The following two claims allow us to quickly complete the proof.

4(loglog )?

Claim 1. The probability that ¢ is bad conditioned on the choice of S;_1 is at most p := Tog

Claim 2. If |X,,(S)| < /4, then the number of integers in [2, ¢] which are not bad is less than 4log x.

Assuming Claim 1, for any B C [2,q], the probability that all elements in B are bad is at most plZ!.
From Claim 2, if |%,,(S5)| < z/4, then there is a set B of ¢ — 4logx integers i € [2,q] which are bad.
Taking a union bound over all such choices of B, the probability that |%,,(S5)| < /4 is at most

2\ (c—4)logzx
q p|B| _ q p|B| < cAlogz 4(10g10g .%') < (logm)_(c_5) logz 0]
q—4logx 4logz log

To complete the proof, it remains to verify Claims 1 and 2.

Proof of Claim 1. Fix S;—1 = (s1,...,8;—1). Conditioned on this choice of S;_1, we bound the probability
that ¢ is bad. If [¥,,(S;—1)| > /4, then i cannot be bad (so the event that 7 is bad has probability zero). We
may therefore restrict attention to the two cases |%,,(S;—1)| < z/logz and z/logx < |X,,(S;—1)| < x/4.

For the first case, note, by Lemma that the number of s with [2,,(S;—1 U {s})| < 3|%,,(Si—1)|
is at most % = 2|%,,(Si—1)|. Therefore, if |¥,,(Si—1)| < x/logx, the probability that i is bad
conditioned on S;_; is at most 2‘2"&9‘”1)‘ < |X|21f)gx < 41?5;2“ < p.

Suppose now that z/logz < |X,,(S;—1)| < z/4. For a positive integer D, let Gp be the set of s such
that | X, (Si—1U{s})| < |2 (Si—1)|+D. Let d = [§]%,,(Si—1)|], so i is bad in this case if and only if s; € Gg.
Let k = | %], so kd < [ (Si—1)]/2. By Lemma 2.7, kGy C Gpg, 50 |kGa| < |Gral < 2|8m(Si1)| < %,
where the middle inequality is again by the consequence of Lemma [2.6] noted above.

If |Gq| < 2, then |G4| < 2 < 2 < 26z. Otherwise, |G4| > 2. In this case, since m has

w (logx)/2
no prime divisor at most w, no subgroup of Z,, has size larger than 7. Thus, Gy cannot be contained

in a coset of a non-trivial subgroup. By Lemma since [kGq| < § < m, we must have [kG4| >
(k4 1)|G4l/2 > |G4|/(46). Hence, |Gq| < 46|kG4| < 40x/2 = 25z. Thus, in either case, conditioned on
the choice of S;_1, the probability that ¢ is bad, which is the same as the probability that s; € Gy, is at

1Gal - 26z _
By < X < 46 loglogx = p. -

Proof of Claim 2. As S;—1 C S; for i € [2,q], ¥ (Si—1) C 2 (S;) and, hence, 1 < [%,,(S1)] < -+ <
1Xm(Sg)| = [Em(S)| < §. Therefore, the number of 7 which are not bad with [3,,(S;—1)| < z/logx and

most
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|20 (S:)| > %|Em(SZ-,1)| is at most logz/y x, as we get a factor of 3/2 for each such i. Moreover, since
(140)0 ' logalogz > glogzlog — Jog 4 the number of elements i which are not bad with /4 > |£,,(S;_1)| >
x/logz and |2,,(S;)| > (1+0)|Z(Si—1)| is at most 5~ log, log z = log, x, as we get a factor of 1+ § for

each such i. Therefore, the number of i € [2, g] which are not bad is at most logg , z +logy © < 4logz. [

We next prove Lemma 2.8 using Lemma [3.1] Let C' = 3840, € € (0,1/2] and X be the set of integers in
[z, 2x) with no prime divisor at most (logx)/2, as in Lemma We wish to show that if a sequence S of
Ce 'logx elements in X is chosen independently and uniformly at random, then, with high probability,
S has distinct terms and, for any subsequence S’ of S of size €S| = Clogx, the set 3(S’) contains all

integers in the interval [%, m%].

Proof of Lemma[2.8 By the birthday paradox, as |S| = o(m ), S has distinct terms with high proba-
bility. Fix a choice of subset I’ of [Ce!log x] of size C'log x and consider the subsequence S’ of S given by
(si)ier- Let I" be the smallest |S’|/8 elements in I” and let S” be given by (s;);cr7. Let £ = 40. Arrange
I" in increasing order and partition I” into ¢ sets I{, ..., I; of consecutive terms so that each set I ]’-’ for
j € [{] has size [I"|/¢. This gives a partition of 5" into ¢ subsequences S7,..., S}, where S} = (si)ig;/.
Note that [S7] = Clogz 4nd ¥(S7) < o, 2x%]. We shall prove below that, with high probability, the

8¢
sequence S has the property that, for all possible choices of I’ and 7, |E(S§-’)| > Cxlogz/64¢. Assuming

this, we can show that E(S;-’ ) is not contained in an arithmetic progression with common difference larger

than 1. Indeed, if E(S;.’ ) is contained in an arithmetic progression with common difference d > 1, then

2Czlogx)/(8¢
d < (C('xloga:%/()éiél(é)zl

difference d > 1, then all elements in 3(S7) are congruent modulo d, from which it follows that all el-

< 17. Moreover, if %(S7) is contained in an arithmetic progression with common

ements of S7 are divisible by d. This contradicts the fact that no element of S has a prime factor at
most (logz)/2 > 17. Hence, for each j, 3(Sj) is not contained in an arithmetic progression with com-
mon difference larger than 1. Therefore, by Lemma 2.2 as $(S”) = £(S7) + -+ + X(57), the set $(S")

contains the integers in an interval of length at least ¢ (% - 1) + 1 > 2z. Finally, by Lemma

Y(S") = X(S" U (S"\ S”)) contains all integers in the interval [%, %], where we used that all

% and the sum of the

elements of S” are at most 2z, the elements of $(S”) are at most 2z|S"| =
elements in S’ \ S” is at least £|9'|z = %.
It remains to show that, with high probability, the sequence S has the property that, for all possible

choices of I" and j, [%(S7)| > Czlogx/64¢. Fix an index 1 < j < £ and partition the index set I7

of S}’ into two consecutive blocks J; and Jy of equal size. Let Py = (s;)ics, and Po = (8;)ic,, SO
S
|P| = |P| = % = Cézgx = clogz for ¢ = &5 = 6. Recall that X is the set of integers in [z,2z) with

no prime divisor at most (logx)/2. Consider m € X. We note that when we fix the subset of indices I’
of [Ce !log x| of size C'logx and the index j, then .J; is determined as a particular subsequence of I’.
Moreover, each element in P; is uniformly and independently distributed in X. Taking a union bound over
all xf(ogllg’fx) choices of I, j € [(] and m € X, Lemma implies that the probability [3,,(P1)| < §
for some I’, j € [(] and m € X is at most

Ce1 log = 1 (c—5)(log ) . 1 log
ZUE( Clog_ﬁn ) . (10g:{j> < 50$(€/€)384010g . (ng) = Om(l),

where 0,(1) tends to 0 as x tends to infinity. Thus, with high probability, the sequence S is such that
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35 (P1)| > § for all choices of I, j € [¢(] and m € X. In this case, by repeated application of Lemma

for all j € [/],

" z oz |S]|  Czxloga
. > _ = — . = .
=S = Z 4 4 2 64¢

mePs

Therefore, with high probability, the sequence S is such that ]Z(S}’H > Czlog x/64¢ for all possible choices
of I and j, as required. O

3.2 Proof of Theorem [1.2]

Our aim in this section is to prove Theorem [I.2] our main result on the Ramsey completeness of complete
polynomial sequences (P(m))m,>1, saying that there exists a constant C, depending only on the degree of
P, such that, for every r > 2, there is an r-Ramsey complete sequence A C (P(m))m>1 with [A N [n]] <
Crlog?n for all n. As remarked in Section we can and will assume that P is a complete polynomial
which has integer coefficients in its binomial representation. That is, we can write P(x) = Z?:o o (f),
with oy > 0, each «; an integer and ged(ag, ..., ax) = 1.

Our first goal will be to prove Lemma [2.10] To recall the statement, suppose that P is a complete
polynomial of degree k with integer coefficients in its binomial representation, m is an integer in [z, 2z),
(logz)™! < a < 1/2 and T is a subset of [z,2z) of size at least ax. Then Lemma asserts that there
is a constant Cy depending only on k such that, for 2 sufficiently large, the iterated sumset 2¥~'P(T") —
26=1 P(T) contains more than a® P(m) residue classes modulo P(m). Once this lemma is in place, we

will follow a scheme similar to that of the previous subsection to complete the proof.

Proof of Lemma[2.10, Let T = {zg,x1,...,2p-1}, where © < 9 < 1 < -+ < 2y_1 < 2z and £ > az.
Let xg; = x; and o = £. Let £; = {;_1({j—1 — 1)/4x for j = 1,... k. For each j € [k], we recursively
construct a subsequence ;0 < ;1 < -+ < Tjei—1 of T with ¢; terms, as follows. For each j € [k], note
that at least (¢;_1 — 1) /2 of the indices 0 < ¢ < ¢;_1 — 2 satisfy x;_1;41 — xj—1,; < 22/¢;_;. Thus, by
the pigeonhole principle, there is y; € [22/€;_1] such that at least ((¢;_1 —1)/2)/ (22/¢;—1) = ¢; indices
0<i< 1 —2satisfy 251,41 —xj-1,; = yj. Let xj; = x;_14, for £; increasing indices tg, 11, ... ste;—1
such that z; 1411 — j_1.4, = yj- As x/ ({; +1) < 22/ ((;_1 + 1))?, by iterating we get

27
z T 2(142+4--42171) —27 523 F1
< 2 < 2¢ . 2
£j+1<€o+1> = 2

In particular, by and the assumption a > (log z) ™!, we obtain that, for 1 < j < k, y; is bounded above
by a polynomial function of log x depending on k.

Let Py = P and recursively define
Pj(z) = Pi1(z +y;) — Pj-1(z),

which is a polynomial in = of degree k— j whose coefficients are polynomials in y1, ..., y;. Let z; := ngl Y-
Then z; and the coefficients of P; are bounded in absolute value by a polynomial function of log x which

depends on k and the coefficients of P. This observation brings the following simple claim into play.

Claim. Let Q(z) = Zf:o Biz' and Q(x) = Z?:o B;z, where §; and B; are allowed to depend on z. If the
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f3; and B; are at most a fixed polynomial function of log z in absolute value and 8 = 3 is bounded below

in absolute value by some positive constant depending only on k, then lim,_, Qgg

Recall that P is a complete polynomial with integer coefficients in its binomial representation P(z) =
Zf:o Q; (f) and the leading coefficient oy, is a positive integer. The coefficient of zF~7 in Pj(zx) is the
same as that in ogz; (kfj) To see this, note, by induction, that the coefficient of z*77 in Pj(x) =

Pj_1(x+y;) — Pj_1(w) is the same as the coefficient of 277 in ayz;j_1 ((k —;1«?1) (k—?ﬂ)) and, hence, of

aRZj—1Y; (k ]) = akz]( ) It follows from the claim that the polynomial Pj(x) is asymptotically equal
to agz; (k—j)'

Let ¢ = 1/(k2%2) and w1 = 1. For 0 < j < k — 2, let w; = 2¥7Jy; 1. We choose (not necessarily
disjoint) sets Io,I1,...,I—1 of indices such that I; C [¢;] and any two distinct indices in I; differ by
at least w;. By partitioning [z, 2x) into 1/c intervals of length cz each, we can further guarantee that
{x0,i, : i0 € Ip} is a subset of an interval [2/,2’ + cx) of length cx that is a subinterval of [z,2x). By
greedily picking the elements, we can guarantee that |Iy| > cly/wo and |I;| > ¢;/w; for j > 0.

For a k-tuple t = (ig,...,ig—1) € Lo X -+ X Ix_1, let

k—1
ZPJ Ly, %
Jj=0

We claim that these numbers are distinct modulo P(m). This follows from showing that (as integers) these
numbers lie in an interval of length less than P(m) and that they are ordered lexicographically. That is,
if t = (i;) and ¢’ = (4}) are distinct k-tuples, jo is the smallest index such that i, # ), and ij, > i’ , then
F(t) > F(t).

We first show that the numbers F'(t) with ¢ € Iy x - -+ x I, lie in an interval of length less than P(m).

As z is sufficiently large, each P; is positive and increasing in [z, 2x). It follows that

P(z') + Z Pj(z) < F(t) < P(2' + cx) + Z P;(2x). (3)

We have that

P(' + cx) — P(e') < oy ((3” * f”) - @)) + 3 Jagl(a! + ey

j<k

o (1) (54 e

j<k

where R is a polynomial with degree at most & — 1 depending only on P. Thus, the difference between

the upper and lower bounds for F'(t) in is, for x sufficiently large, at most

P(z' + cx) — P(2') + Z Pj(2z)
1<j<k—1

< (2~ (2-MP@)+ R@)+ Y Py22)

1<j<k-1
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< k2P 1P(x) <

where, in the second inequality, we used that 2F — (2 — c)k < ck2F1 as well as the claim and the
fact that R(z) 4+ > 1<j<p1 P5(22) is a polynomial of degree at most & — 1 in = whose coefficients are
polynomials (depending only on P) in yi,...,yk—1, where y1, ..., yr_1 are themselves bounded in absolute
value by a polynomial function of logz. Hence, the integers F'(¢) all lie in an interval of length at most
P(m)/2 < P(m), as desired.

We next show that the integers F'(t) with ¢ € Iy x -+ x I;_1 are lexicographically ordered. Indeed,
suppose t = (i;) and t' = (i}
Then

) are distinct k-tuples, jo is the smallest index such that ij, # 4 and ij, > 7 .

k-1
Fit)-F({t) = Z Pj(xji;) — Pjxj)- (4)
J=Jo

j = wj, the first summand in , when j = jo, is asymptotically at least

QR Zjo Wi, (k_;.‘;_l). If jo = k—1, the rest of the sum is 0. Otherwise, jo < k—2 and, since x < xﬂj,x;,i; < 2x

Since zj;; — it > i — 1

and Pj(x) is increasing for x sufficiently large, the rest of the sum in is at least

k-1

Y Piz) - Py(2u).

Jj=jo+1

By the claim, this sum is asymptotic to its first summand (when j = jy + 1). Therefore, this sum is

X
k—jo—1
Hence, as x is sufficiently large, the first term in the sum in is more than the absolute value of the sum
of the other terms, so we conclude that F(t) > F(t'), as desired.

As the integers F(t) with ¢ € Iy X - -+ X I_1 are distinct modulo P(m), the number of distinct residue

classes F'(t) (mod P(m)) is at least

asymptotically —ayzjo+1 (2879071 —1)( ). AS zjo41 = Yjo+12jo, We have zjow;y > 2241 (287071 —1).

k—1 k—1 k—1

j+1 k1
H|Ij| ZCHKj/wj chkaa2 > ek,
J=0 J=0 J=0

where ¢ > 0 depends only on k. Here we used y; < 2z/(;_1, w; = 2k_jyj+1 by the definition of w; and
the bound on ;.

Note now that Py(zo,;) = P(x;) € P(T). We will show, inductively, that for j > 1 we have Pj(x;;) €
2071P(T) — 2771 P(T) for all 0 < i < ¢; — 1. Indeed,

Pj(x;) = Pio1(zji + ) — Pioa(m50) = Pjoa(wjo14,41) — Pjoa(wjo1y,) € 227'P(T) — 2771 P(T),

recalling that there exist indices t; such that z;; = x;_1, and zj; + y; = zj—14,+1. As each F(t) is
the sum of k terms in which the 5% term is of the form Pj(z;;), we have that each F(t) is in the set
P(T) + Zf;ll(w—lP(T) — 2071P(T)) = 2k=1P(T) — (28=1 — 1) P(T). The set 28=1P(T) — 2*=1P(T) =
—P(T) 4 2F¥-1P(T) — (2= — 1) P(T) is the union of | — P(T)| translates of 2= P(T) — (2¥=1 — 1) P(T).
Hence,

2F=1p(T) — 251 P(T)| > cpa ™ 2 > aCk P(m)
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for an appropriate constant Cj, depending only on k, completing the proof. O

Remark. A Hilbert cube of dimension k£ (or simply a k-cube) is a set H(ag,eq,...,er) of the form
{ao + > ;crei - I C [k]} with ag an integer and e1, ..., e, positive integers (see [27] for more on the long
history of these objects). The first step in the proof of Lemma was to iteratively build many Hilbert
cubes of dimension k consisting of elements of 7', all with e; = y; and where we can take ag to be any
x) . An alternative approach to this step is to build many k-cubes in T with small e1, ..., e, and then to

use the pigeonhole principle to show that one can pick out many such k-cubes with the same eq,...,e.

As in the previous subsection, we will deduce Lemma from a modular analogue, which we now
state. Recall that ¥,,(S) is the set of subset sums modulo m.

Lemma 3.2. Let P be a complete polynomial of degree k with integer coefficients in its binomial repre-

1/2 and

sentation. Fiz ¢ > k28T and assume x is sufficiently large (depending on P). Let w = (logx)

let X be the set of y € [x,(1 4+ 1/k)z) such that P(y) has no prime divisor at most w. Let m € X.

If S = (s1,...,8¢) is a sequence of ¢ = clogx elements chosen uniformly and independently at random

rom X and the sequence = $1),...,P(8q)) is viewed as a sequence of elements in Zp(y), then

from X and th P(S P P(sq)) is viewed f el n Lp(m), th

Ypom) (P(S))| < P(m)/4 with probability at most (logx 7(cfk2k+3)(logx)/(80k), where Cy, is the constant
(m)

defined in Lemma[2.10,

We will need the following estimate for the proof of Lemma

Lemma 3.3. For each positive integer k, there is ¢ > 0 such that the following holds. Suppose P is a
complete polynomial of degree k with integer coefficients in its binomial representation. If x is sufficiently
large and 1 < w < (logx)/2 is an integer, then the set X of y € [z, (1 + 1/k)x) such that P(y) has no

prime divisor at most w satisfies | X| > cx(logw) .

Proof. For each prime ¢ < k, let vy be the largest integer v such that ¢” | kl. For i < k, we have
H] b@® + (x—j)) = H;;B(z — j) + q*¥az for some integer z, so

-1
;p_|-q2”q % 2qu
< i > <z> 'H "+e=d) H““”_J i

2v,
Letting v,; and r; be integers such that i! = ¢"+'r; and ged(r;, ¢) = 1, we have, since (”CJ”Z? q) - (f) is an

integer, that r; | z. Moreover, vy; < v, since 4! | k!. Hence,

2v 2v
<SL‘ +’q q> B <SC> _ q .qZ _ qu 'qvqqu,ii =0 (mod qvq)'

1 ) 7! T

That is, (f) (mod ¢V7) is periodic every ¢?*¢ and, therefore, P(x) (mod q) is periodic every ¢*¥s. Since
P is complete, for each prime ¢ < k, there exists an integer z € [1,¢%*%] such that P(x) is coprime to
q. Using that []
integer y € [1,k!?] such that P(y) is coprime to all primes ¢ < k. We also have that P(x) (mod q) is

<k, q prime ¢*Y1 = k12, we have, by the Chinese Remainder Theorem, that there exists an

periodic every k!? for all primes ¢ < k. Moreover, for each prime g > k > i, (f) (mod q) is periodic every
q. Therefore, letting Ry, = k!? [k<q<w, g prime ¢ We have that P(z) (mod []
every Ry ..

4<w, q prime q) is periodic
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Let W be the set of positive integers y at most Ry ,, such that P(y) is coprime to all primes at most
w. Let mp, be the number of roots of P(z) (mod ¢), which is at most k for each prime ¢, where we used
that P has degree k and is nonzero modulo ¢ by completeness. By the Chinese Remainder Theorem, the

fraction of ¥ € [ [« y<uw. ¢ prime ) Such that P(y) is coprime to []; <y 4 prime ¢ 1s then

I

k<q<w, q prime

£4) > hliog )t

for some constant ¢}, > 0, where we used the bound 1 — ¢ > e for0 < e < 1/2 and Merten’s second
theorem, which implies that g<w, q prime
y € [k!?] such that P(y) is coprime to [,<k. ¢ prime @- Since P(y) (mod []
and ged (k! [T, - ¢<w.q prime 9) = 1, the Chinese Remainder Theorem implies that the fraction of y € [Rj ]
such that P(y) is coprime to Ry, is at least (¢, /k!?)(logw)~*. Hence, |W| > (c,/k!?)(log w)* Ry, Since
the integers y for which P(y) has no prime factor at most w are periodic every Ry ,, and Ry, < g1/2+o(1)
by the assumption w < (logz)/2, we have that |X| > (|[W|/Rgw)(z/k) — [W| > cx(logw) *z for an
appropriate ¢ > 0 depending only on k, as required. O

1/q = loglog w+0O(1). Furthermore, as shown above, there exists

<k, q prime @) 18 periodic every k12

The proof of Lemma now proceeds along broadly similar lines to the proof of Lemma

Proof of Lemma[3.3 Let S; = (s1,...,s;) denote the sequence consisting of the first ¢ terms of S and let
T; = (P(s1), P(s2),...,P(si)). We also write T as a shorthand for T, = P(S). Call i € [2,¢| bad if

P
o Speo)(T)] < (142757 |Spgy (Tiy)| and \zmm)m_l)r < gt or
o [Spen) (T < (1+ getrg) [Spn (Tima)| and 552 < [Spg (Tioy)| < 772
The following claims are the key components in the proof. Here Cj, is the constant from Lemma [2.10

Claim 1. The probability that 7 is bad conditioned on the choice of S;_; is at most p := (log x)*l/ (4C%),

Claim 2. If [¥p(,)(T)| < P(m)/4, then the number of integers in [2,g] which are not bad is less than
k2k+3 log .

By Claim 1, for any B C [2, ¢, the probability that all elements in B are bad is at most plBl. By Claim 2,
if |[Spm)(T)| < P(m)/4, then there is a set B of ¢ — k2" loga = (¢ — k2¥3)logx integers i € [2,¢]
which are bad. Taking a union bound over all choices of B, the probability that | p,)(T)| < P(m)/4 is

at most

. I R W
q — k2k+3logx k2k+31og

(6 ) k2k+3 10g$(10gl,)—(c—k2k+3)(logx)/(40k)
(

(c=k2*+9)(l0g 2) /(5C},) O

< (logz)~

Therefore, in order to complete the proof of the lemma, it suffices to prove Claims 1 and 2. It is here,

in the proof of Claim 1, that Lemma [2.10] comes into play.
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Proof of Claim 1. Fix S;—1 = (s1,...,8;—1). Conditioned on this choice of S;_1, we bound the probability
that i is bad. If [Xp(,) (Ti-1)| > P(m)/4, then i cannot be bad (so the probability that i is bad is zero). The
proof now splits into two cases, when | p () (Ti-1)| < % and when % < |Ep@m)(Ti-1)| < P(m)/4.

P(m)
2w

Case 1. |Xp(n(Ti-1)] <
Let )
V= {t e o+ 1/00) s [2nn(Trs UPODI < (14 g7 ) Epm (T}

Observe that i is bad conditioned on S;_; if and only if s; € V. We will show that |V| < ax, where
a = w Y% and Cj is again the constant from Lemmam
Suppose, for the sake of contradiction, that |V| > az. Lemma then implies that

1261 P(V) — 2571 P(V)| > a%F P(m) = P(m)/w,

where P(V) = {P(v) : v € V}. Note now that if U C Zp(;,) and u € Zp(y), then |Sp(, (U U {u})| =
¥ p(m)(U U{~u})|. Thus, for each z € P(V) U (—P(V)), we have

1
S (Tia UL < (14 g ) S (Tio)
and Lemma [2.7| implies that, for each y € 2F=1P(V) — 2*=1P(V),
2k 3

Zpem) (Ti-t ULyh] < {1+ o ) Epen) (Ti-0)] = 51 Epem) (Ti-1)]- (5)
However, by Lemma the number of y € Zp(,,) satisfying is at most 2|Xp(,) (Ti-1)| < P(m)/w.
But this contradicts the bound |28~ P(V) —2K=1P(V)| > P(m)/w, so we must indeed have that |V | < az.
Case 2. P(m)/2w < [Ep(n(Ti-1)| < P(m)/4.

Let
V= {te o+ 1/00): (ST UPOD] < (14 g ) ST}

Observe again that i is bad conditioned on S;_1 if and only if s; € V. As in Case 1, we will show that
V| < ax. Indeed, suppose, for the sake of contradiction, that |[V'| > ax. Then, by Lemma[2.10] we again
have that [2¥=1P(V) — 28=1P(V)| > P(m)/w. By our assumption that P(m) has no prime divisor at
most w, 281 P(V) — 281 P(V) cannot be contained in a coset of a proper subgroup of Zp(m)- Hence, by

Lemma [2:3]
126 L P (V) — 28" LwP (V)| > P(m)/2.

However, again using Lemma for all elements y € 28~ wP (V) — 28~1wP(V), we have

2k

3
X pim) (Ti-1 U{y})] < (1 + 2"“‘1w> X p(m) (Ti-1)| = 5\2P(m)(Ti—1)|~

But, by Lemma the number of such elements is at most 2|3 p(,,)(Ti-1)| < P(m)/2, a contradiction.
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Therefore, in either case, the set V' of bad choices satisfies |V| < ax. By using Lemma , which says
that | X| > cj(logw)~*z for an appropriate ¢, > 0, this implies that the probability 7 is bad conditioned

on the choice of S;_; is at most
1 k
V1/1X| < azx/ <ck(log w)*kx) = ac, ' (logw)* = ¢; ! (log )~/ (2Ck) (2 loglogw> < (log z) /M%) = p,

as required. ]

Proof of Claim 2. As S;_1 C S; fori € [2, q], Zp(m) (Ti—l) - Zp(m) (Tz) and, hence, 1 < |Zp(m) (T1)| <...<
12 pim) (To)| = [Zpan)(T)| < P(m)/4. Therefore, the number of 4 which are not bad with [Xp(,)(Ti-1)| <
P(m)/2w and |Spg,) (T3] > (14 27571 [Spm) (Ti-1)| is at most % < k2F*2logx. More-
over, the number of i which are not bad with P(m)/2w < [Ep)(Ti-1)| < P(m)/4 and |Xp( (T3)] >

(1+ ﬁ) |2 p(m)(Ti-1)| is at most % < log z, where we used that w = (log z)/2. Therefore,
the number of i € [2, ¢] which are not bad is at most k2572 log z + logz < k283 log z. O

We conclude this subsection and the proof of Theorem by using Lemma to prove Lemma [2.9
To this end, suppose that P is a complete polynomial of degree k with integer coefficients in its bino-
mial representation, C(k) = k2815 ¢ € (0,1/2] and X is the set of y € [z, (1 + 1/k)x) such that P(y)
has no prime divisor at most (logz)'/2. Our aim is to show that if a sequence S of C(k)e 'logz ele-
ments in X is chosen independently and uniformly at random, then, with high probability, S has distinct

terms and, for any subsequence S’ of S of size €|S|, the set X(P(S’)) contains all integers in the interval
[§P()|S"], §P(x)|S']].

Proof of Lemma[2.9 As P is a complete polynomial, its leading coefficient is positive. Hence, for x
sufficiently large, P will be positive and strictly increasing on the interval [z, (1 + 1/k)z]. We may
therefore assume that P is injective on the interval [z, (1 4+ 1/k)z) and, for any y in this interval, P(y) €
[P(x), P((1+1/K)2)) C [P(2), eP(x)

By the birthday paradox, as |S| = o(1/|X]|), P(S) has distinct terms with high probability. Fix a
choice of subset I' of [C(k)e 1logz] of size C(k)logx and consider the subsequence S’ of S given by
(si)ier. Let I" be the smallest |S’|/9 elements in I” and let S” be given by (s;);crv. Let £ = 64. Arrange

I" in increasing order and partition I” into £ sets I{, ..., I of consecutive terms so that each set I7 for
j € [] has size [I”[/£. This gives a partition of S” into ¢ subsequences SY, ..., Sy, where S7 = (si)iequ.

Note that each element of ¥(P(S7)) is nonnegative and at most P((1+1/k)z)|S]| < eP(x)[S}|. We shall
prove below that, with high probability, the sequence S has the property that, for all possible choices
of I and j, |[X(P(S}))| > P(2)[S7]/8. Assuming this, we can show that ¥(P(S7)) is not contained in

an arithmetic progression with common difference larger than 1. Indeed, if ¥(P(S})) is contained in
P((14+1/k))|SY|
P(@)S7T/8-1
Y(P(S7)) is contained in an arithmetic progression with common difference d > 1, then all elements in
¥(P(S})) are congruent modulo d, from which it follows that all elements of P(S7) are divisible by d.
1/2

an arithmetic progression with common difference d > 1, then d < < 9e. Moreover, if

This contradicts the fact that no element of P(S7) has a prime factor at most (log #)*/=. Hence, for each j,
¥(P(S7)) is not contained in an arithmetic progression with common difference larger than 1. Therefore,
by Lemma.2] as X(5") = £(S7) +- - -+ 2(57), the set (S”) contains the integers in an interval of length

at least ¢ (P(:E)|S;-/|/8 - 1) +1> P((1+1/k)x). Finally, by Lemma Y(P(S")yU P(S5"\'S")) contains
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all integers in the interval [eP(z)|S’|/9,8P(x)|S’|/9], where we used that all elements of S” are at most
P((1+1/k)z), the elements of ¥(S”) are at most P((1+1/k)x)|S”| = P((1+1/k)z)|S’|/9 < eP(x)|S’|/9
and the sum of the elements in S’ is at least P(x)[S"\ S”| = 8P(x)|S’|/9.

It remains to show that, with high probability, the sequence S has the property that, for all possible
choices of I" and j, [X(P(S7))] > P(x)|S]|/8. Fix an index 1 < j < ¢ and partition the index set I

of S;-’ into two consecutive blocks J; and Jy of equal size. Let Q1 = (S;)ics; and Q2 = (S;)icsy, SO
Q1] = Q2| = @ = % > k2F*+4log . Recall that X is the set of integers in [z, (1 + 1/k)z) such

that P(x) has no prime divisor at most (logz)'/2. Consider m € X. We note that when we fix the subset
of indices I’ of [C(k)e !logx] of size C(k)logz and the index j, then J; is determined as a particular
subsequence of I’. Moreover, each element in @) is uniformly and independently distributed in X. Taking

a union bound over all z/ (Cgf();; 110205 *) choices of I’, j € [{] and m € X, Lemma implies that the

probability | p,) (P(Q1))] < %m) for some choice of I’, j € [¢] and m € X is at most

C(k)e tloga —k2kCTT %, —k2kC
(1  logz (k)logzx 1 e logz _ 1
A R < wt(e/) 05 (log ) or 1),

where 0,(1) tends to 0 as x tends to infinity. Thus, with high probability, the sequence S is such that
X pm)(P(Q1))] = @ for all possible choices of I’, j € [¢] and m € X. In this case, by repeated
application of Lemma [2.5] for all j € [¢],

IS(P(S))| = > P(m)/4=|Qz|P(m)/4 = |S}|P(m)/8 > P(x)|S]|/8.
meQ2

Therefore, with high probability, the sequence S is such that [%(P(S7))| > P(x)]S}|/8 for all possible
choices of I’ and j, as required. O
3.3 Proof of the lower bound in Theorem 1.1

We first prove a useful lemma.
Lemma 3.4. Let S be a sequence of positive integers and m and q be positive integers. Then
12(S) N m]| <27 ] (1 + 2*a/q) <omiexp | S 27/
aeSN[m] aeSN[m]

Proof. Let rs(s) denote the number of ways of representing s as a sum of distinct elements from S. So if
s € ¥(9), then rg(s) > 1, while rg(s) = 0 otherwise. For each s € ¥(S5)N[m], we get a contribution of one
to the leftmost expression. For the middle expression, by expanding the product, for each s € X(S) N [m]
we get a contribution of rg(s) - 2™/9 . 275/¢ > 1, proving the desired inequality. We then get the last
inequality by using 1 + z < €* for z > 0. O

Using the above lemma, we prove the following theorem, giving the lower bound in Theorem [I.1}
Theorem 3.5. Let r > 2 be an integer. If a sequence of positive integers A satisfies A(n) < %(logQ n)?

for all sufficently large n, then A is not r-Ramsey complete.
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Proof. By replacing r by r — 1 if r is odd, it suffices to prove that, for » > 2 even, a sequence of positive
integers A with A(n) < & (logyn)? for all sufficiently large n is not r-Ramsey complete.

By reordering, we may suppose that A = (a;):°; is in increasing order a; < ap < ---. Define an
r/2-coloring of A, which we call the hue coloring, by assigning ay hue h € Z, 5 if £ = h (mod r/2). For a
positive integer j, define a red/blue-coloring C; of A where Cj(a) is red if a < 27 and blue otherwise. Let
¢; be the product coloring formed from the hue coloring and the red/blue-coloring C;. That is, ¢; is an
r-coloring of A given by the hue and whether or not the term is at most 27.

The largest positive integer that can be written as a sum of red elements of the same hue in coloring
c¢j is at most )

24+ - a. 6

" aeAzmz[m’] ( )

This follows since, for any two hues h and b/, the elements of A N [27] with hue h and those with hue A’
interlace and are bounded by 27, so the sum of elements of hue h is at most 2/ more than the sum of
elements of hue A’ and, therefore, at most 2/ more than the average sum of elements taken over all hues.

Let the cost of a € AN [27] for the coloring ¢; be a/27j. Over all colorings ¢; with j > 1, the total
cost of @ > 21is )

If any number larger than 2/=1(j +2) can be written as a sum of monochromatic red elements in coloring

j>log2aa/2jj < 2/log, a, while the cost of each a € {1,2} over all such ¢; is at most 2.

¢; (so they are also of the same hue), then, by @, we have

9 .
24+ 3 a>271(j+2),

r .
a€AN[29]

or, equivalently, ZaeAm[zﬂ'} a > 127725, so0 the total cost of all elements in A N [27] for the coloring cj is at
least r/4.
Let i be a sufficiently large positive integer. The total cost of the elements a € AN[2] for the colorings

Cl,...,C; is at most

o+ Y < (7)

a€AN(2,2%) log a 32

where the O(1) term comes from considering the cost of the terms a € {1,2}. To prove inequality , we

use Abel’s summation formula

> tf(0) = T @) ~ Tlao)fwo) — [ T Wiy

ro<n<zx Zo

where f is a continuously differentiable function on [zg,z] and T'(y) = >, -, tn. Using Abel’s summation

ny TN
formula with ¢, = 1if n € AN (2", 2] and t, = 0 otherwise, where iy is chosen so that A(n) < 155 (logy n)?
for all n > 2%, and f(z) = @, we obtain
1 A(2) A2 2" A(x) log 2
3 :0(1)+(.)—U+/ Lmidx
log, a i i0 9ip x(log )

a€AN(2,27]

i’ 2 r(logy )% log 2
<0O1)+ —— —=—d
<o)+ 1404 +/2i0 140z (log x)? v
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2r1 ri
1 2 2
o) + 140 65’

where we assume in the last inequality that ¢ is sufficiently large.

Thus, fewer than (ri/32)/(r/4) = i/8 of the i colorings ¢; with 1 < j < ¢ have the property that there
is a number greater than 2771 (j 4+ 2) that can be expressed as a sum of elements which are red of the same
hue. We call j red-strong if there is a number greater than 2/=1(j + 2) that can be expressed as a sum of
elements which are red of the same hue in the coloring c;.

For a non-negative integer j, define

aGy= > 2T

a€A21<a<2iy

For each a € A, the contribution of a to the various g(j) is

DR P

J:29<a<2ij h>0

where we used the change of variables h = |log, a] — j. Hence,

Zg(] Z 5= 5A(i2Y).
j=1

a€AN[2%4)

For s € Z, 3, let As be the subset of A consisting of elements of hue s. Let A5~ = {a € As:a > t}.

Let b(j) denote the number of elements of [275] which can be written as a sum of blue elements in coloring

¢j of the same hue, so b(5) = |U:L B(A,50) 0 [27]]] < 30U [5(4,50) N [275]]. Applying Lemma
with §' = A 505, m = 275 and ¢ = 2]+4, we have

. . j A 2
|E(AS’>2J') N [2jj]| < 29/16 exp Z 9-a/PT | < 9i/16 exp (1 + rg(j)) ,

a€A, L) N[277]

where we have again used the fact that, for any two hues h and A/, the blue elements with hue h interlace
the blue elements of hue A’ together with the observation that the function z + 2-2""" is monotone and
bounded above by 1. We thus have b(j) < T23/16 exp (1 + g( )) Hence, for i sufficiently large,

: : ro. 2 9 2 : i 2 10 i i2
. T oj/16 c (s 101°/31 “ . i61°/31 A0t i%/4
I |1b(j) < | | 223 exp (1—|—Tg(j)> <r'2 exp | - Elg(j) <r'2 exp(rA(ZQ )) < 2V/%,
j= =

j=1
(8)
If at least 3i/4 of the i colorings ¢; for j =1,...,4 have the property that at least 27 positive integers

at most 2/j can be written as a sum of blue elements of the same hue, then the left hand side of (8)) is

; 8i/a+1 - L . . .
at least Hj”:/f 9i = 9(*2™) > 28/ 4. contradicting . Hence, for at least i/4 of the colorings ¢; with
j =1,...,i, we have that there are at most 27 positive integers at most 27§ which can be written as a

sum of blue elements of the same hue in A. Call j blue-strong if in coloring c; at least 2/ positive integers

at most 27§ can be written as a sum of blue elements of the same hue in A. Call j weak if it is neither
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blue-strong nor red-strong. Hence, for i sufficiently large, there are at least i —i/8 — 3i/4 = i/8 elements
j € [i] which are weak. Thus, there are infinitely many weak j and we let J = {j,}r>1 be an infinite
sequence of weak j so that j, > 971,

We next define an r-coloring ¢ of A for which there are infinitely many integers which cannot be
written as a sum of monochromatic elements from A. The coloring ¢ is a product coloring of the hue
coloring (which uses 7/2 colors) and a red/blue-coloring of A. We color an integer in A blue if it is in
one of the intervals (27,275] with j € J and red otherwise. We will prove that at least half the elements
in (2771(j + 2),274], where j € J is sufficiently large, cannot be written as a monochromatic sum in the
coloring c.

Suppose now that N € (2771(j + 2),274] is a sum of red elements of the same hue. Since there are no
red elements in (27,274] in the coloring ¢, N can also be written as a sum of red elements of the same hue
in ¢;, contradicting the assumption that j is weak. Hence, no element in (2/71(j +2),274] is a sum of red
elements of the same hue in the coloring c.

As j = jj, is weak, there are at most 27 elements at most 275 that can be written as a monochromatic
sum of blue elements of the same hue in (27,27;]. The number of remaining blue elements in [275] is at

most

. ) r . 3
A1, ) < m(10g2(2jh_1]h—1>)2 <

’"jlefl < log, j

2 - 2

Thus, the number of positive integers at most 275 which can be written as a monochromatic sum of blue
elements in the coloring ¢ is at most 2(1°829)/297 < 275/8. Hence, as 275/8 < % (2jj — 271+ 2)), at
least half the elements in (2771(j + 2),27;] cannot be written as a sum of blue elements of the same hue
in the coloring c. As there are infinitely many such j, there are infinitely many positive integers which are

not the monochromatic sum of elements in the coloring ¢. This completes the proof. ]

Remark. In the proof above, for j = 1,...,4, we made use of colorings C; which color the positive integers
up to 27 red and all larger integers blue. Alternatively, we could have picked a random coloring ¢, which
colors all positive integers up to = red and all larger integers blue, where z € [N] is chosen with probability
#(N) with H(N) = Zivzl % One can then do a similar analysis using elementary probability to get a
better constant factor in Theorem [3.5

4 Density completeness

In this section, we discuss Theorems [1.3| and our results on density completeness. Since reordering a
sequence does not change whether or not it is e-complete, it will suffice to consider monotonically increasing

sequences. We will begin with the following simple result, from which the first part of Theorem [I.3follows.

Theorem 4.1. Let € > 0. If A = (an)n>1 is @ monotonically increasing sequence of positive integers which

an < Z a;

i<en+C

18 e-complete, then there is C such that

holds for all positive integers n.

Proof. Suppose that there is no such C'. Then there is a function g : N — N with lim,, . g(n) = oo

such that a, > > n) @i holds for infinitely many n. Thus, we can pick an infinite sequence of

i<en+g(
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positive integers ny,ng,... such that, for all j, we have a,; > Zz‘genj-s—g(nj) a; and g(n;) > nj_1. Pick a
subsequence A’ of A by deleting all elements a; of A whose subscript ¢ satisfies enj + g(n;) < i < n; for
some positive integer j.

We first show that A’(z) > eA(z) holds for all 2. It suffices to check this when z = a,, for some
positive integer j. However, we have A’(an;) > en; + g(n;) —nj—1 > en; = eA(ay,), as required.

To see that A’ is not complete, we show that each integer ap; is not the sum of elements from A
Indeed, such elements must be at most ap; and hence at most a1 4(n,).- However, Zig enj+g(n;) i < nj;

SO ap; is not in X(A’) and A" is not complete. O

This gives a necessary growth condition for a sequence to be e-complete. Recall that it is also necessary
for an e-complete sequence to satisfy the divisibility condition that no prime is a factor of more than an
e-proportion of the elements in the sequence. In the proof of Theorem below, we show that, apart
from some mild additional assumptions, a random sequence satisfying both the growth condition from
Theorem and a suitable variant of this divisibility condition is likely to be e-complete.

Recall that, for a sequence B = (by,)n>1, the discrete derivative is defined by Ab, := byy1 — by,. Fix
0 < e < 1. Asequence B = (by)n>1 is called e-friendly (or friendly) if it satisfies the following five growth

conditions:

(i) For some constant C' and all n,

(i) limp o0 Aby = o0.
(i) Tim; oo ZED=BC) — o
(iv) There exists 0 < ¢ < 1 such that cAb; < Ab; for all ¢ < j. Moreover, if b; < 2b;, then Ab; < %Abi.

(v) B is strictly increasing.

By Theorem condition (i) is necessary for an increasing sequence of positive integers to be e-complete.
The other growth conditions are mild assumptions that will be helpful in proving the existence of an
e-complete sequence A = (ay)p>1 which interlaces B, that is, for which b, < a,, < by, for all n.

Let b1, bo, ..., b be any finite strictly increasing sequence of positive integers. Let {z} = x — |z] denote

the fractional part of z. If we define B = (by,),>1 recursively by

by = [{en}bren ] + D bi

1<en

for n > t, then it is easy to check that such a sequence is friendly and satisfies b, = ©(f,), where,
following the introduction, F' = (f,)n>1 is any sequence of positive integers for which f, = >, fi for
all sufficiently large n. We note that the term [{en}br.,| is added as a “discrete interpolation” factor to

guarantee conditions (ii) and (iv) of friendly sequences.

Claim 4.2. If B = (by)n>1 is a friendly sequence and n is a sufficiently large positive integer, then

bonjetr1 2 2bn41, where c is the constant in condition (iv) of friendly sequences.
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Proof. We have

= < A
bpi1 = b1 + Z; Abi < b +nmax Ab, (9)
and
2n/c
bonfest = bori+ > Ab;
i=n-+1
> bpy1+(2n/c—n) m>in Ab;
j=zn

> bpt1+(n/c) 'cm<aXAbi+ (n/c—n) m>inAbj
1<n Jjzn

> byt +(n/e) - cmax Ab; + by

> 2bpyr1. )

Here we used condition (iv) of friendly sequences to deduce the second inequality, the third inequality

follows from (n/c —n) minj>, Ab; > by for n sufficiently large and the last inequality is by @ O

The next theorem is our main result on e-complete sequences and completes the proof of Theorem
We remark that since condition (i) of friendly sequences only gives an upper bound on b, this result also

allows us to find sequences that are considerably denser than (fy),>1 that are e-complete.

Theorem 4.3. Let 0 < € < 1 and B = (by)n>1 be a friendly sequence as defined above. Then there is
a sequence A = (an)n>1 of positive integers that interlaces B, i.e., by < an < bpy1 for all n, which is

e-complete.

Proof. Let eg > 0 be sufficiently small. We pick the sequence A by taking, for j sufficiently large, a; to be
a uniform random integer in [bj, b;+1) which has no prime factor at most (max(1/e,1/eg))4°%. For small
Jj this might not be possible, as the interval [b;, bj;1) might not contain any integer with no prime factor
at most (max(1/e,1/€))4%% so we let a; be any integer in [b;, bj4+1) in this case. This guarantees that A
interlaces B.

For a positive integer i, let h(i) be the smallest integer for which by,; > 2. Note that bn(i+1)—1 is the
largest element of B which is less than 2!, Let A; := AN [bh(i)» br(i+1)—1), 80 A; consists of all but at
most two elements of AN[2¢,2F1). By condition (iii) of friendly sequences, for any C and for i sufficiently
large depending on C, |A4;| > C'max(1/e,1/¢p)i. The following lemma is a close relative of Lemma

The proof of the lemma, which is an appropriate modification of the proof of Lemma [2.8] is deferred to
Appendix

Lemma 4.4. There exist positive constants ey, C1 and Co such that the following holds. For i sufficiently
large, with positive probability, the set A; has the property that, for any subset A, C A; with |A;| >
(min(e, €9)/4)| Ail, A} contains a subset A with |AY| < Cyi such that X(AY) contains every integer in the
interval [y, 2y|, where y = Cy2'.

Since the choices of A; for different ¢ are mutually independent, we can guarantee and will assume that
A; satisfies the conclusion of Lemma [£.4] for each sufficiently large i.

Our goal now is to show that if A’ is any subsequence of A with |A'(n)| > €|A(n)| for all sufficiently

large n, then A’ is complete. We first show that for each ng there is n > ng such that A’ is complete or
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A’ contains only roughly en elements among the first n elements of A. We then go through a very similar
argument using this additional structure to conclude that A’ is complete.

Let ig be a sufficiently large positive integer and m = A(2%). The number of elements in A which are
at most 2 and not in any A; is at most 2iy < gm. Let A] = A;N A’. So the set Uigi0 Al of elements in
A’ which are at most 2% and in some A; has size at least eA(2%) — m > %m. Let 71 < ig be the largest
4]
AL

positive integer for which [A] | > {|A;, |, which exists by the observation just made. The set [J; i<,

has cardinality at most 7|{J;, <i<;, Ail < §m, so there are at least 3m — £m = $m elements in Ui<i,
In particular, A(221) > A’(2F1) > &m.

Since A;, satisfies the conclusion of Lemma and |A] | > (e/4)|Ai| > (min(e, €0)/4)|A;, |, there
is A} C Aj with [A]| < Cyiy such that X(A} ) contains every integer in the interval [y,2y] where
y = C22"i1. Label the elements in A"\ Aj in increasing order as ay, a5, .. ..

By Lemma if, for each j, we have aj < 2y —y+aj +---+aj_y, then X(A"\ A7) + [y, 2y) contains
all integers at least y and, as ¥(A’) is a superset of (A" \ A ) + [y, 2y), A" would be complete. So we

may assume that there is some j for which
aj >y+ap+ -+ aj_yg. (10)

In particular, a; > i+l > Qg = 5m, so that j can be made sufficiently large by taking i and, hence,
m sufficiently large.
As aj € A"\ A]| C A, there is a positive integer n for which a’ = a,, where, again, n can be made

sufficiently large by taking ig sufficiently large. We have

Z a; < Ap < bp1 < Z b; < Z ag,

i<j—1 i<e(n+1)+C i<e(n+1)+C

where the first inequality follows from 7 the second and fourth inequalities are by the fact that A
interlaces B and the third inequality follows from condition (i) of friendly sequences. This implies that
j—1<e(n+1)+C,so

Alan —1) <A} |+7—1<Crir+e(n+1)+C < Crig+en+C +1. (11)

That is, the number of elements of A’ amongst the first n elements of A is roughly en.

We next give a similar argument, but using the extra information that there are many elements
as € A\ A’ with s < n in order to conclude that A’ is complete. Let N = 8(n+1)/(ec). Let i3 be the least
positive integer such that 22 > ay and let m’ = A(2"2),som’ > N. As aon/eq1 > banjes1 > 2bn41 > 2an,
where the middle inequality follows from Claim [£.2] there is a perfect power of two which is at least ay
and less than agpy/cq1, s0o m' = A(2%2) < 2N/c. Furthermore, since a,, = a; > agp, we have that n > sm.
Thus, N = 8(n + 1)/(e?¢) > m, so A(22) > N > m = A(2%). In particular, we obtain that iy > ig.
Hence, N, i and m’ may be made sufficiently large by taking i¢ and, hence, n sufficiently large.

We also have A'(2%2) > €A(22) = em’, so A’ contains at least em’ elements as < 22, Let i3 < iy be
the largest positive integer such that |Aj | > §|A;,|. Recall that, for each positive integer i, the number of
elements of A in [2¢,2F1)\ [bh(i) br(i+1)—1) is at most two. It follows that AN [2i2] \ Ui<i, [Oniys Ongit1)—1)

has cardinality at most 2io < ETm,, where the last inequality follows from condition (iii) of friendly sequences
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and the fact that 7o is sufficiently large. Hence, at least a fraction € — 7 — ¢ = § of the elements of A up

to 272 are greater than aenya and in A" N U, oy, [br(i), brii+1)—1) and, therefore, i3 satisfies 2iaFl > Aen /4
Since A;, satisfies the conclusion of Lemma and A} | > (min(e, €9)/4)|Ai,|, there is Af, C A} with
|A7 | < Chiz such that $(A)) contains every integer in the interval [y, 2y] where y' = C52"%i3. Label the

elements in A"\ A7 in increasing order as aj, aj, ..., noting that we have relabeled most of the elements
in A’
Again, by Lemma if, for each j, we have a; <2y -y +adj+--- +a;._1, then E(A’\A;’g) + 1, 2y)

contains all integers at least 3" and, as X(A’) is a superset of ¥(A"\ Af)) +[y/,2y’), A" would be complete.

So we may assume that there is some j’ for which
ay >y +ay+Faly.
Note in particular that a, >y’ > 271 > a.n /4. Let n’ be such that a, = @y, 80
n' > eN/4. (12)

By condition (i) of friendly sequences, we have

a;-/ = Qp < bpy1 < Z b; < Z a;.

i<e(n'+1)+C i<e(n’+1)+C

Note also that, for i > en/, we have
473 Z (0% 2 bEn’ 2 2bcen’/2 > 2acm//2_1 Z 2ac€2N/8—l Z 2(ln. (13)

Here the first inequality follows from A being increasing, the second and fourth inequalities follow from
the fact that A interlaces B, the third inequality follows from Claim the fifth inequality follows from
and the last inequality follows from the choice of NV and the fact that A is increasing.

Since A’ has at least en’ elements up to a,/, we have j' > en’ —|Aj|. It follows that

z:a;c > - Z a+ Z ag

k<j’ a€lan]N(A\AY) kgen’f|A;’3|fl+n7A’(an)

> —an(n— A'an)) + > aj,

k<en'— |A;’3 |—14+n—A"(an)

— (= (@) + )3 ak

k<en'— |A;’3 |—14+n—A’(an)

Z A,

kgen'—\Agfg|_1+§(n—A'(an))

A\

Y

where the first inequality uses that A is an increasing sequence and ), < ap, + Zae[an]ﬁ( A4 @ is a
sum of at least en’ — A} | — 1 +n — A’(a,) distinct terms of A, which is at least the sum of the first
en’ —[AY | = 1+n — A'(a,) terms in A. The second inequality follows from A being increasing, the third

inequality follows from using and the last inequality follows from A being increasing and the following
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estimate showing that 3(n — A’(ay)) — |Af.| — 1> 0. We have

1
2

(n— A'(an)) > —Cli3—1+% (n — (Crig + en + C +2)) > —2C’1i2+%(1—6)n—¥ > C+1,

—[Af -1+
where the first inequality is by , the second inequality uses g, i3 < i2 and 5 is sufficiently large, while
the last inequality uses n > €¢2cN/10, N > cm//2, condition (i) of friendly sequences, the fact that A
interlaces B, m’ = A(2%2), iy is sufficiently large and m’ > 9V (2logz(1/)+o(D)iz from Appendix from

all of which it follows that i < n. However, this implies that

bn/+1 > ap = a;/ > Z aﬁc > Z ap > Z by > Z by,

k<j’ k<en'+C+1 k<en’+C+1 k<e(n'+1)+C

contradicting condition (i) of friendly sequences. O

Theorem [I.4] is obtained similarly, by replacing Lemma [£.4] in the above proof by an appropriate
analogue of Lemma As indicated in the introduction, we omit the details.

5 Monochromatic subset sums

5.1 Proof of the lower bound in Theorem [1.6

Throughout this section, we use the convention that products and sums indexed by p run over primes.
Recall that p; is the i*! prime, W (p) = [/, pi and 7(p,m) = ¢(W (p)m)/(W (p)m) = [Ljw(pym(1—1/p).

We recall from the introduction that, for positive integers n and m with m € [n, (g)], we define p(n,m) to

be the smallest positive integer p such that p/7(p,m) > n?/p(m). Let 1(n,m) = (10g72)11/j§&¢1(07g23)2/3

R(n,m) = min (¢»(n,m), p(n,m)). By Claim in Appendix we note that R(n,m) = © (¢(n,m))

when m = O (%) and R(m,n) = ©(p(n,m)) otherwise.

We aim to prove that f(n,m), the minimum r such that there exists an r-coloring of [n — 1] where

and

m cannot be written as a sum of distinct monochromatic elements, is bounded below by R(n,m) up to a
constant factor, giving the lower bound in Theorem The main result of this subsection is the following

lemma, from which the required lower bound easily follows.

Lemma 5.1. There exist positive constants ¢ and C such that the following holds. Let n be sufficiently
large and m € [n, (})] be such that r = cR(n,m) is at least C. Let y < n/2 be such that

y*(m/o(m))T(r,m) y*(m/d(m))7(r,m)
257 ’ 157

me |

1/16

and let' Y be the set of integers in [y, 2y) of the form qu, where ulm, u <y and q is coprime to W (r)m.

Then, in any r-coloring of Y, there exists a monochromatic subset sum which equals m.

By Claim in Appendix for any m € [n, (3)], there exists a choice of y € [max(r?, n3/5),n/2)
satisfying the required condition. We may therefore apply the lemma to conclude that if R(n,m) > C/c,
then f(n,m) > ¢R(n,m). That is, the lower bound in Theorem holds in this case. On the other
hand, if R(n,m) < C/c, we have the trivial bound f(n,m) > 1 > C~'¢R(n,m), so the lower bound in
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Theorem also holds in this case. For the same reason, we can and will assume throughout that r is
sufficiently large.

We will build towards the proof of Lemma through a series of reductions and intermediate results.
For convenience, we will often use objects and notation in the lemma statements without repeating their

definitions from earlier. We begin with the following number-theoretic estimate, whose proof may be found
in Appendix

Lemma 5.2. Let r, n and m be positive integers such that m € [n, (g)], r < n and r is sufficiently
large. For any interval I = [x,2z) with x > n'/*, there are at most 8(m/d(m))7(r,m)x integers in I of

1/16

the form qu, where ulm, u < x and q is coprime to W (r)m. If also x > r2, then there are at least

$(m/¢(m))r(r,m)z integers in I of this form.

By Lemma [5.2] the set Y defined in Lemma [5.1] satisfies

Y| > (m/é( )7 (r,m)y.

By the pigeonhole principle, in any r-coloring of Y, there is one color class whose size is at least
$(m/¢(m))7(r,m)%. Let Qo be the elements of Y in this color class. We will prove that m € $(Qo).

Call a set X of integers k-diverse if, for each v > 2, there are at least k elements of X which are

not divisible by v. If Qg is not yl/ 4 1/4

are not divisible by vg. We replace Qo by Q1 = {a/vo : a € Qo,vola} C [y/vo,2y/vo). We then iterate
1/4

-diverse, there exists vg > 2 such that at most y*/* elements of Qg

this process. For i > 1, if Q; is not y'/4-diverse, we can remove at most y'/4 elements of Q; so that the
remaining elements are divisible by some v; > 2. We then let Q;11 = {z/v; : * € Q;,vi|xr}. We stop the
process once we reach a set Qs which is y'/4-diverse. Note that there can be at most logy n iterations, so
there must be at least %(m/qﬁ(m))T(r, m)¥ — y'/*logy n elements in Q.
By the process defining Qg, there exists v such that Qs = {z/v : x € Qp,v|x}. Let @ = Qs. Then
Q is a subset of [y/v, 2y/v) of size at least 1(m/qb(m))7‘(r, m)¥ — y'/*log, n which is y'/*-diverse. Let
= +(m/p(m))r(r,m)¥ y'/*1og, n. Note that

Somfo(m)r(r,m)Y > 2 > S (m/g(m))r(rm)Y > S (rm) g >y, (14)

ﬁ\@
REES

where we used that y > max(r?, n3/ %), which is inequality of Claim in Appendix and
7(r,m) > 1/(8lognloglogn) by inequality in Appendix In particular, for r sufficiently large,

Q1 =22 2o (m/6(m)r(r;m) Y > 64(m/9(m))r(r, m)

rlogr’
The next lemma shows that v|m.

Lemma 5.3. If there exist at least 64(m/¢p(m))7(r,m)
1/16

# elements in'Y which are divisible by v, then
g

Furthermore, all elements of Y which are divisible by v have the form quu, where
(vu)|m, vu < y'/1% and ged(q, W (r)m) = 1.

vlm and v <y

Proof. Note that if gcd(q, W(r)m) = 1 and ¢ # 1, then any prime factor of ¢ is at least p, > rlogr/8 for
sufficiently large r. Recall that elements of Y have the form qu, where u|m, u < y'/'6 and ged (g, W (r)m) =
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1. Assume that there exists v such that either v { m or v > y'/16 and at least 64(m/¢(m))7(r,m) -

rlogr
elements in Y are divisible by v. We claim that v must have a prime factor p which is coprime to

W (r)m. Indeed, if this were not the case, then v only has prime factors which are divisors of W (r)m, so
ged(v, q) = 1 for any ¢ coprime to W (r)m. Thus, if an element of the form qu with u|m, v < y'/16 and

1/16

ged(q, W(r)m) = 1 is divisible by v, then v|u, so v|m and v < y'/*°, contradicting our assumption. Thus,

v has a prime factor p which is coprime to W (r)m. In particular, p > p, > r(logr)/8.

We have that at least 64(m/¢(m))7(r,m)—=%~ elements of Y are divisible by p. For each element qu

rlogr
of Y which is divisible by p, since p is coprime to W (r)m, we must have p|q, so ¢ = ¢'p for ¢’ coprime
to W (r)m. Hence, elements of ¥ which are divisible by p have the form pq'u where u|m, v < y'/'6 and
ged(¢/, W(rym) = 1. If y/p > n'/* Lemma implies that the number of such elements is at most
8(m/¢(m))r(r,m)L < 64(m/¢(m))r(r,m) 12~ I y/p < n'/4, then the number of such elements is at
most y/p < n'/* < 64(m/ ¢(m))7(r,m)%, where the second inequality is verified as inequality

of Claim in Appendix . In either case, we have a contradiction, so we must have that v|m and

v < yl/lG.

1/16 and

1/16

Since v|m, we have ged(v, W(r)m) = v, so each element of the form qu where ulm, u <y
ged(q, W(r)m) = 1 which is divisible by v must have v|u. Hence, qu = quu’ where (vu')|m, vu' <y

and ged(q, W (r)m) = 1, establishing the second claim in the lemma. O

rlogr

Since |Q] > 64(m/p(m))1(r,m)—=L- and {vz : x € Q} is a subset of Y, Lemma implies that each
element of @ can be written in the form qu, where (vu)|m, vu < y/'0 and ged(q, W (r)m) = 1. Let

Y, = {t € [y/v,2y/v) : t = qu,u|(m/v),u < y*/'% /v, ged(q, W (r)m) = 1}.

We have that vt € Y forallt € Y, and Q CY,,.
Let V be a random subset of Q of size z/8. The next lemma implies that V is y'/4/16-diverse with
probability at least 1/2. From now, we fix V to be a subset of Q of size z/8 which is 3'/*/16-diverse.

Lemma 5.4. Let k and h be positive integers with h # 1 and N = exp(k/16h). Let A be a set of t integers
in [N] which is k-diverse. Let B be a uniformly random subset of A of size t/h. Then B is k/(2h)-diverse
with probability at least 1 —1/N.

Proof. For each d € [N] with d > 1, let X be the set of elements in A which are not divisible by d. By our
assumption, | Xy4| > k for each d. The number of elements in BN X, follows a hypergeometric distribution.
As the hypergeometric distribution is at least as concentrated as the corresponding binomial distribution
(for a proof, see Section 6 of [29]), we can apply the Chernoff bound to obtain that the probability that
|BN X4 <|Xal/(2R) is at most exp(—|Xy4|/8h) < exp(—k/8h) = N~2. By taking a union bound over all
d € [N] with d > 1, we conclude that the probability B is not k/(2h)-diverse is at most N-N—2 = N~1. [0

The following lemma is the key to proving Lemma [5.1]

Lemma 5.5. Let { = [32/€], where & is the constant in Lemma [2.4, Let A be a subset of Y, of size
2/(80) which is y*/*/(320)-diverse. Then |S(A)| > yz/((%v) and $(A) is not a subset of an arithmetic

progression with common difference greater than 1.

Before moving on to the proof of Lemma [5.5] we show how Lemma [5.1] follows from it.
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Proof of Lemma[5.1] assuming Lemma[5.5 Recall that we have fixed a subset V of @ of size z/8 which is
y'/*/16-diverse. We will prove that ¥(V) contains an interval J = [a,b] of length at least 2y/v. To see
why this suffices, first note that

(m/¢(m))7(r,m)y
8- 8r

Ubgv-maxE(V)<2y-§§2y- < m,

where the third inequality follows from and the last inequality follows since y? < Wﬁ}% by
the choice of y. If now we can find the required interval J, Lemma [5.1] follows since each element of @
is at most 2y/v and, hence, by Lemma 2.1, £(Q) = X(V U (Q \ V)) contains an interval whose smallest

element is a < m/v by the inequality above and whose largest element is

b+ Z 7> %'2(1—1/8) > % . 7(m/¢<8m))7(rvm)y > m

‘ 10r v’
1€Q\V
. . . 2 15 . .
where the last inequality follows since y* > W by the choice of y. Hence, ¥(Qg) contains the
progression {va,v(a + 1),...,v(m/v)}, which contains m.

We partition V' randomly into ¢ sets Vi, Va, ...,V of size z/(8¢). By Lemma and the union bound,
the probability that V; is y'/4/(32¢)-diverse for all i € [¢] is at least 1/2. Hence, we can fix a partition of
V into £ sets Vi, Va, ...,V of size z/(8¢), where Vj is y'/*/(32¢)-diverse for each i € [].

For each i € [¢], ¥(V;) is a subset of the interval [0,z/(8¢) - 2y/v] = [0,yz/(4¢v)]. By Lemma
12(V;)| > yz/(£?v) and X(V;) is not a subset of an arithmetic progression with common difference greater
than 1. Therefore, by Lemma[2.2) £(V1)+- - -+3(V;) contains an interval of length at least yz/(2¢v) > 2y/v

for n sufficiently large, as required. O

We have therefore reduced the task of proving the lower bound in Theorem to Lemma The
strategy for proving Lemma [5.5] is now as follows. We partition A into two subsets A; and Ag of size
2/(16£), observing that we can choose A; and Ay to be y'/*/(128¢)-diverse by Lemma We then show
that (A1) contains elements in many different congruence classes modulo ¢ for all ¢ in Ag, allowing us
to apply Lemma repeatedly (as in the proofs of our results on completeness) to conclude that each
element of Ay introduces many new elements to the set of subset sums.

The next lemma is the main step in the proof of Lemma Recall that

Yi(A) = {Zx modt:SgA}

zeSsS

and £ is the absolute constant defined in Lemma

Lemma 5.6. Let t € [y/v,2y/v). Let A be a subset of Y, of size z/(16£) which is y/*/(128¢)-diverse.
Then |£¢(A)| > min(§, 32/0)t.

To show that the set of mod t subset sums is large, we prove the following structural lemma, stating
that the set of elements whose inclusion does not expand the set of mod t subset sums must either be
small or additively structured. We will then use this additive structure to show that the corresponding

set in Z must contain a small number of integers of the form qu, which we will see is impossible.
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Lemma 5.7. Let t be an integer. Let A C Zy be such that 8d < |A| < &t. Let Gq C Zy be the set of x such
that |(A+x) U A| < |A|+d. Then either G4 is contained in a proper subgroup of Z, |Gq| < % or
there is a subgroup H of Z; such that Gy is contained in a set of size at most 128d which is an arithmetic

progression of H-cosets.

Proof. By Lemma kGy C Gia, where kGq = {x1 + xo + -+ + x : x1,22,..., 7, € Gq}. Let
i = |logy(]A]/2d)] and let k = 2°, noting that kd < |A|/2. Therefore, applying Lemma to Gra, we get
Gl < 1Geal < AL <oy (15)
A= kA=A Z g = 2

Assume that G is not contained in a proper subgroup of Z;. Let j be such that 0 < j < 4. Since
0 € G4 by definition, we have Gy C 2/Gg4, so 0 € 27Gy4 and 2/Gy4 is not contained in a proper subgroup
of Z;. Thus, 2/Gy4 is not contained in a coset of a proper subgroup of Z;. By Lemma 12iGq| >

min{t, 2077721 Gy|} = 20797127 Gy|, where we used that [2'Gy| < 2|A| < 2t < t from (15). Thus,

127G4| < 2177121Gy| < 2¢t. (16)

Assume now that |2/71Gy| = [27G4 + 27G4| < 2.04|27G,| for some 2 < j < i. By Lemma there
exists a proper subgroup H of Z; such that one of the following holds:

(i) 27Gy is contained in a set of size at most ﬁ - 1.04|27G4| which is an arithmetic progression of
H-cosets of length ¢ > 2,

(i) 2G4 meets exactly three H-cosets which are terms of an arithmetic progression of H-cosets of length
¢ and (min(¢,4) — 1)|H| < 1.04/27G4| or

(iii) 2/Gy is contained in one H-coset.

We have already seen that the third case cannot happen, that is, that 2/G is not contained in a coset
of a proper subgroup of Z;.

Suppose that we are in the second case. Then 2/Gy is contained in a union of three H-cosets, so
4G4 is contained in a union of three H-cosets. Since 0 € G4 and G4 is not contained in an H-coset, the
image of Gy in Z;/H is a subset S of Z;/H of size at least 2 such that 0 € S and 4S5 has size at most
3. This can only happen if S is contained in a subgroup of Z;/H of size at most 3. In this case, G4 is
contained in a subgroup of Z; of size at most 3|H|. Since |[H| < (min(¢,4) — 1)|H| < 1.04|27 G|, we have
3|H| < 3.12|27Gy| < 6.24¢t < t, so Gy is contained in a proper subgroup of Z;, a contradiction. Thus, the
second case cannot happen.

We now consider the first case, where 2/Gy is contained in a set of size at most ﬁ - 1.04[27Gy| <
2.08]27G4| which is an arithmetic progression of H-cosets of length /. As 0 € G, this progression of
H-cosets contains 0. Let m be such that H = {z € Z; : m|z}. Then the H-cosets can be identified with
elements of Z,,. The common difference of the progression of H-cosets must be coprime to m, as otherwise
2JG 4 would be contained in a proper subgroup of Z;. Thus, by rescaling if necessary, we may assume that
the common difference of the progression of H-cosets is 1. Let P; be the interval in Z,, which corresponds
to the H-cosets in the progression containing 2/G,. Note that 0 € Gy, so that 2" 1G,; C 2"Gy for all h.
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Hence, for each h < j, we can choose intervals P}, around 0 in Z,, such that 2"(Gy/H) C Py, P, C Pj and
2J=hp, C P;. The length £ of P; is at most m/2, since otherwise |[2/G4| > 5/—028, contradicting . We
can thus deduce that, for all h < j, P, is an interval of length at most 1+ 2"~7(|P;| — 1) around 0 in Z,,
since, for two intervals I, I’ around 0 of length |I| < |I’| < m/2 with 2 C I’, we have |I| < (|I'| +1)/2.
Hence, G/ H is a subset of an interval of length at most 1+ (|Pj| — 1)/27. Since Gy is not contained in a
proper subgroup of Z¢, (|Pj| —1)/27 > 1. Thus, we have 1+ (|Pj| —1)/27 < |P;|/2/~1. Therefore, Gy is

contained in a union of H-cosets of size at most

~

|H||P;| /27t < 1.04[27Gy| - 2V < -1.04 - 2377 A| < 1284,

b
(—1

~

-1

where, in the second inequality, we used and and, in the final inequality, we used that ¢ =
|logy(|Al/2d)| and ¢ > 2.
If there does not exist j € [2,7) such that [2/71Gy| < 2.04|27Gy|, then

120G 4| > 2.04772|Gy| > (JA]/2d)""%|Gy]/10.

Combining this with , we deduce that |G4| < %. O

Besides Lemma [5.7] we need several other ingredients for the proof of Lemma [5.6, We begin with the
following result, which will also be useful to us in subsequent sections. For this section, the key corollary

is that if A is k-diverse for k > d — 1, then 34(A) = Zg.

Lemma 5.8. Let d be a positive integer. Let A be a set of integers such that, for each d'|d, at least d' —1
elements of A are not divisible by d'. Then X4(A) = Zg. Furthermore, if A contains at least d—1 elements

which are not divisible by d, then ¥4(A) contains a non-zero subgroup of Zg.
Proof. We will use the following simple claim.

Claim. If S is a subset of Z; and X C Z; is such that [(S +z)U S| = |S] for all z € X, then S is a union
of cosets of the subgroup of Z; spanned by X.

Proof. If |(S +x)U S| =S|, then S+ x = S. Thus, by induction, we have that S +x; + - - +z = S
for all k € N and z1,...,2; € X. In particular, we have S + (X) = S, where (X) is the subgroup of Z;
spanned by X. Since S + (X) is a union of cosets of (X), we obtain the desired conclusion. O

Note that (S U {x}) = 3:(S) U (£:(S) + z). From the claim, if S is a multiset in Z; and = € Z; is
coprime to ¢, then we have |X:(S U {z})| > min(|3:(S)| + 1,¢), as either |Z:(S U {z})| > |£:(S)| + 1 or
Y4(S) is a union of cosets of ©Z; = Zy, so X4(S) = Z;. Thus, if B = {b1,...,bi—1} is a multiset of size
t — 1 consisting of elements in Z; coprime to ¢, then ¥;(B) = Z;. Indeed, this follows easily from the fact
that ¥;(0) = {0} and, for each i > 1, |X;({b1,...,b;i})| > min(|X;({b1,...,bi1})| + 1,¢).

Suppose now that A is a set of integers such that, for each d’'|d, at least d’ — 1 elements of A are not
divisible by d’. We will prove that X4 (A) = Zy for all d’|d by induction on the number of prime factors
(counted with repeats) of d’. When d' is a prime, the conclusion follows from the observation above.
Assume now that the conclusion holds whenever d’ has at most j prime factors, for some 7 > 1.

Let d’ be a divisor of d with j + 1 prime factors. Let Ay be the multiset of elements in A not

divisible by d’, considered modulo d’. By our assumption, Ay has size at least d’ — 1. Observe that
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Yo (A) = Xy (Ap). Assume that |Xz(Ao)| < d'. Let Xy (0) = {0}. We consider the following iterative
process. At step ¢ > 1, we choose a; € A;—1 so that [(Xg (i — 1) + a;) \ g (i — 1)| is maximized and let
Yo(i) =200 —-1D)UXEg(—1)+a;) and A; = A;_1 \ {a;}. Note that we consider the A; as a multiset of
elements of Zy and the Xy (i) as subsets of Zy .

Let i < |Ap| be the first step where |X4(i)| < |[Eg(i — 1)|. Note that ¢ must exist since, otherwise,
X (|Ao])| > |2a(0)]+]Ao| = 14]Ao| > d’, contradicting our assumption that |Xz(|Ao])| = |Xa(Ao)| < d'.
Since ¢ is the first step with |X4(7)| < |E@ (i — 1)|, we must have that |Xz(j)| > |Za(j — 1)| + 1 for all
j <. Thus, |Eg(i)] > 1+i—1=14. Instep i, we have [(Zg(i — 1) +a) UXy(i — 1) = [Eg(i — 1)
for all @ € A;_1, so, by the claim, ¥y (i — 1) is a union of cosets of the subgroup of Zy spanned by
A;_1. Let d’ be the largest divisor of d’ which divides all elements in A; ;. Then the subgroup of Zg
spanned by A;_1 is d"Zy and we have that Xy (i — 1) is a union of d"Zy-cosets. Note that d” # d’, since
the elements of Ag are not divisible by d’ and A;_; contains at least one element in Ay. Thus, d’ < d’
and, hence, d’ has at most j prime factors. By the induction hypothesis, ¥4/(Ag) = Zg». Note that
Yar(Ao) = Xgr({ai,...,ai—1}), since all remaining elements of Ay are divisible by d”. Thus, Xy (i — 1)
contains an element in each d"Zg-coset of Zgy. Since Xy (i — 1) is a union of d”Zg-cosets and contains an
element in each d"Zg-coset of Zg, Yy (i — 1) contains all elements of Zg. Thus, Xy (A) = g (i—1) = Zg,
completing the induction.

For the second statement, observe, by the claim, that if [¥4(S U {z})| = |£4(5)|, then ¥4(S5) is a
union of cosets of xZ4 and, as 0 € X4(5), we have that 34(S) contains the subgroup xZg of Z4. Thus, if

A contains at least d — 1 integers ay, ..., aq—1 not divisible by d and ¥;(A) does not contain a non-zero
subgroup of Zg4, then we must have |X4({a1,...,a;})| > |Zq({a1,...,a;—1})| + 1 for all © > 1. But then
|X4(A)| > 1+ (d — 1) = d, which means that ¥;(A) equals Zg. O

We remark that the condition in the above lemma is tight, since if d is prime and A consists of d — 2
elements congruent to 1 modulo d, then ¥;(A) does not contain any non-zero subgroup of Zg.

The next lemma gives an upper bound on the number of integers coprime to W (r)/ged(W(r),m) in
an arithmetic progression. Note that all integers of the form gu where u|m and ged(gq, W(r)m) = 1 are

coprime to W (r)/ged(W(r),m). The proof of this lemma uses the Selberg sieve and may be found in
Appendix B}

Lemma 5.9. Let r and n be sufficiently large positive integers and m € [n, (g)} Let X be an arithmetic
progression of size | X| > /16 with common difference b < n. Then the number of elements of X which

are coprime to W (r)/ ged(W (r), m) is at most

256|X | loglogn
logr '

Furthermore, when b = 1, the number of elements of X which are coprime to W (r)/ ged(W (r),m) is at

most

256/X| [ (1-1/p).

pIW (r),ptm

Given a cyclic group Z; and an interval of integers [x,z +t), we have a natural identification v : Z; —

[x,z+1t), where 1;(u) is the unique integer in [z, x +t) which is congruent to w modulo ¢. The next lemma
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shows that under this identification, for a subgroup H of Z;, a progression of H-cosets is identified with
a large subset of a union of long arithmetic progressions of integers. A variant of this lemma goes back at
least to the proof of Roth’s Theorem [33].

Lemma 5.10. Let H be a subgroup of Zy and let R be an arithmetic progression of H-cosets. Consider
the image Y (R) of R under the identification ¢y : Zy — [z,x +t). Then ¢ (R) is contained in a set of

size at most 3|R| which is a union of arithmetic progressions of integers, each of length at least |R|/3.

Proof. First observe that the image under ; of each H-coset is an arithmetic progression. Thus, if
|H| > |R|'/?, then 1;(R) is a union of arithmetic progressions, each of length at least |R|'/3.

Assume now that |H| < |R|Y/?. Let H = dZ; for some divisor d of t. Let ¢ = |R|/|H| > |R|*/3. By
definition, we can write R = Uiem(x-ﬁ-iy—i—H) for some z,y € Z; and y ¢ H. For each H-coset x+iy+ H,
we can choose a representative z; for the coset in [x,z 4+ d). Let P = (z1,29,...,2¢). We have that P
(mod d) forms a progression of common difference u in Z4. We show that P is contained in a set of size
at most 3¢ which is a union of progressions of integers, each of length at least v/ = \/W > |R|'/3.
From this claim, the conclusion of the lemma easily follows.

We claim that there exists s € [1, [v/£]] such that su is congruent to an integer in [—d/[v//],d/[V?]]
modulo d. Partition Zg into a union of intervals [kd/[vZ], (k + 1)d/[V!]) for k = 0,1,...,[V{] —
1. Suppose that there does not exist s € [1,[v/]] such that su (mod d) € [~d/[v!],d/[V?]]. Then
w,2u, ..., |vV2|u (mod d) must be contained in the intervals [kd/[V/], (k+1)d/[{]) for k =1,...,[{]—
2. Since [Vf] > [V/] — 1, the pigeonhole principle implies that there are 1 < s’ < s” < |V/£] such that
s'u (mod d) and s”u (mod d) are in the same interval [kd/[vV/?], (k4 1)d/[v/{]). Then " —s' € [1, |[V/1]]
and (s” — s')u is congruent to an integer v in [—d/[v/],d/[v/¢]] modulo d, contradicting our assumption.

Suppose now that s € [1, |[v/£]] is such that su is congruent to an integer in [—d/[v/¢],d/[v/€]] modulo
d. Since P (mod d) forms a progression of common difference u in Z4, we can partition P into s subsets
Py, Py, ..., Pssuch that P; (mod d) is a progression with common difference su in Z4. Each set P; can be
greedily partitioned into progressions of integers with common difference v such that all of the progressions
in the partition, except the first and last ones, have length at least [\/m By extending arbitrarily the
progressions with length less than ﬁ/ﬂ , we obtain that P is contained in a union of arithmetic progressions
of integers, each of length at least [v/£], where the size of the union is at most ([v/¢] —1)-2s+|P| < 3|P|.

This verifies the desired claim. O
We will also need the following simple lemma in the proof of Lemma [5.6]

Lemma 5.11. Let A be a multiset of elements of Zy and let d be a divisor of t. Then, for any u € Z/dZ

such that L¢(A) N (u+ dZ) # 0,

Proof. Let Sy, = X4(A) N (u+ dZ). For all non-zero u € Zy/dZy, if S, # 0, then we can find an element z
in S, which is a sum of distinct elements of A which are not in dZ;. Thus, each element of x + X;(ANdZ;)
can be written a sum of distinct elements in A, so z + X:(A NdZ;) C ¥:(A). It is also clear that
x4+ X(ANdZy) Cu+ dZy, so x+ X (ANdZy) C Sy If u=0 € Z/dZ, then letting x = 0, we have
z+ X(ANdZ) = (AN dZ) € Sy. Thus, if Sy, is non-empty, then [S,| > |X:(A N dZ;)|. O
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We can now prove Lemma We recall the statement, that if ¢t € [y/v,2y/v) and A is a subset of Y,
of size z/(16£) which is y/*/(128¢)-diverse, then |%;(A)| > min(¢,32/¢)t.

Proof of Lemma[5.6. We consider the following iterative process. Let 3;(0) = {0} and A9 = A. At each
step 7 > 1, we pick an element a; in A;_1 and let 3;(i) = X4(i — 1) U (Z¢(i — 1) + a;) and A; = A;—1 \ {a;}.
In particular, (i) = Z¢({a1,...,a;}) € X4(A) for all i < |A]. Let d; = ged(A;—1). For i < |A|/2, Ai—1
is a subset of Y,, of size at least % > 55 > 64(m/p(m))7T(r,m) where we used and assumed
that r is sufficiently large in terms of ¢. Thus, {vz : € A;_1} is a subset of Y of size larger than
64(m/p(m))7(r, m)Wygr whose elements are divisible by vd;. By Lemma , we obtain vd; < y'/16 and
all elements of A;_; have the form qu where u | (m/v), u < y'/16 /v < y'/16_ d;ju and ged(q, W (r)m) = 1.

We will run the above process for at most |A|/2 steps, so we may assume that ¢ < |A|/2 and these

Y
rlogr?

conclusions hold throughout.

For each ¢, we say that step ¢ is either a growth phase, an unsaturated phase or a saturated phase. Note
that the cosets of d;Z; can be indexed by elements of Zg,. For each u € Zg,, let S, = X4(i — 1) N (u+ d;iZy).
We say that ¢ is a growth phase if there exists u € Zg, such that S, is non-empty and has size at most
y3/4

that y3/ L <18, < %. Finally, if step ¢ is neither a growth phase nor an unsaturated phase, then it is a

. We say that i is an unsaturated phase if it is not a growth phase and there exists u € Zg, such

saturated phase.

Next we describe how a; is chosen. Let ¥(d,i — 1) = {3 ;cga; (mod ?) : S C [i — 1] N {j : dla;}}.
Then X(d,i — 1) is a subset of the subgroup dZ; of Z;, which can be identified with Z,,;. We identify
¥(d,i — 1) with a subset of Z;/4. Similarly, we can identify A, 1 with a subset of Z,/4,. If i is a growth
phase, we pick a; such that |X(d;, )| — |2(d;, 7 — 1)| is maximized. Otherwise, if 7 is not a growth phase,
we pick a; such that |3,(7)| — |X:(¢ — 1)| is maximized.

The following claims capture the key steps in the proof.

Claim 1. The number of growth phases among the first |A|/2 steps is at most (256£y>/*/z + logg/pt +
2)(logy /1% + 1).

Claim 2. If i <|A|/2 is an unsaturated phase, then |3;(i)| — |S:(i — 1)| > 2'2y/z.

Claim 2 is the most important step in the proof and will take up most of our time. However, before
proving these claims, let us see how Lemma follows from combining them.

First, suppose that there exists i < |A|/2 such that i is a saturated phase. By Lemma since A is
y'/4/(128¢)-diverse and d; < y'/*/(128¢), 4,({a1,...,ai_1}) = X4,(A) = Zg4,. Hence, S, is non-empty
for all uw € Zg4,. Since i is a saturated phase, we have that [S,| > (% for all u € Zg,, so |Z¢(i — 1)] =
ZueZdi |Su| > &t. Therefore, |35:(A)| > |2:(i — 1)| > &t, as desired.

Next, suppose that no i« < |A|/2 is a saturated phase. In this case, if i < |A|/2 is not a growth phase,
it must be an unsaturated phase and, by Claim 2, we have |%(7)| > |24(i — 1)| + 2'2y/z. Since Claim 1
implies that there are at least |A|/2 — (256£y/*/z + logz /ot +2)(log, y'/16 1 1) unsaturated phases in the
first |A|/2 steps and |A| = z/(16¢), we have

12 12
S 2 (241D 2 Y - (2~ @560z + logyyat + Dlogyy 0 +1)) 2 T 2 2,

as required. 0

43



We next give the proofs of Claims 1 and 2, beginning with the simpler of the two.

Proof of Claim 1. First, we show that in each step i < |A|/2, if |X(d;, i — 1)| < |A;j—1]/2, then

[2(ds, )] = [2(ds i — 1)] 2 max [(5(di, i — 1) +a) \ B(ds, i = 1)| = [5(di i — 1)I/2, (17)

while if [4;_1|/2 < |2(di, i — 1)| < 33/4, then

12(d;, )| — |2(d;, i — 1)| > max |(X(di, i — 1) +a)\ X(d;, i — 1) > |A4;-1]/8. (18)

a€A;_1

The first bound follows directly from Lemma since the set of elements a € Z; /4, for which
((S(diyi — 1)+ a) \ S(dsyi — 1)) < [S(dsyi — 1)[/2

has size at most 2|X(d;,i — 1)| < |A4;—1].
For the second bound , assume, for the sake of contradiction, that for some step i < |A|/2 where
|Ai_1]/2 < |2(diy i — 1) < y%4, |2(d;i, 1) — |2(di, i — 1)| < |A;_1]/8. Then, for all @ € A; 1, we have
, , 45 (dy,i—1
(2(di,i — 1) +a) \ £(ds,i — 1)] < |A;_1]/8. Let k = L%J and let

T ={a € Zyyq, : |(X(di,i — 1) +a) \ B(ds,i — 1)| < [Ai—1]/8}.
We have A;_; CT and 0 € T. By Lemma [2.7], for any a € kT,
[(3(diyi — 1) +a) \ B(di,i — 1)] < [S(ds, i — 1)]/2.

Hence, by Lemma , we have |k(A;_1 U{0})| < |kT| < 2|%(ds,i — 1)|. Using that vd; < y'/1% and
t > y/v, we have |S(d;, i — 1)| < v*/* < t/(2d;), so [k(A;_1 U{0})| < t/d;. Identified as a subset of L),
Ai—1 is not a subset of any proper subgroup of Z, /4, by the definition of d;, so A;—1 U{0} is not contained
in any coset of a proper subgroup of Z;,4,. Therefore, by Lemma @, we have

AB(di i D] A5(di i — 1))
k+1 415(di, i — 1)|/|Ai-a|

2
[Ai—1 U{0}] < mV{?(Ai—l u{0})] < = [Ai4],

a contradiction.

Using and , we may quickly complete the proof of Claim 1. Note that, by Lemma for any
u such that S, is non-empty, |S,| > |2(d;,i — 1)|. Thus, if i is a growth phase, then |2(d;,i — 1)| < 33/4.
Note that d;|d;+1, so either dj41 = d; or diy1 > 2d;. As d; < y1/16 for i < |A|/2, d; can change at most
1+log, y'/16 times in the first | A| /2 steps. By , if |X(d;,i—1)] < |A;—1|/2, then |2(d;, )| —|2(d;,i—1)| >
|X(d;, i —1)|/2. Thus, for each period among the first |A|/2 steps where d; remains constant, the number
of steps where [¥(d;,i—1)| < [A;—1]/2 is at most 1+logg /s t, since, in each such step, [%(d;,i—1)| grows by
a factor of at least 3/2. For the remaining steps in this period, where |A;_1]/2 < |%(d;,i —1)| < y*/4,
implies that |2 (d;, )| — |2(ds,i—1)| > |Ai_1]/8 > z/(256¢) in each step, so there are at most 1+256£y>/*/~
more growth phases where d; stays constant. Thus, the number of growth phases among the first |A|/2

steps in each period where d; stays constant is at most 256€y3/4/z + logsz /ot + 2. Since d; can change at
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most 1+ log, y/*0 times in the first | A|/2 steps, there are at most (256€y3/4/z+10g3/2 t+2)(logy y*/*0 +1)
growth phases in the first |A[/2 steps. O

Finally, we give the proof of Claim 2, thereby completing the proof of Lemma [5.6

Proof of Claim 2. Let i be an unsaturated phase with i < |A]|/2. Assume, for the sake of contradiction,
that |3¢(i)| — |Z¢(i — 1)] < 2'2y/z. Since i is not a growth phase and not a saturated phase, there exists
u € Zg, such that y3/* < |S,| < %.

We now view Sy, and A;_1 as subsets of Z;/4,. Note that, by the definition of d;, A;—1 is not a subset
212y /2.
By our choice of a; and our assumption that |Z;(i)] — |Z¢(i — 1)| < 2'2y/z, we have 4; 1 C B. Since
|Su| < g—f and |S,| > y3/* > 8-22y/z by , we can apply Lemma to conclude that either the set B is

13 .02
contained in a proper subgroup of Z;4,, B has size at most % or there is a subgroup H of Zi/q,

of any proper subgroup of Z; 4, Let B be the set of elements a of Z, /4, such that |(Sy +a)\ Su| <

such that B is contained in a set of size at most 22%y/z which is an arithmetic progression of H-cosets.
The first possibility cannot hold, since B contains A; 1 which is not a subset of any proper subgroup of

Zy)q;- The second possibility also cannot hold, since

20(213y/z)1'02 25+13-1.02y1.005
’Su’0.02 - ~1.02

<|A|/2 < [Aia| < |B],

where we used the bound |S,| > 3/

. Therefore, there is a subgroup H of Z; /4, such that A;_1, identified
as a subset of Z;4;, is contained in a set R of size at most 220y /> which is an arithmetic progression of
H-cosets. We can identify the elements of Z, /4, with elements in [y/v,y/v +t) 2 [y/v,2y/v) which are
divisible by d;. Under this identification, R is identified with a set of integers which contains A4; 1.

By Lemma [5.10] under the above identification, the image of R is contained in a set of integers of size
at most 3|R| which is a union of arithmetic progressions Ps, s € S, of integers, each of length at least
|R|Y/3. We have |R| > |A;_1| > z/(32¢). Thus, A;_; is contained in a set of size at most 222/~ which is
a union of arithmetic progressions Py of integers, each of length at least (z/(32¢))Y/? > /16 by and
from Appendix [B.2] Recall that A;_ is a subset of [y/v, 2y/v) consisting of elements of the form qu,
where u|lm, u < y'/1%, d;|u and ged(g, W (r)m) = 1. Note that each element of the form qu where u|m and
ged(g, W(r)m) = 1 is coprime to W (r)/ged(W(r),m). Since each arithmetic progression Py has length

1/16 and common difference at most n, Lemma implies that the number of elements in P, of

1/16

at least r

the form qu, where u|m, u <y and ged(g, W(r)m) = 1, is at most

logl
256‘135,.%,

Thus, the number of elements of R (identified with a subset of [y/v,y/v +t)) of the form qu, where u|m,

1/16

u<y and ged(g, W(r)m) = 1, is at most

222

y loglogn
2602 IR g, <286 =5
sES & &
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We claim that -
256 - 27y loglogn <« 2

z logr 320
This holds if r > 101log m/loglog m, since then, from in Appendix 7(r,m) > 1/(4logr) and

lyloglogn - 100¢yr?(log logn) < 10042 (log log n) \/T(r,m)(m/¢(m))
22logr  — (logr)(m/¢p(m))?y2r(r,m)? = (logr)r(r,m)2(m/p(m))>? 15mr

4r3(log 1) (log log n)?
< 1006\/6 rilogr)loglogn)® _ 0. /678 < 910,

m(m/¢(m))?

where we used in the first inequality, the definition of y in the second inequality, the bound 7(r, m) >

1/(4logr) in the third inequality, the bound r < etp(n,m) = ¢ (logrz)ll/jg(zlo/;gzzl)y 75 in the fourth inequality

and, in the last inequality, we assumed a sufficiently small choice of ¢ (depending on £). Next, assume that

r < 10logm/loglogm. In this case, we have that r = ¢R(n,m) = cp(n, m). Furthermore, m >

3/2 1/2 n2 2 .
for % SM S qoaa T = cp(n,m) = 0O (%) by Clalm sor > 10logm/loglogm

for sufﬁ(nently large n, contradicting our assumption. We also have that 7(r,m) > (¢(m)/m)/(2logr) by

in Appendix SO
lyloglogn < 10042 (log log n) . \/7‘(7“, m)(m/p(m))
22logr = (logr)r(r,m)%2(m/¢p(m))>? 15mr

3 2 5 3
< 1006\/8T (logr)(loglogn) < 100 10°(log n) < 910
m n?/(logn)?

2
Tlogn)? 25

)

assuming that n is sufficiently large, where in the third inequality we used r < 10logm/loglogm <
20logn/loglogn. Thus, in both cases,
y loglogn z

256 —— ——m— < —.
z log r 324

1/16 and

This is a contradiction since there are at least s3; integers of the form qu where ulm,u < y
ged(g, W(r)m) = 1 contained in R. Hence, in each step ¢ < |A|/2 which is an unsaturated phase, | ()|

grows by at least 2'%y/z. O

Using Lemma [5.6] we can now give the proof of Lemma [5.5] thus completing our proof of the lower
bound in Theorem Again we recall the statement, that if £ = [32/£] and A is a subset of Y,, of size
z/(8¢) which is y'/4/(32¢)-diverse, then |X(A)| > 3yz/(4¢?v) and X(A) is not a subset of an arithmetic

progression with common difference greater than 1.

Proof of Lemma[5.5 Using Lemma we can partition A into two sets Aj, As such that |A;| = |Az| =
z/(16¢) and A; is y1/4/(128€)—dlverse. By Lemma , for each t in Ag, |X:(A1)| > min(,32/¢)t. Recall
that we chose £ = [32/¢], so |S4(A1)| > 32t/¢. Therefore, by repeated applications of Lemma [2.5

32t Yz
= > .
S =15 U A > 3 2> g 2 s B2

teAs
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Finally, we prove that 3(A) is not contained in an arithmetic progression with common difference d larger
than 1. Indeed, if ¥(A) were contained in an arithmetic progression with common difference d larger than
1, then all elements of ¥(A) would be in the same congruence class modulo d, which in turn implies that
all elements of A would be divisible by d. But this is impossible since A is y/*/(32¢)-diverse. O

5.2 Proof of the upper bound in Theorem [1.6

In this section, we show how to improve on the construction of Alon and Erdds [2] described in the

introduction. We begin with the following simple claim.

Claim 5.12. There exists a positive constant k such that the following holds. For each positive integer

m, let dp, be the product of all the primes at most (logm)/64 which are not prime divisors of m, where

dm = 1 if the product is over an empty set. Then, for m sufficiently large, dp, < m/32, ged(dp,m) =1
dm

and % D > kloglogm.

Proof. It is easy to see that d,, < m!/32. Furthermore,

m dm P 1
TR | S ) WD DR

p<(logm)/64 p<(logm)/64
> exp(loglog((logm)/64) — k') > kloglogm,
for some absolute constants x/, k. O

We are now ready to prove the upper bound in Theorem For the sake of easy reference, we recall
the statement, that, for all n sufficiently large and m € [n, (g)],

f(n,m) = O (R(n,m)),

m!/(m/¢(m))
(logn)1/3(loglogn)2/3
positive integer p such that p [T,y (m(1 — 1/p)~t > n?/¢(m), where W(p) is the product of the first

where R(n,m) = min (¢)(n,m), p(n,m)). Here ¥(n,m) = and p(n,m) is the smallest

; . . 3/2 1/2
p primes. We also recall from the previous subsection that when m = O (%» we have

(logn)1/2
R(n,m) = 0O (¢(n,m)) and when m = (%), we have R(m,n) = O(p(n,m)).
Proof of the upper bound in Theorem . We first consider the case where m < %. Let r =
Cy(n,m) = (loggifiggg/ﬂg”%% for a sufficiently large constant C. Note that r > ﬁ. Our aim is to

construct an r-coloring of [1,n — 1] such that the set of subset sums of each color class does not contain

m. We will do this in four steps.

Step 1. For k =2,3,..., 5, we form a color class S1(k) = {[751], 757+ 1,..., ['F]} N [n —1], while, for
k=1, we take S1(1) = {[F],[F]+1,...,m—=1}N[n—1]. As defined, the color classes may overlap, but
we can safely assign any element in the overlap to any color class that includes it. Crucially, no subset
sum of Si(k) can contain m, since the sum of at most k elements from Sj(k) is less than m, while any

sum of k 4 1 elements from S;(k) is larger than m. Let X; = 7,;/:21 Sy (k).
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Step 2. For each of the first 7/4 primes p which are coprime to m, we form a color class Sa(p) = {kp :
k € N} N[1,n — 1], noting that no subset sum of Sa(p) can contain m, since each element of ¥(Sa(p)) is a

multiple of p. Let Xy = Upépr/zuzﬁm Sa(p).
Step 3. Let R = [1,n— 1]\ (X1 UX3). The construction in [2] also uses color classes like those defined in

Steps 1 and 2. They then arbitrarily partition the remaining elements R so that the sum of the elements in
each of the classes is smaller than m. For our improvement, we need to be more careful. Note that elements
in the remainder set R are natural numbers ¢ < 22 such that ¢ is coprime to W (r/4)/ged(W (r/4),m),
that is, all prime divisors of ¢ which are at most p, 4 are also prime divisors of m. In particular, ¢ is
coprime to the integer dp, given by Claim [5.12] since d, has only prime factors at most (logm)/64 < r/4
which are not prime divisors of m.

With k also as in Claim [5.12] we next show that there exists a multiple d of d,,, such that

r(¢(m)/m)r(loglogn)/64 < d < r(¢(m)/m)r(loglogn)/32, (19)
ged(d,m) = 1 and the largest prime factor of d is at most p, /4. Let z = K((b(m)égg;logbgn. Note that
T > Tooaloglogn n'/4, since r > n'/3/(logn)?? and d,, < m'/32 < n/1_ Since m has at most

1/100 gych that p does not divide m. Let

logm < 2logn distinct prime factors, there exists a prime p < n
k be the smallest positive integer such that z/p* < n'/19 Then z/p*~! € [n!/190 p2/190] and, by the
prime number theorem, the interval [(1—1/100)z/p*~!, (1+1/100)z/p*~1] has at least 10~3n/1%0/(logn)
primes for sufficiently large n. Thus, there exists a prime p’ in this interval which does not divide m.
Then p'p*~! € [(1—1/100)x, (1+1/100)z] and ged(p'p*~1, m) = 1, since p’ and p are primes which do not
divide m. We can now verify that d = p'p*~d,, satisfies , ged(d, m) =1 and the largest prime factor
of d is at most 2n2/100 < pr/a (noting that all prime factors of dy,, are at most (logm)/64 < 2n2/100),
Since d,,|d, we also have d/¢(d) > dp,/P(d,y,). Furthermore, all elements of R are coprime to d, since any
element in R is coprime to W (r/4)/ged(W (r/4), m), whereas d is coprime to m and all prime factors of
d are at most p, 4.

Fix s € Z). Then there exist k integers congruent to s (mod d) that sum to m only if sk = m
(mod d). Let x4 be the positive integer in [d] that is congruent to s~'m (mod d). Consider now the color
classes

Se1 = {t: teRt=s(modd),t> m}

S

Sso = {t: t € R,t=s(modd), d—TacS <t< Z}

If a sum of k elements in Sg; is equal to m (mod d), then k > x5. But then the sum of the k elements
is larger than m. Similarly, if a sum of k elements in S92 is equal to m (mod d), then k = z, or
k > d+ xs. But the sum of k elements is less than m if k = x5 and larger than m if kK > d 4+ 5. Thus,
m ¢ X(Ss1) UX(Ss2). Note that in this step we have in total defined 2¢(d) color classes of the form S ;
and S, o for s € Z) .

Step 4. Let R = R\ (Usezj (Ss,1 U Ss2)). Then all elements of R are less than m/d. Thus, if we
arbitrarily partition R’ into sets of size at most d, then no set contains a subset sum which is equal to m.

Hence, we need at most |R’'|/d colors to color R’ so that no color class contains m as a subset sum. Recall
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that any element in R’ is coprime to W (r/4)/ ged(W (r/4), m). By the second part of Lemma [5.9] applied

to the interval [1,m/d], we have

R <256(m/d) [[ (1-1/p)

p|W (r/4),ptm
<256(m/d) [ a-1/p J[ -1/p7"
p|W(r/4) plm,p<r/4
500m(m/¢(m))
dlogr

where we used that r is sufficiently large, so that [,y 4)(1 —1/p) < 1.1/logr, and J[,,,, <, /a(1 —
1/p)~! < m/¢(m). Therefore, the number of color classes used in Step 4 is at most

500m(m/¢(m)) _ 642 - 500m(m/¢(m))*
d?logr ~ k2r2(logr)(log logn)?
r

TG’

<

where the first inequality follows from and in the second inequality we have assumed that the constant
C is chosen sufficiently large.

Combining all four steps, the total number of colors we have used is at most

r 13r 2md
<

ror
ol aiob(d) e <2 A
gy r2ed+ 16 — 16 + ko(m)loglogn

r
< o0
2 4 -8
where we have used Claim|5.12] so that d/¢(d) > dp,/¢(dym) > k(loglogm)p(m)/m > k(loglogn)p(m)/m,
and the bound . Thus, we can use at most r colors to color [1,n — 1] such that no monochromatic
subset sum is equal to m, as required.
1/2

%, (g)} . Let r = Cp(n,m), where C' is a sufficiently large

absolute constant. We construct the coloring as follows.

Next we consider the case m € [

Step 1. For each of the first 7r/8 primes p that do not divide m, we construct a color class S1(p) = {kp :
ke N} Let X; = UpSp7r/g7Mm Sl(p).

Step 2. Let R =[1,n — 1]\ X;. The set R consists of those integers less than n which are coprime to
W (7r/8)/ ged(W (7r/8), m). By Lemma[5.9] the number of elements of R is at most

256n [ (-1/p)<2s6n [ (1-1/p)- 11 (1—1/p)~"
pIW (7r/8) pim PIW (p(nsm))m pl ged(m,W (p(n,m)))
<256n(m/o(m))  [[  (1-1/p),

pIW (p(n,m))m

where in the first inequality we used that 7r/8 = 7Cp(n,m)/8 > p(n,m), which holds by choosing the
constant C' to be sufficiently large, and in the second inequality we used legcd(m’w(p(n’m)))(l —1/p)~t <

[T = 1/p)~" = m/(m).

Since each element of R is less than n, if a color class contains at most m/n elements, then no sum of
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elements from the color class can equal m. Thus, we can use at most

1R <256n®/¢(m)-  [[  (1-1/p) < 256p(n,m)

m/n PIW (p(n,m))m

colors to color the elements of R so that no monochromatic subset sum equals m. The second inequality fol-

lows from the definition of p(n, m), which is the smallest positive integer such that p(r, m) [ Tjw (s(n,m))m (1=
1/p)~t > n?/¢(m). Hence, the total number of colors we used is at most

7

g + 256p(n,m) <r,
assuming that C' is a sufficiently large absolute constant. O

6 Long homogeneous progressions in subset sums

In this section, we prove Theorem (1.9, strengthening Theorem [1.8] Szemerédi and Vu’s result [40] on
arithmetic progressions in subset sums, by showing that the progression may be taken to be homoge-
neous. For our application to the Erdgs—Graham problem in Section [7, we will need a somewhat technical

strengthening of this result, for which it will be useful to have the notation

slhl(A) = {Es :SC A9 < h}.

seSs

The main result of this section, which includes Theorem as a special case, is now as follows. To gain
some intuition, we remark that for a typical set A which is not dominated by multiples of an integer at

least 2, we will simply have d = 1.

Theorem 6.1. There exists an absolute constant C > 0 such that the following holds. For any subset A of
[n] of size m > C\/n, there exists d > 1 such that, for A' = {z/d : x € A,d|z} and k = 2°°n/m, (A"

contains an interval of length at least n. Furthermore,

30,

2
Al - A" <2%(logn)® + —.
m

Theorem immediately follows from Theorem by noticing that 3(A) contains the set {dy : y €
»*(A")}, which is a homogeneous arithmetic progression with common difference d.
As a crucial step in the proof of Theorem [6.1} we first show that subsets of Z; satisfying a diversity

condition have a large set of subset sums. We will need to use the mod b analogue of EW(A), namely,

sM(4) = {Zsmodb:SQA,\S\ < h}.

seS

Lemma 6.2. Let b be a positive integer. Let A be a subset of Zy of size m € (80(logb)?,b] such that, for
each d|b with d € [2,4b/m)], there are at least 64(logb)? + 8d elements in A which are not divisible by d.
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Let k = 1280b/m. Then
= 4)] > min(m?/256,b/4).

Proof. Let A’ be a uniformly random subset of A of size 3m/4 and A” = A\ A’. Let & be the event that
for some d|b with d € [2,4b/m], there are at most 8(logb)? + d elements in A’ which are not divisible by d.
Recall that for each d|b and d € [2,4b/m], at least 64(logb)? + 8d elements of A are not divisible by d. By
the Chernoff bound for hypergeometric distributions, the probability that there are at most 8(logb)? + d
elements in A’ which are not divisible by d is at most exp(—64(logb)?/32) < 1/b%. By taking a union
bound over all d|b, the probability that £ happens is then at most 1/b < 1. We may therefore fix a choice
of A’ and A” so that £ does not hold.

We consider the following iterative process. Let 3;,(0) = A” and let Ay = A’. At each step i > 1, we
pick an element a; in A;_; and let A; = A;_1\ {a;} and 3p(7) = Ep(i — 1) U (Zp(i — 1) + a;). Observe that
the elements in X () can be written as the sum of one element in A” and a subset of A’ of size at most 7, so
(i) C El[fﬂ](A). Let d;|b be such that (A; 1) = d;Zy = Zy,4,, where (X) denotes the subgroup generated
by X. Note that, by definition, d;|d; if i < j. Furthermore, |4;_1| < b/d; and [A;_1| = 3m/4—i+1>m/4
for i <m/2, so d; < 4b/m for i < m/2. We will run the above process for at most m/2 steps, so we only
consider i < m/2 throughout.

For each i, we say that step ¢ is either a growth phase, an unsaturated phase or a saturated phase. For
each u € Zy/d;Zy = Zgq,, let S, = Ep(i — 1) N (u+ d;iZp). We then say that step i is a growth phase if there
exists u € Zy/d;Zy = Zg, such that S, is non-empty and has size at most |A;_1|/4. We say that step 7 is
an unsaturated phase if it is not a growth phase and there exists u € Zy/d;Z;, such that |Ai47*1‘ < |Sul < 4%1,
Finally, if step ¢ is neither a growth phase nor an unsaturated phase, then it is a saturated phase. We
remark that if d; = d for all steps ¢ in an interval [z,y], then the interval can be partitioned into three
(possibly empty) intervals such that the steps in the first interval are all growth phases, the steps in the
second interval are all unsaturated phases and the steps in the third interval are all saturated phases.

We next discuss how to pick a;, which depends on the type of phase. For d|b, let ¥(d,i — 1) =
Yp({ai,...,a;—1} NdZy). If step i is a growth phase, we pick a; which maximizes |3(d;, )| — |X(d;, 7 — 1)].
If step 4 is an unsaturated or saturated phase, we pick a; which maximizes |3, (i)| — |2p(i — 1)|.

The following claims record important properties of the process we have defined.

Claim 1. The first (logb)? steps are not growth phases.

Proof. Consider i < (logb)?. Note that i < m/2. Since, for each d|b with d € [2,4b/m], there are more
than 8(logb)? elements in A’ which are not divisible by d, there must be at least 7(logb)? elements in
A;_1 which are not divisible by d. Hence, d; = 1. Thus, there is only one coset u of d;Z; in Z; and
|Su| > |2(0)| = m/4 > |A;—1|/4, so i is not a growth phase. O

Claim 2. There are at most 20(log b)(log(4b/m)) growth phases among the first m/2 steps.
Proof. Suppose that step i is a growth phase. By Lemma for u € Zy/d;Zy, if S, is non-empty, then

|Su| > |2(di,i — 1)|. Since we are in a growth phase, there is some u such that S, is non-empty and
|Su| < |Ai—1]/4. This implies that [$(d;,i — 1)| < |A;j—1|/4. By Lemma [2.6] the set of a € d;Z, such that
[(5(di,i — 1) + a) \ ©(di, i — 1)| < 4[S(ds, i — 1)] has size at most 2|%(d;,i — 1)| < |A;—1|/2. Thus, there
exists a; € A;_1 such that [S(d;,1)| > 3(S(d;,i — 1)|. As |[E(d;,4)| < b for all 4, there can be at most
1+ log3/Qb successive growth phases with d; = d. Since di < dy < --- < dm/2 < 4b/m and d;y1 > 2d;
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if diy1 # di, d; can take at most 1 + log,(4b/m) distinct values. This shows that there can be at most

(1 +logg /s b)(1 + logy(4b/m)) < 20(log b)(log(4b/m)) growth phases among the first m/2 steps. O
Claim 3. Let i be an unsaturated phase. Then [%(i)| — |Zp(i — 1)| > %.

Proof. Note that if a € A;_1, then a € d;Zy, since A;—1 C d;Zy. Thus, for each v € Zy,/d;Zy and x € Zy,
T+ a € u+ d;iZy if and only if x € u + d;Zy. Hence, (Xp(i — 1) + a) N (u+ d;Zy) = (Zp(@ — 1) N (u +
diZy)) +a =S, +aand (Zp(i —1)+a)\ Zp(i — 1)) N (v + diZp)) = (Su +a) \ Sy. Let ug be such that
|Sug| = max,,|s,|<b/ad; |Sul- We have

(S =D+ )\ (i =)= > [((Zp(i = 1) +a) \ Zp(i = 1)) N (u+ dilZy)|
WEZy/di Ly

= Z |(Su+a) \ Sul

UEZy/diZyp

|(Sup + @) \ Syol-

Y

Let k; =1+ [ﬂfﬁ?” € [2, Flfi?”, noting that |S,,| > |A;_1|/4 since step i is not a growth phase. Let
P;_1 C d;Zy be the set of elements a € d;Z, such that |(Sy, +a)\ Su,| < %@|Suo‘- Note that 0 € P;_; and,
by Lemma , for any a € k;P,—1, |(Sug + @) \ Sue| < 2|Suo|- Therefore, by Lemma |ki Pi—1] < 2[ Syl
Suppose now that A;_1 C P,_;. Since d; is defined so that (A; 1) = d;Z = Zb/d“ A;_1 1s not a subset of
Zyyq,- Thus, by Lemma 2.3{and the fact that [k Pi—1| < 2|Su,| < o < |Zyyq,], |Pioa| < 2R < L[S, ).
However, by our choice of k;, |A;—1] > %|Suo\, which is a contradiction. Therefore, A;—1 N PS ; # 0 and,
since a; is chosen so that | ()| — [Ep(i — 1)| = |(Zp(i — 1) + a;) \ p(¢ — 1)| is maximized,

a proper subgroup of Zlﬁ and, since 0 € P,_1, P;,_; is not contained in a coset of a proper subgroup of

, : , 1
(20 = 1) + ai) URp(i = 1)] = [Zp (i = 1] + o[ Su

|Ai—1]
16]Suy,|
|Ai—1]

=Xt —1 .
B0 = Dl +

> |Xp(i = 1) +

| S

Thus, over any unsaturated phase i, |3;(2)| — [2Zp(i — 1)| > ‘A{Ell. O

Claim 4. For each step i <m/2, S, = Xp(i — 1) N (u + d;Zyp) is non-empty for every u € Zy/d;Zy.
Proof. The claim holds trivially if d; = 1. Assume that d; > 1. Since i < m/2, we have d;|b and d; < 4b/m.

For each d|d; with d > 1, we have d|b and d € [2,4b/m], so A’ contains at least d — 1 elements which are
not divisible by d. By Lemma [5.8

Ya,({ar, ..., ai1}) = Bq,(A") = Zqg,,

where we used that the elements of A"\ {ai,...,a;-1} are all divisible by d;. The claim follows upon
noting that we can identify Z/d;Z;, with Zg4, and, under this identification, .S, is non-empty if and only
if ueXg({ar,...,ai-1}). O

We now complete the proof of the lemma using these claims. First, assume that there is no saturated
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phase ¢ with ¢ < min(m/2,k). Then, among the first min(m/2, k) steps, from Claims 1 and 2, at least
max(min(m,/2, k) — 20(log b)(log(4b/m)), min((log b)?, k)) steps are unsaturated phases. Note that if k =
1280b/m < 80(log b)?, then (logb)? > k/80 and

max(min(m/2, k) — 20(log b)(log(4b/m)), min((log b)?, k)) > min((logb)?, k) > k/80.

If k = 1280b/m > 80(logb)?, then 20(logb)(log(4b/m)) < k/2 and 20(logb)(log(4b/m)) < m/4 by our

assumption on m, so

max(min(m/2, k) — 20(log b)(log(4b/m)), min((log b)?, k)) > min(m/2, k) — 20(log b)(log(4b/m))
> min(m/4,k/2).

In either case, we have
max(min(m/2, k) — 20(log b) (log(4b/m)), min((log b)?, k)) > min(m/4, k/80).

For each step ¢ which is an unsaturated phase, we have, by Claim 3, that [3;(i)| —[35(i —1)| > |A4;—1]/16 >
m/64. Hence, recalling that k = 1280b/m, we get

2
]E£k+1](A)] > |2y (min(m/2, k))| > min (Zl, 8];) . gnz = min <;n56’ Z) .

If, instead, there is a saturated phase iy with iy < min(m/2,k), then, for each u € Zy/d;,Zy with
Sy = Xp(io — 1) N (u + di,Zp) non-empty, |Sy| > ﬁ. But Claim 4 implies that S, is non-empty for all
0
u € Zy/d;iyZyp, so that

k+1 . b b
DA = S0 > YD [Sul > iy = o
4d;, 4

uGZb/diOZb

Hence, the desired conclusion holds in both cases. O
Let ¢ = 215, We say that a subset A of [n] of size m is nice if the following conditions hold:

(i) There is no d € [2,8¢n/m] such that all but at most 512¢(logn)? + 64¢d elements of A are divisible
by d.

(ii) For each dyadic interval I; = [2771,27) N [n], either [ANI;| = 0 or |[AN I;| > 64¢(logn).
The next lemma says that any large subset of [n] contains a multiple of a large nice set.

Lemma 6.3. There exists a constant C' > 0 such that the following holds. Let A be a subset of [n] of size

m > CnY2. Then there is an integer d and a set A’ of integers such that
o A’ is nice,
o {dr:x e A’} C A and

o |A] - |A"] <1000£(logn)?® + 258
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Proof. We consider the following iteration. Let Ag = A and ng = n. Note that Ay C [ng]. For each
i >0,if |4;| < m/2, we stop. If A; is nice, we let A’ = A; and stop. Otherwise, A; C [n;] is not nice and
|A;| > m/2. If ({i)) does not hold, we let A;11 = {z/d; : x € A;,d;|x}, where d; € [2,80n/|4;]] is such that
all but at most 512¢(log n)? + 64/d; elements of A; are divisible by d;. Note that d; < 8¢n/|A;| < 16¢n/m.
Let nj41 = n;/d;. Then

|Ai1| > |Ai| — 512¢(logn)? — 644d;

and A;11 C [nj+1]. If (i) holds and does not hold, we remove all elements in A; which are contained
in dyadic intervals I; with |[A N I;| < 64¢(logn) and let A; ;1 be the resulting set. Let n;11 = n4, so
Ait1 C [niy1], and let d; = 1. In this case, |A;41| > |Ai| — 644(logn)(1 + logy n).

We show that we will always stop and output a nice set with the required properties. Let s be the
step where we stop. Note that there can be at most logy n steps where does not hold. Furthermore,
the number of steps where does not hold is at most one more than the number of steps where (ji) does
not hold. Thus, we have

|Ag| > |Ag| — (14 logy n)(512¢(log n)? + 64¢(log n)(1 + logy n)) — 644 Z d;. (20)
i<s—lid;>1

Furthermore, ns = n/([[;<,_; di), so As C [n/(I[;<,_; di)]. We also have that

|Ag| > |As_1| — max(64£(logn)(1 + logy n), 512¢(log n)? + 644ds_1)
> |Ag_1] — 5120(logn)? — 10240%*n/m

>m/4,

where we used that ds_1 < 16¢n/m, |As_1| > m/2, m > Cy/n for a sufficiently large constant C' and n is
sufficiently large. Hence,
IT @ < n/I1Adl < 4n/m.

i<s—1
Since d; > 2 for each 1 < s—1 with d; > 1, we have Zigs—l:di>1 d; < Higs—l d; < 4n/m. Hence, combining
with ,

3 2560n
m

>

4
|Ag| > |Ag| — (1+1ogy 1) (512¢(log n)? +64£(log n)(1+log, n))—64€o£ > m—1000¢(log n) %,

assuming that m > C'y/n for C sufficiently large and n is sufficiently large. This implies that the iteration
stops at step s because A is nice. The set A’ = Ay then satisfies all of the required properties. O
We are now in a position to prove the main result of this section, Theorem

Proof of Theorem[6.1 By Lemma we can find a nice set A’ and an integer d such that {dz : = €
A’} C A and

256(
1A — |A'| < 1000¢(log n)® + 551".

In particular, |A’| > 5|A|/8 for n sufficiently large. Partition A’ into ¢ sets A},..., A} as follows. Let
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A”_ be the set consisting of the 7|A’|/8 smallest elements in A" and let AL be the remaining elements.
Partition A’ into £ sets A” ,,..., AL ,, each of size |AL|/{, and partition AL into £ sets AL ,,..., AL ,,
each of size |AL|/¢, uniformly at random. Let A} = AL ;U AL ;

Let bi1,bi2,...,b; AL be a uniformly random enumeratlon of A’ . and we then define two sets

>

Bi,l = {b@b bi,g, . bl7|AI>,z‘ /2} and BLQ = {b 7|A>,i|/2+1’ R 7‘Al>,i|} Let &' = 2560€n/m+1 Theorem

will follow easily from the next two claims.

Claim 1. Suppose that C' and n are sufficiently large. Then, with probability at least 3/4, for all i € [/]
and all j € [|AL ;|/2+1,]AL ],

' b
[y, (AL U By 2 -

Claim 2. Let M (i) be the sum of the largest k" elements in B, o, let M (i) be the sum of the largest 2k’
elements in A} and let M be the sum of the largest 20k’ elements in A’. Then, with probability at least
3/4, for all i € [],

M

M) > —

() =3

and Ny
M(i) < =

Before proving these claims, we show how to complete the proof of Theorem assuming that their
conclusions both hold, which happens with probability at least 1/2. For any subset J of [|AL ;[/2+1, AL ]
of size k', let J = {j1,42,...,jx } for j1 < jo < -+ < jpr. A straightforward adaptation of Lemmashows
that for any set of integers A and any integer m ¢ A, we have |SPH(A U {m})] > |8 (A)| + |Zq[7hl] (A)].
For each v < &', apply this statement with h = k' +v—1, m =b; j, and A = A_ ;UB; 1U{b;j,,...,bij, ,}
to conclude that

‘E[k/—"_v} (A/<,z U B@l U {bi,jw ce bi,ju})|
> S AL U B U b bige D+ \Z[k AL U B U by big, D)
> [SF AL U By U by, oo big, o D+ D) (Al U B

Thus,

k/
SEEIAL U B > [SPFIAL ;U By Uiy, bigu DI D0 S0 (AL, U Biy)l.
o<k’

By Claim 1, we have, for each v < &/, that ‘Zt[;l:/j (AL ;U Bi1)| > b;,/4. Thus,

/ 1
2k
SEFIAL OB 2 3 b= Db

v<k’ jeJ

By choosing J to be the set of indices of the k' largest elements of B; 2, we obtain that

/ 1 .
S| 2 £ M),
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Therefore, by Claim 2, we have that, for all i € [¢],

Also by Claim 2, S2¥1(A%) C [M(i)] C [4M/f]. Therefore, by Lemma [2.2 with ¢ = 4M /¢ and n = ¢/128,
SRFI(AL) + - 4+ SPFI(A)) contains an interval of length at least

1AM 1 1
= =M > —rK
56 ¢ (T aMzgtkmen

where we used that M is the sum of the largest 20k’ < |A’|/2 elements of A’, so that M > 2¢0k'|A'|/2 >
k'm/2, the bound k' > 2560 anq ¢ = 215, Thus, S2*1(A’) contains an interval of length at least n. [

Proof of Claim 1. Assume that, for some i € [¢] and j € [|A’>l|/2 +1, ]A;z]],

2
LYY, , (oM big
‘Ebi,j(A«i U B;1)| < min <1024£2, 1 > . (21)

7| A/

87

- < 7, since all elements of A’<7Z~ are smaller than b; ; and, hence, are distinct modulo b; ;. But then,

since 5% > 80(log b; ;)% Lemmawith b=b;; and A= A_ ;U B, implies that if holds, there must

be some d € [2,8/n/m] such that all but at most 64(logn)? + 8d elements of AL ;UB;; are divisible by d.

Since A’ is nice, for each d € [2,8/n/m], at least 512¢(logn)? + 64¢d elements of A’ are not divisible

by d. By the pigeonhole principle, we obtain that, for each d € [2,8¢n/m)], either AL or A’ contains at
least 256/ (log n)? + 32¢d elements not divisible by d.

Note that A_ ; is distributed as a uniformly random subset of AL of size |A’|/£ and B; ; is distributed as

a uniformly random subset of AL of size |AL |/(2¢). Consider the event £(i) that, for some d € [2,8¢n/m],

Note that the size of the set A’<’i U Bj 1, considered as a subset of Zy, _, is at least
|A']

> 57 and at most

A’<7Z- U B;1 contains at most 64(log n)? + 8d elements which are not divisible by d. By the argument
of Lemma and a union bound over all d < 8/n/m < n, £(i) happens with probability at most
nexp(—256£(logn)?/(16£)) < 1/n. Thus, by a union bound over all i € [¢], for sufficiently large n, the
probability of the event J;cf, €(i) is at most 1/4.

By our earlier observations, cannot hold under the complement of the event Uie[[] E(1i), so, provided
m > Cy/n for sufficiently large C,

2
] 47 c(omT by by
2, (A<i U Biy)| = min <1024€2’ 1 > T4

holds for all i € [{] and all j € [[AL ;[/2 + 1,|AL ,|] with probability at least 3/4. O

Proof of Claim 2. Since A’ is nice, for each dyadic interval I; in [n], either A’ is disjoint from I; or A’
intersects I; in at least 64¢(logn) elements. Note that there exists jo such that the dyadic intervals I;
which intersect A" have at least 64¢(logn) common elements with AL for j > jo, |I;,NAL | < 64¢(log n) and
IiNAL =0 for j < jo. Asin the proof of Lemma Chernoft’s inequality for hypergeometric distributions
implies that the probability [A% ;N I;| > 2|AL N I;|/¢ is at most exp(—|AL N I;|/(3€)) < exp(—2logn).
Similarly, the probability that |B; 2N I;| < |AL N1I;|/(4¢) is at most exp(—|AL NI;]/(32¢)) < exp(—2logn).
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Thus, by a union bound, with probability at least 3/4, for each i € [¢] and j > jo,
1 /
|Big NIl = 145 N ] (22)

and 5
AL NG| < Z’A; NIl (23)

Assume now that and hold for all i € [¢] and j > jo. Note that since k' = 2560¢n/m + 1 and
m > C'y/n, we have |AL| > 20k’ + 64¢(logn). Let X be the set consisting of the largest 2¢k" elements of
AL, which is the same as the set of the largest 2¢k’ elements of A’. Observe that there is j; > jo such
that, for all j > j;, X D AL NI; and, for all j < j;, X NI; = 0. Since, for each j > j; > jo and ¢ € [{],
|Bi2N1;| > 4|AL N I;| > 4| X N 1|, we have that B; 5 contains a subset with [-L|X N I;|] elements in I;
for each j > ji. We next show that 3~ . [ 41X NIj|] < K. Indeed, let t be the number of indices j > jy
such that X NI; # 0. Note that >, |X NIj| = [X] = 20k" > 256( and, for each j > j; for which X N ;
is non-empty, | X N I;| = |AL N I;| > 64¢(logn). Thus,

/
f<14 | X| k

— < . 24
- 64¢(logn) <16 (24)

Therefore,
/

1 1 KK
—| X NIl <t — XNl <—+—=<k.
ZLE’ QJ‘W—JFZM‘ m]|<16+2<
Ve Jjzi
Since B; o contains a subset of size less than &’ with at least [%E\X N ;]| elements in I; for each j > jy

and M (i) is the sum of the k" largest elements of B 2, one has
) 1 1 . M
M@E) > 27— XnL== ) 2 (XNI|>—.
Jjzn Jjzn
We also have [AL ;N I;] < 2|1AL N I;| = 2|X N Ij| for all j > ji. Moreover,
2 2 . K
Z MXijyJ > ZZ'ij| —t > A — > 2K,
Jzi VE

where we used the bound |D Thus, there exists a set of size at least 2k’ containing L%\X oy ]|J elements

in I; for each j > ji such that the elements of this set dominate the 2k" largest elements of A’>7i. Hence,

AM

_ )
M(i) < Zzwﬂxmjy <=

J2i
completing the proof of Claim 2. O

Both Sarkézy [35] and Szemerédi and Vu [41] also state results which apply to

nM(A) = {Zs :SCALS = h},

seS
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the set of subset sums formed by adding exactly h distinct elements from A. By a small modification of

our proof, we can also derive the following variant of Theorem that applies in this context.

Theorem 6.4. There exists an absolute constant C > 0 such that the following holds. For any subset A of
[n] of size m > C/n, there exists d > 1 and r € [0,d—1] such that, for A’ = {(x—r)/d : € A, d|(x—7)}
and k > Cn/m, SR (A’) contains an interval of length at least n. Furthermore,

|A| — |A'| < C((logn)® + n/m).

That is, if A C [n] has size m > Cy/n and k > Cn/m, then £*)(A) contains an arithmetic progression
of length at least n. Since we do not need this variant and the proof is rather similar to that of Theorem
we omit the details.

Instead, we conclude the section by proving Corollary that there is a constant C' such that H(n)
and h(n) are both at most C'y/n, where we recall that H(n) is the largest integer for which there are two
subsets of [n] of size H(n) whose sets of subset sums have no non-zero common element and h(n) is the

size of the largest non-averaging subset of [n].

Proof of Corollary[1.10 For the bound on H(n), we need to show that for any two subsets S1,S2 C [n],
each of size m > C'y/n, there are non-empty subsets S; C S and S5 C Sy such that Dosies] S1= 2 gcs, 52
To this end, order the elements of 57 U S5 in increasing order and let M be the median. Without loss of
generality, we may assume that the smallest m/2 elements from S; are each at most M and the largest
m/2 elements from Sy are each at least M. Let Ry C Sp consist of the smallest m/2 elements from S;
and Re C Sy consist of the largest m/2 elements of Ss.

Applying Theorem m to Ry, we see that, provided C is sufficiently large, E[k](Rl) with k = 252n/m
contains a homogeneous arithmetic progression P of common difference d < 4M/m and length at least
2n whose minimum element is at most kM. Note now, by the pigeonhole principle, that any d element
sequence contains a subsequence (consisting of consecutive terms) whose sum is divisible by d. We may
therefore partition Rs greedily into subsets T U - -- U T, each of size at most d, such that for each ¢ < s
the sum of the elements in 7T; is a multiple of d. Note that the sum of the elements in any 7T; is at most
dn, while the sum of all the elements in Ry \ T is at least (m/2 — d)M > kM. It therefore follows that,
for some j, the sum Zgzl ZteTi t, which is a sum of elements from S, lies in the homogeneous arithmetic
progression P.

For the bound on h(n), we apply Straus’ inequality h(n) < 2H(n)+2 (see [39]), whose proof we include
for completeness. Indeed, suppose that we have a subset of [n] of size p = 2H (n) + 3, say {a1,a2,...,a,}
with a1 < ag < -+ < ap. Writing ¢ = H(n) + 2, we see that a, is the median element and the sets
{ag—a; -1 <i<gq}and {a; —aq:q <j < p} are both subsets of [n] of size H(n) + 1. Therefore, by the
definition of H (n), there must be sets I C [¢—1] and J C [g+1, p] such that >, j(ag—ai) = > ;(a;—aq).

. . 1 ) . .
Rearranging, we see that aq = RN > iciug @i, so the set is not non-averaging. O

7 Subsets avoiding a given subset sum

Recall that g(n,m) is the maximum size of a subset of [n] with no subset sum equal to m. Using the

results of Section @ we now prove Theorem giving the precise value of g(n,m). Theorem states
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that there is a constant C' such that if m € [C’n(log n), 12(12T)2} , then

(n,m) = s(n,m) T | +sud(m) -2

n,m)=s(n,m) = | —— snd(m) —

g ) ) Snd(m) )

where snd(m) is the smallest positive integer which is not a divisor of m. Moreover, if m € [m, ("JQFI)] ,
then g(n,m) = max (s(n,m), (1 + o(1))v2m).
Proof of Theorem[I.7] We consider the cases m < W and m > m separately.

Case 1. Cn(logn) <m < ﬁ for C sufficiently large.

Let A C [n] be such that m ¢ ¥(A). Assume that |A| > s(n,m)+1. We claim that snd(m) < 1.01logm
for m sufficiently large. Indeed, if snd(m) > 1.01logm, then m > lem(1,2,...,1.01logm). It is easy
to see that lem(1,2,...,1.01logm) = exp (ngl.m logmA(ZE)), where A is the von Mangoldt function
given by A(x) = logp if x = p¥ is a prime power and A(x) = 0 otherwise. But, by the prime number
theorem, 3, -1 0110gm A(2) > 1.005log m for m sufficiently large, so that m > lem(1,2,...,1.01logm) >
exp(1.005logm), a contradiction. Thus, snd(m) < 1.01logm < 2.02logn and, in particular, |A| >

Let A* be a random subset of A where each element is chosen independently with probability 1/10.
By Hoeffding’s inequality, |A|/9 > |A*| > |A|/11 with high probability. Suppose that 2 < d < n is such
that there are at least (logn)? elements in A which are not divisible by d. Again by Hoeffding’s inequality,
the probability that the number of elements in A which are not divisible by d is more than 20 times
larger than the number of elements in A* which are not divisible by d is at most exp(—(logn)3/800).
Thus, by the union bound, the probability that there exists d € [2,n] such that there are at least (logn)3
elements in A which are not divisible by d and the number of elements in A which are not divisible by
d is at least 20 times larger than the number of elements in A* which are not divisible by d is at most
nexp(—(logn)3/800) < 1/4. Denote this latter event by £ and assume from here on that A* has been
chosen so that |A]/9 > |A*| > |A|/11 and & does not hold.

By Theorem there exists d such that, for A" = {z/d : = € A* d|z}, we have |A'| > |A*| —
23%(logn)3 — %ZO*T and X[¥(A’) contains an interval I of length at least n for k = 2°'n/h, where h = |A*|.
Note that |A’| > |A*| —23%(logn)3 — ‘QZO[IL > |A*| —2%9(logn)3, as |A*| > % > 33 3atogn- Since € does not
hold, there are at most 2°°(logn)? elements in A which are not divisible by d.

Let A” = {z/d:x € A\ A*,d|z}. Since |A*| < |A|/9 and there are at most 2°°(logn)? elements in A
which are not divisible by d, the size of A” is at least |A|—|A*|—2°0(logn)? > 8| A|/9—2%0(logn)3 > 0.87| Al.
Note that the smallest element of I is at most nk/d < 2°9% .2 and each element in A” is at most n/d < n.

Therefore, by Lemma kA AU A7) contains the interval [290% . 2 5 an @). We have

Zx>|A”|2>|A|2> n2
=, 2 2.7 7 12(logn)?
xr

and

% -n < 30n(logn).
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Hence, ¥(A) contains all multiples z of d with 2°n(logn) < z < #?71)2. In particular, if m ¢ X(A),
then d t m. Thus, d > snd(m). Recall that at most 2°°(logn)? elements of A are not divisible by d.

Therefore, if d > snd(m) 4 1, then

n n n

snd(m) + 1 < snd(m)  4snd(m)?

|A| < 29%(logn)® + {gJ < 29%logn)® + < s(n,m),
a contradiction. Thus, d = snd(m).

Since |A| > Lsnd( )J +snd(m)—1 and at most Lnd?m) ¢ t
least d — 1 elements in A which are not divisible by d. Let A be a set of d — 1 such elements. Note that A
is disjoint from {dz : x € A’U A”}. By Lemma [5.§] . Y4(A) contains a non-zero subgroup d'Zg of Zg. Since

J elements in A are divisible by d, there exist at

d = snd(m), d’|m for any d’|d and d’ # d. Thus, there exists a subset of A whose sum ¥ is congruent to
m modulo d. Furthermore, y is at most dn since |A| = d — 1 and all elements of A are at most n. Noting
that d < 4logn, we have m —y > Cn(logn) — nd > 259n(logn) for sufficiently large C. We also have
m—y<m< W Hence, m—y € S({dr : x € A/UA"}), som € S({dx : x € A’UA"} U A). Thus, if
|A| > s(n,m) + 1, then m € 3(A). Hence, g(n,m) < s(n,m). Since we already noted in the introduction
that g(n,m) > s(n,m), this completes the proof in this case.

<m< (n—i—l).

Case 2. 5

n2
12(log n)2
Let A C [n] be such that m ¢ 3(A). Assume that

|A| > 1+ max <s(n, m), vV2m(1 + 2°°(log n)2/n1/3)> .

Let A* be a random subset of A where each element is chosen independently with probability n=/3. By
Hoeffding’s inequality, 0.9|A|/n'/3 < |A*| < 1.1|A|/n'/? with high probability. As in the case above, we
can again define an event &, in this case that there exists d € [2,n] such that there are at least n'/3(log n)?
elements in A which are not divisible by d and the number of elements in A which are not divisible by d
is at least 2n!/3 times larger than the number of elements in A* which are not divisible by d, and show
that it happens with probability at most 1/4. We now fix A* with 0.9|A|/n'/3 < |A*| < 1.1|A|/n'/? such
that £ does not hold.

By Theorem [6.1] there exists d such that, for A’ = {z/d : z € A*,d|z}, we have |A/| > |A*| —
239%(log n)? TA*T and X(A’) contains an interval I of length at least n. Note that [A| > s(n,m) 2 555157
so |A*| > 0?%\ > 0an? o4 |A"| > |A*] — 23%(logn)3 — |A* > |A*| — 2%911/3(logn). Since € does not

= logn

hold, there are at most 2*'n2/3(logn) elements of A which are not divisible by d.

Since |A| > s(n,m) + 1, we must again have d < snd(m). If d = snd(m), then, as above, we can find
at most d — 1 elements of A which are not divisible by d and whose sum is congruent to m modulo d.
If d < snd(m), then d|m. In either case, there is a (possibly empty) sum y of at most d — 1 elements
of A not divisible by d such that d|(m — y). Therefore, to show that m € 3(A), it suffices to show that
(m—y)/deX({x/d:x € A, dlzx}).

Note that ¥(A’) contains an interval I where the largest element of I is at most > . 4 2 < 1. 1n°/3/d
and each element in {z/d : x € A\ A*,d|z} is at most n/d. By Lemma[2.1 X({z/d : z € A, d|z}) contains
the interval [1.1n%/%/d, > -ea\a* g #/d]. The number of elements in A\ A* which are divisible by d is at
least |A| — |A*| — 221023 (logn) > |A| — 1.1|A|/n'/3 — 241n?/3(logn) > |A|(1 — 2420~ /3(logn)?) > v/2m.
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Hence,

[V2m]
Z z/d > Z 1> m.
z€A\A* d|z =1

Thus, ©({z/d : = € A,d|z}) contains (m — y)/d, since (m — y)/d > (m — dn)/d > 1.1n%/3/d and
(m—y)/d < m.

Hence,
g(n,m) < max (s(n, m), vV2m(1 + 2°°(log n)2/n1/3)) .

Since g(n,m) > s(n,m) and g(n,m) > [V2m| as the interval [|v2m| — 1] does not have a subset sum

which equals m, we have
g(n,m) = max (s(n,m), V2m(1 + O((log n)*/n'*)))

completing the proof. O
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A Supplementary results for Section

A.1 The growth rate of F

In Section {4 we consider a sequence of positive integers F' = (f,)n>1 which satisfies f, = Y., fi for all

n > ng. Here we establish the asymptotic for F' claimed in the introduction.

Claim A.1. Let F' = (fn)n>1 be a sequence of positive integers which satisfies fn, = > ;. fi for all
n > ng. Then f, = exp ((ﬁ(l/e) + 0(1)) (log n)2>

Proof. We first show by induction that there is a constant C' for which f,, < exp (m((log n)? + C’))

for all positive integers n, which would imply the upper bound in the claim. We can choose C' sufficiently
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large so that this holds for all n < max(ng, 10/¢). Let m > max(ng, 10/¢€). If f, < exp <%) for all
n <m — 1, then

fm = Z fi <em-exp (21(yg1(1/e)((10g(6m))2 + C))

1<em

1
= exp <2log(1/e)((10gm —log(1/€))? + C + 2log(1/e) log(em)))

< e (o (om? 4 ) ).

completing the induction proof of the desired upper bound on f,.

We now turn to proving the desired lower bound on f,, in the claim. Let C’ = 100log(1/€). Let

g(x) = exp ((logm)zgggl(olgjgloglogm>. Note that there is 2o > 0 depending only on ¢ such that (logz)? —

C’'log xloglogx is increasing for all x > z. Let m(e) be the least positive integer such that, for all
m > m(e),
eg(m) < g(m —1/€) — g(zo/e).

It is easy to verify that such m(e) exists. Let g(x) = exp ((log x)Lg’léZ%lx/ng log xic) , where C' is a sufficiently

large constant to be chosen later. We next show by induction that, for an appropriate choice of C, f,, > g(n)
for all n > 2. We choose C sufficiently large that the above claim holds for all n < max(ng, g, m(e)). Let
m > max(ng, xg, m(€)). If f,, > g(n) for all n < m — 1, then

i<em i<em

em—1 m—1/e
2/ g(x)dx=/ eg(ey)dy,

0 o/€

where in the last step we used the change of variable y = z/e. Note now that

by 1 2 B '210gy—C’—C’loglogy
g (y) = exp <210g(1/6>((10gy) C'logyloglogy — C) Sy Tog(1/6)
< exp <21(Vg1(1/) [(logy)? — C"logyloglogy — C — 2log(1/€)logy + 2log(1/€) log(logy/ log(l/e))]) .
€
Thus,
9'(v)/9(ey)

< exp (21(%1(1/6) [(log y)? — C'logyloglogy — C' — 2log(1/€)logy + 2log(1/€) log(log y/ log(l/e))])
o (g (o) + C'log(e) log og(en) + 1)

< exp (210g1(1/e) [21og(1/€) log(logy/log(1/€)) + C" log(e) loglog y])

< exp(—C'(loglogy)/4) < €,
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where in the last inequality we used the fact that C’ = 1001log(1/¢€). Then

m—1/e m=1/e of m—1/€) — g(xg/e
fuz [ eoeninz [ 9w g, 5 9m=1/e) = 9(@0/€) oy,

o/€ xo/€ € €

where in the last inequality we used the definition of m(e) and the fact that m > m(e). This completes
the induction. O

A.2 Proof of Lemma [4.4]

In this subsection, we give the proof of Lemma [f.4] which is a key component in the proof of Theorem [4.3]
First, we recall the setting and the statement of the lemma. Let ¢y > 0 be a sufficiently small constant.
Let B = (by)n>1 be an e-friendly sequence. For j sufficiently large, we choose a; to be a uniform random
integer in [b;, bj4+1) which has no prime factor at most (max(1/e,1/€))*% and let A = (a;);>1. For small
j, we choose a; to be an arbitrary integer in [bj,bj11). We let h(i) be the smallest integer for which
by = 24 and A; = AN [by), bh(i+1)—1)-

Lemma 4.4. There exist positive constants ey, C1 and Co such that the following holds. For i sufficiently
large, with positive probability, the set A; has the property that, for any subset A, C A; with |A}| >
(min(e, €9)/4)| Ai|, A, contains a subset A with |AY| < Cii such that 3(A}) contains every integer in the
interval [y, 2y], where y = Cy2%4.

The proof of this lemma has been consigned to an appendix because of its similarity to the proof
of Lemma Indeed, the difference between the two proofs consists mainly of minor modifications to
account for the non-uniformity in the distribution of the elements of A;. However, for completeness, we
give the proof in full, beginning with the following lemma, which is the analogue of Lemma [3.1] in this

context.

Lemma A.2. For a sufficiently large positive constant Cy, the following holds. Assume that € > 0 is
sufficiently small. Let i be sufficiently large and let m be an integer in [2¢,2°F1) with no prime factor at
most e~ If S is a uniformly chosen random subsequence of A; of size Cyi, then |L,,(S)| < 2¢72 with

probability less than '900C0t,

Proof. Let w = €499, Denote by X the set of integers [bh(i), bh(i+1)—1) with no prime divisor at most w.
For each j € [h(i), h(i+1) —1), let X; be the set of integers in [bj, bj11) with no prime divisor at most w.
Let t = h(i + 1) — h(i) — 1, which is the number of intervals [b;, bj+1) in [by(), by(i+1)—1). Note that for
each interval I of integers of sufficient length, the number of elements in the interval which are coprime to
all the primes at most w is (7 + o(1))|I], where 7 = ¢(W)/W with W being the product of all primes at
most w. Since B is a friendly sequence, we have bj 1 —b; < (bjy1 —by)/cfor all j € [h(i) —1,h(i+1) —1]
and j' € [h(i),h(i + 1) — 2]. Thus,

2" < bpgivr) — bagy—1 < (1+2/(ct)) (bngis1)—1 — bagi))-

Since ¢ tends to infinity as ¢ tends to infinity, we have that by1)-1 — by) > %Qi for sufficiently large 7.

Hence, for large i, we have that A
2’6
x> 5 (25)
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Again by properties of friendly sequences, the length of the intervals [bj, bj11) for j € [h(i), h(i+1) —1) are
within a factor 1/c of each other and the minimum length of an interval [b;, bj1) with j € [h(3), h(i+1)—1)
tends to infinity as i tends to infinity. We thus obtain that all |X;| with j € [h(i), h(i + 1) — 1) are within
a factor 2/c of each other for i sufficiently large. Hence,

c|X]|

Xi|>—. 26
X512 5 (26)

Let D be the distribution of a random integer in [by,;, bp(i+1)—1), Where the probability that an element

a € X; is chosen is ﬁ Observe that the random sequence S is a sequence of Cyi random integers with
J
distribution D, subject to the condition that no two elements come from the same interval [b;,bj11).
Let ¢ = Cpi. Let S = (s1,52,...,8¢). Let S;j = (s1,52,...,5s;) denote the sequence consisting of the

first j elements of S. Let 6 = 1/w. Call j € [2,q] bad if

%

o [9n(S)] < §I8m(S5-1)] and Sy (Sj-1)] < & or
o [Sn(S)] < (14 8)|Zm(Sj-1)] and Z < [Sn(S)-1)] < 272

The following two claims will allow us to complete the proof of the lemma.

16
cwTt”’

Claim 1. The probability that j is bad conditioned on the choice of S;_; is at most p :=
Claim 2. If |3,,(S)| < 2072, then all but fewer than 2i integers in [2, g] are bad.

Assuming Claim 1, for any B C [2,q], the probability that all elements in B are bad is at most plZ!.
By Merten’s third theorem, we have 7 = (e 4+ 0(1))/logw > 1/(2logw) for sufficiently small €, so

p< 3210gw. (27)
cw

From Claim 2, if |3,,(S)| < 2072, then there is a set B of ¢ — 2i integers i € [2,q] which are bad. Taking
a union bound over all such choices of B, the probability that |3,,(S)| < 2¢=2 is at most

q q . (32logw Coi—2i -
(2, )07 = (2)57 < s (28 un

q— 21 cw

where in the first inequality we used and in the second inequality we assume a sufficiently large choice

—4000

of Cp and note that w =€ with e sufficiently small. O

To complete the proof, it remains to verify Claims 1 and 2.

Proof of Claim 1. Fix Sj_1 = (s1,...,5j-1). Conditioned on this choice of S;_1, we bound the probability
that j is bad. Let T' be the set of k such that [by, by1) contains at least one of s1,...,s;—1. Observe that
conditioned on s1,...,s;j_1, the distribution of s; is supported on Uke[h(i),h(iﬂ)_l)\T X and, for x, € X,
with k € [h(i), h(i + 1) — 1) \ T', the conditional probability that s; is equal to xy, is

1 2 4
< < )
[ Xk =T — | Xklt — ¢ X]|

where we used .
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If [2,,(S;-1)| > 2072, then j cannot be bad (so the event that j is bad has probability zero). We may
therefore restrict attention to the two cases |£,,(S;-1)| < 2!/w and 2¢/w < |,,(Sj-1)| < 2072

For the first case, note, by Lemma , that the number of s with [£,,(Sj—1 U {s})| < 2|Z.(S;-1)]
. m(Sj-1)]2 . ; s .
is at most % = 2|%,,(Sj-1)]. Therefore, if |£,,(Sj—1)| < 2'/w, the probability that j is bad
conditioned on S;_1 is at most
4 < 16

2/n(Si-0l - 7 < e

=D,

where in the inequality we used .

Suppose now that 2 /w < |%,,(Sj-1)| < 2°~2. For a positive integer D, let Gp be the set of s such that
X (Si—1U{s})| < |Em(Sj—1)|+ D. Let d = |0]|%,,(Sj—1)|], so j is bad in this case if and only if s; € G4.
Let k = | 55], so kd < [S,,(Sj-1)|/2- By Lemma kGa C Ga, 50 [kGq| < |Gral < 2|Z(Sj-1)] < 271,
where the middle inequality is again by the consequence of Lemma [2.6] noted above.

If |Ggq| <, then |Gy4| < T < % = 262", Otherwise, |G4| > 2. In this case, since m has no prime
divisor at most w, no subgroup of Z, has size larger than 7. Thus, G4 cannot be contained in a coset of
a non-trivial subgroup. By Lemma since |kGy| < 2071 < m, we must have |kGg4| > (k +1)|Gq4l/2 >
|G4l/(46). Hence, |Gq4| < 46|kG4| < 452071 = 262, Thus, in either case, conditioned on the choice of
S;_1, the probability that j is bad, which is the same as the probability that s; € Gy, is at most

4 160

<7:p7

Gl
|Gl clX| ~ er

where we again used . O
Proof of Claim 2. As Sj_; C S; for j € [2,q], £(Sj—1) C £n(S5;) and, hence, 1 < [¥,,(51)] < --- <

X (Sg)| = |Sm(9)| < 2072, Therefore, the number of j which are not bad with |3,,(S;-1)] < 2¢/w
and |2,(9;)| > 3|%,,(S;j-1)| is at most logy 2" = ilolgo(%)/zm, as we get a factor of 3/2 for each such
j. Moreover, since (1 + 5)5_11°g2”“” > 2log2w — 4 the number of elements j which are not bad with
2072 > |5,,(Sj-1)] > 28/w and |£,,(S;)] > (1 + 6)|Zm(Sj—1)| is at most §~'logy w = wlog, w, as we

get a factor of 1+ 0 for each such j. Therefore, the number of j € [2,¢] which are not bad is at most

ilolgo(% + wlogy w < 2i for sufficiently large 4. O

We are now ready to prove Lemma [£.4]

Proof of Lemmal[{.4} By replacing e with min(e, €y), we only need to prove Lemma for € < ¢y. Thus,
by choosing € sufficiently small, it suffices to prove that the following holds for sufficiently small e. If ¢
is sufficiently large, then any subset A} of A; with |A}| > (e/4)|A;| contains a subset A7 with |AY| < Cyi
such that X(AY) contains every integer in the interval [y, 2y], where y = C52%.

For a given C; and i sufficiently large, we have that |A4;| > 400¢~'Cyi. Consider a random partition
of A; into subsets of size 4¢~'Cyi and consider a uniform random ordering of each subset as a sequence of
integers. Let the obtained sequences be A;1,..., A; .

We will show that for an appropriate choice of C7, there exists a positive constant Cy such that, with
positive probability, the following event £ holds. For all £ < u and all subsequences A;,k of A} of size
(e/4)| A k|, (A} ) contains the interval [y, 2y] for y = Co2%4.

Fix k < u and fix a subset I’ of [4e~1Cyi] of size Cyi. Let A;k be the subsequence of A; consisting
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of elements with index in I’. Let £ be a constant to be chosen later. We partition I’ into a subset I”
of size 7C1i/8 and ¢ subsets [ 1/43/,17 R | ,’C’j of equal size such that each subset in the partition consists of
consecutive terms from I’. Let A;”k be the elements with index in I” and, for each j € [¢], let S} ; be the
clements with index in I} ;. Let J; ; be the first |} ]/2 elements of I}/ ; and let Ji/; be the remaining
elements. Let Sy ; be the elements with index in J; ; and let S/ ; be the elements with index in Ji/ ;. Then

. ; has the same distribution as a random subsequence of A; of length [Sj, ;|/2. We choose C1 = 16£Cp, so
that |5} ;| = Coi, where Cj is the constant defined in Lemma By Lemma and a union bound, we
have that |X,,( ,’”)] > 22 for all m € [2¢,21*1) with no prime factor at most e~4%% with probability at
least 1 — 2t€1000C07 » 1 _ 800C0i agsuming that e is sufficiently small. Thus, by another union bound, with
probability at least 1 — £800C0%, |Em(51’€, ])\ >2"2forall j </ and all m € S,’C” ;- By repeated application
of Lemma [2.5] we have that

i— 1 %
[5(Sk,)] = 2(Sk; U Sk ;) > |S);1277% > 162 [Aikl/(40)-

We also have that (S} ;) is a subset of the interval [0, 21\A;k|/(4€)] Furthermore, ¥(S, ;) is not contained
in any arithmetic progression with common difference greater than 1, as otherwise there exists 1 < d < 16
such that all elements of Sy ; are divisible by d, contradicting the fact that elements of A; do not have
prime factors at most ¢ ~4%%°, Thus, choosing ¢ = 33, by Lemma we have that Sy 1 + ...+ Sk contains
an interval of length at least 2'|A] , |/(4€). Hence, ¥(Aj , \ A]},) contains an interval [a, 0] of length at least
2¢| AL, 1/(40) > 27T1. Note that a < b < 2072 AL, |. By Lemmam we then have that (A, ) contains the
interval [a, b+ ZxGAQ’,k z] D [y, 2y| for y = i2i|A’i,k| = 912, Let Cy = 9.

By taking a union bound over all possible choices of I’, the probability that there exists a subsequence
Ajy, of Ajy of size (¢/4)|A; k| such that $(Aj ;) does not contain the interval [y, 2y] for y = (o2 is at
Akl l)&SOOCOi. By a union bound over all £ < u, we then obtain that the event £ holds with

/)| Ak
probability at least

most ( (

’Aik‘ ) 800C1 i+7 C1i _800C1 200CH1
1—u ’ £eP00C08 > ] 91T (fe /) C11800C01 > 1 (200000
<<e/4>\Ai,k| (de/e)

where we used that e is sufficiently small, C; = 16¢C, with Cy sufficiently large, £ = 33 and u < 2¢+1,
Assume now that the event £ holds. For any subset A, of A; such that |A]] > (e/4)|A;|, there exists

k < w such that |A; N A; x| > (e/4)|A; x|. Thus, defining A” to be an arbitrary subset of A, N A; of size

(€/4)|A; x| = Chi, we have that X(AY) contains the interval [y, 2y] for y = C22%, as required. O

B Supplementary results for Section

B.1 Number-theoretic estimates

This short section contains the proofs of some number-theoretic estimates which were used in Section

We will need the following simple lemma.
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Lemma B.1. One has

i <110 ) =Za=TI0 ) =4y

plm ulm plm

Proof. By considering the squarefree divisors of m, we have

On the other hand,

Furthermore, . . "
T(e ) =05 T ) = T ) = i ©

Our first aim is to prove Lemma [5.2] which gives upper and lower bounds on the number of integers
in an interval with certain number-theoretic properties. The following lemma, of a similar flavor, is a

key component in the proof. Recall that W(r) = [[\_, pi;, where p; is the i*! prime, and 7(r,m) =
p(W (r)m)/(W (r)m) = ILjw@ym(L —1/p).

Lemma B.2. Let r, n and m be positive integers such that m € [n, (g)], r <n and r is sufficiently large.

For any interval I = [z, 2z) with z > n'/S, the number of integers in I which are coprime to W (r)m is at
most 87(r,m)z. If also x > 11, then the number of integers in I which are coprime to W(r)m is at least

iT(r,m)x.

Proof. By [32, Theorem 7.11|, for each interval I = [z,2z) with = > p,/2, the number of integers in [
which are coprime to W(r) is at most (1+o0(1)) 555 < 27(r, 1)z, where we used that p, = (1+0(1))r logr
and (31). For = < p,/2, the number of integers in I which are coprime to W(r) is 0 < 27(r, 1)z. If also
z > !5 > p,, then the number of integers in I which are coprime to W (r) is at least (3 —o(1))
$7(r, 1)z, again using .

Consider the case r > (logm)/100. Then 7(r,1) < 1/logr < 47(r,m) by and (34), so the number

of integers in I which are coprime to W (r)m is at most 87(r,m)z. For x > r!5 we have seen that there

z_ >
Ingr -

are at least %7‘(7“, 1)z integers in I which are coprime to W(r). For each prime factor p of m that is
larger than p, > r, the number of integers in I divisible by p and coprime to W(r) is the same as the
number of integers in [z/p, 2x/p) coprime to W (r), which is at most 27(r, 1)x/p. Since there are at most

(logm)/(logr) such prime factors, the number of integers in / which are coprime to W (r)m is at least

1 logm 27(r,1)x _ 1 200r7(r, 1)x
l D — ) > - g — 220\ 2)
ZT(T’ )@ logr r - QT(T’ ) rlogr

> 7(r,m)x/4,

where, in the first inequality, we used the assumption r > (logm)/100 and, in the second inequailty, we
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used that r is sufficiently large and 7(r,m) < 7(r, 1) by .
Next, consider the case r < (logm)/100. By the inclusion-exclusion principle, the number of integers

in I = [z, 2z) which are coprime to W (r)m is

xXr
o+ Y (-1 > — 1 0(2M),
=1 pr<pa<--<py, P1P277"Pk
P1,02,-Pk| W (r)m

which is within an additive O(2M) of x ILpjw(ym(1 —1/p), where M is the number of distinct primes that
divide W (r)m. Since M < 7 + 2(logm)/(loglogm) < (logn)/10 and = > n'/®, the number of integers in

I coprime to W (r)m is at least 37(r,m)z and at most 27(r,m)x. O

Lemma 5.2. Let v, n and m be positive integers such that m € [n, (g)], r < n and r is sufficiently

large. For any interval I = [z,2x) with x > n'/*, there are at most 8(m/d(m))T(r,m)x integers in I of

1/16

the form qu, where ulm, u < x and q is coprime to W (r)m. If also x > 12, then there are at least

$(m/¢(m))7(r,m)x integers in I of this form.

Proof. Observe that for z > n!/4 and each fixed ulm with u < z1/16, Lemma implies that the number
of integers in I of the form qu where ¢ is coprime to W (r)m, which is the same as the number of integers
in [x/u,2x/u) which are coprime to W (r)m, is at most 87(r,m)xz/u, where we used that z/u > n'/6. If
also > 72, then Lemma similarly implies that the number of integers in I of the form qu where ¢ is
coprime to W (r)m is at least 27(r,m)z/u, where we used that x/u > r'?.

1/16

Hence, the number of integers in I of the form qu, where u|m, u < x and ¢ is coprime to W (r)m,

is at least

1 x 1 1 o(m)
ZT(T’ m) Z a > ZT(T7 m) Z E - 1‘1/16 €T

u|m, u<al/16 ul

V

|
\]
=
g

1
> < (m/6(m))7(r,m)z,

where o(m) is the number of positive divisors of m, which is smaller than m/190 for m sufficiently large,
and we used Lemma in the second inequality. Similarly, the number of integers in I of the form qu,

1/16

where u|m, u < x and ¢ is coprime to W(r)m, is at most

where we again used Lemma [B.1] O

We now prove Lemma [5.9] which gives an upper bound on the number of integers in an arithmetic

progression which are coprime to W (r)/ ged(W(r), m). The proof employs the Selberg sieve.

Lemma 5.9. Let r and n be sufficiently large positive integers and m € |n, (")} Let X be an arithmetic

2
1/16

progression of size | X| > r with common difference b < n. Then the number of elements of X which
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are coprime to W (r)/ ged(W (r), m) is at most

256| X | loglogn
logr '

Furthermore, when b = 1, the number of elements of X which are coprime to W (r)/ ged(W (r),m) is at
most
256|X| [ (1-1/p).
pIW (r),ptm
Proof. First, we prove the lemma in the case where the elements of the arithmetic progression are coprime
to b. By the Selberg sieve [32, Theorem 3.8|, applied with ¢ = b and P = W (r)/ged(W (r),bm), which
is coprime to b, the number of integers coprime to W(r)/ged(W (r),bm) contained in any arithmetic

1/16

progression of length k£ > r and common difference b is at most

o) 11 p=1l o 11 p—1
p p
pl(W ()] ged(W (r) bm)), p<v/E Pl(W (r)/ ged(W (r),bm)), p<r!/3

Since each prime p < /32 < 7 is either a divisor of ged(W (r),bm) or a divisor of W (r)/ ged(W (1), bm),

for r sufficiently large, we have that

p—1 p—1 p—1 32
H — |- H | = H Tglogr’

plgcd (W () m) P Pl W () god(W () b)), pri /32 P peri/az

where we used Mertens’ third theorem. Since W (r)/ ged(W (r),bm) | W (r)/ ged(W (1), m), the number of
integers coprime to W (r)/ ged(W (r), m) contained in any arithmetic progression of length & > /16 and

common difference b is at most

H D 64k ged(W(r),bm) 64k

p—1] logr  ¢(ged(W(r),bm)) ' logr’ (28)

p|ged(W (r),bm)

assuming that the elements of the arithmetic progression are coprime to b.

If the elements of X are not coprime to b, let d be the greatest common divisor of b and the ele-
ments of X. Let Y = {z/d : v € X}. Then Y is an arithmetic progression of size |X| and common
difference b/d whose elements are coprime to b/d. Furthermore, the number of elements of X coprime to
W (r)/ ged(W (r),m) is at most the number of elements of ¥ coprime to W (r)/ged(W (r),m). By (2§),
the number of elements of Y coprime to W (r)/ ged(W (r), m) is at most

ged(W(r),bm/d) 64|V < ged(W(r),bm)  64|X]|
d(ged(W(r),bm/d)) logr — ¢(ged(W(r),bm)) logr’

where we used that

ged(W(r),bm/d) P P ged(W(r), bm)

S(ecd(W(r), bm/d)) p-1° p—1 Blgcd(W(r),bm))’

plged(W (r),bm)

plged(W (r),bm/d)

=



Thus, for any arithmetic progression X with common difference b, the number of integers coprime to

W(r)/ged(W(r),m) in X is at most

ged(W(r),bm)  64|X|
d(ged(W(r),bm)) logr

(29)

3

. S0 ged(W (r),bm)

The first claim in the lemma follows immediately upon noticing that bm < n B(acd (W (),bm))

<
2loglog(bm) < 4loglogn.

The second claim in the lemma follows from by observing that when b =1,

¢(ged(W(r), bm))
ged(W(r), bm)

p—1 1
| > | | g2
08T = P 27(r, 1)
pl ged(W (r),m)

1 p—1 P
; AT =~ 11 5

plged(W (r),m) pIW(r)
1 _
p|W(r),ptm
where we used in the first inequality. ]

B.2 Further estimates for Subsection [5.1]

In this subsection, we collect several important estimates that are used throughout Subsection [5.1. To
this end, let n be a sufficiently large positive integer and m € [n, (g)] For a positive integer p, recall that
W(p) = TTy s and 7(p,m) = S(W (p)m)/(W(p)m) = Ly (m(1 — 1/p). We define p(n,m) to be the
smallest positive integer p such that

p/T(pym) > n?/¢(m).

Note that p/7(p, m) is increasing as a function of p and

m_ Wi(p) 1 < m_ Wi(p) >
. > > max , . (30)
¢(m) d(W(p)) — 7(p,m) p(m)” p(W(p))
For sufficiently large p, we have, by Mertens’ third theorem, that
1 W(p)
= € |1.6log p, 1.81og p|. 31
oD~ aw ) < | o
Thus,
¢(m)/m
> 32
Hence, for p sufficiently large with p < n,
< 4log ploglogm < 8lognloglogn. (33)

7(p,m)
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Furthermore, for p > 10logm/loglogm, noting that m has at most 2logm/loglogm distinct prime

factors larger than 10logm/loglogm, we have

<2

)

[T 0-vt < o s

—2logm/loglogm
10logm >
plm,p>pp

SO

o) € [log p, 4 log p]. (34)

The next claim gives the order of p(n,m) when m < n?/(logn)?.

Claim B.3. For m <n?/(logn)?,

ot Y,

p“””‘@ﬂ%mHMm»

Proof. Since m < n?/(logn)?, we have n%/¢(m) > n?/m > (logn)%. Moreover, if p is a positive integer
such that p < 10log m/loglogm, then, by , we have that

10logm

p/T(p,m) < -4log ploglogm < (logn)? < n?/p(m).

~ loglogm
Thus, we must have p(n, m) > 101log m/loglog m.
If now p is a positive integer such that p > 10logm/loglogm, we have 7(p,m)~! € [log p, 4log p| by

. 2 . .
1} Therefore, if p > 16%, then, by monotonicity of p 77(; L

w2 16n2/¢(m)
P ) log(logwas(m))) o

om) © T lognife(m)) = o(m)

and so p(n,m) < 1610;?;%. On the other hand, if 10logm/loglogm < p < %mﬁ%, then

n2

¢(m)

n? X n?/¢(m)
p__ 3w 410g(1610g<n2/¢<m>>>

T(pym) ~ 16log(n?/¢(m))

<

=

and so p(n,m) > 1—1610;(2”/;%, as required. O

Recall that ¢(n,m) = (1og7;l)11//33(?110/g¢1(0223)2/3 and R(n,m) = min (¢(n,m), p(n,m)). Using Claim [B.3] it

is easy to show that R(n,m) = O (¢»(n,m)) when m = O (%) and R(m,n) = O(p(n,m))
when m = Q (%).
Recall that in Subsection we define r = ¢R(n, m) for a sufficiently small absolute constant c¢. The

next claim establishes the existence of the integer y used in Lemma [5.1

Claim B.4. Let n and m € [n, (g)] be positive integers such that n and p(n,m) are sufficiently large. Let
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r = cR(n,m), where ¢ > 0 is sufficiently small. Then there exists an integer y < n/2 with

y?(m/¢(m))7(r,m) y?(m/¢(m))7(r,m)

me 251 ’ 15r
Moreover, one may choose y such that
y > max(r?, n3/5) (35)
and
64(m/¢(m))(r,m) > nl/t, (36)

rlogr

3/2 1/2 3/2 1/2
n3/2(loglog n) nd ™ (log lo;g/TQL) <m< (g) separately.

Proof. We consider the cases n < m <

(logn)t/2 (logn)
. n3/2(loglogn)1/?
Case 1: n S m S W
: n'/3 cCm!/3(m/¢(m)) : :
In this case, we have (Tog )23 <r< (og )73 (log log )73 * where C' is some absolute constant independent

nl/3
(log n)2/3 )

mrlogr cCm#/3logn
) = < nveC.
\/m/qS(m) = \/(logn)1/3(loglogn)2/3 < nVeC

of all other parameters. Since r > by , we have 1/7(r,m) € [logr,4logr]. We also have

Thus, for sufficiently small ¢, there exists an integer y such that y < Wi% < 5 and y >

15mr

CCECDR This integer y then satisfies y < n/2 and

e [yQ(m/dﬁm))T(ﬁW) y*(m/¢(m))r(r, m)]
257 ’ 157 '
Furthermore, we have , , A
ri(m/¢(m)) _ (cC)*m(m/¢(m))
m(logn) = m(logn)?(loglogn)? <1/2. (37)
Since r > ﬁ > n3/107 we also have

15mrlogr mrlogn 9 3/5
y > > >r? > ndo,
¢mwm> %wwm
where we used in the third inequality.

3/2 1/2
Case 2: "/ -Uoglogn)'/*

(logn)1/2 <m < (g)

In this case, we have cC~!p(n,m) < r < cCp(n,m), where C is again an absolute constant and we

assume that p(n, m) is sufficiently large. By the definition of p(n,m),

mr/7(r,m) 2¢Cmn? /¢(m) o
¢mwm>§¢ migm) = "V2C

Thus, for sufficiently small ¢, there exists an integer y such that y < 1/(”1/(25(2;% < 5 and y >
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15mr

CIECOLCEDR This integer y then satisfies y < n/2 and
y*(m/¢(m))7(r,m) y*(m/¢(m))7(r,m)

€ ,
m 257 151

If %g—g‘f/? < m < n"/* we have p(n,m) > n'/® so 7(p(n,m),m) < 1/log p(n,m) < 10/logn

by . Using this, we obtain

m? n?

> >4 n.
4(loglogm)? — 16(loglogn)(logn) — m(p(n,m), m)"n

(m)* >
If m > n'/*, we also easily have

7(p(n,m),m)*n® < n3 < iqﬁ(m)Q.

Since T(p’zgln;zg)m) € [¢7(1;) Sim )] by the definition of p(n,m), we obtain p(n,m) < y/n in both ranges
n3/2(loglogn)t/2

logmiz — <M< n™/* and n/* < m < (3). Moreover, since r > cC~!p(n, m),

1.81og p(n, m)

7(r,m) = 7(p(n,m), m) H (1- 1/pi)71 < 7(p(n,m),m) < 257(p(n,m), m),

1.61
i€ p(nm)]pitm 8T
where we used that p(n,m) is sufficiently large. Hence,
./ 1 Ve —1
y> mr > CC mp n,m) > nveC > cZCQp(n,m)2 > 2, (38)
25(m/¢(m))7(r, m) (m/¢(m))7(p(n, m), m) 25

where we used the definition of p(n,m), the bound p(n,m) < /n and assumed c is sufficiently small.

Furthermore, from , for n sufficiently large, we have

- nveC1

3/5
y2—2 > n/°.

Thus, in both Case 1 and Case 2, there exists a choice of y < n/2 with

y*(m/o(m))T(r,m) y*(m/d(m))7(r,m)
257 ’ 157

m e

such that also holds. Moreover, holds, since

y 32y1/2
64(m/p(m))7(r, m)rlogr > e > pl/4,

where we used that y > max(r2, n%/°), logr < logn and, by (3 , (m/¢p(m)T(r,m) > 35— > 50—. O
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