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Abstract

We prove that a random Cayley graph on a group of orderN has clique numberO(logN log logN) with
high probability. This bound is best possible up to the constant factor for certain groups, including Fn

2 ,
and improves the longstanding upper bound of O(log2 N) due to Alon. Our proof does not make use
of the underlying group structure and is purely combinatorial, with the key result being an essentially
best possible upper bound for the number of subsets of given order that contain at most a given number
of colors in a properly edge-colored complete graph. As a further application of this result, we study
a conjecture of Alon stating that every group of order N has a Cayley graph whose clique number
and independence number are both O(logN), proving the conjecture for all abelian groups of order N
for almost all N . For finite vector spaces of order N with characteristic congruent to 1 (mod 4), we
prove the existence of a self-complementary Cayley graph on the vector space whose clique number and
independence number are both at most (2 + o(1)) logN . This matches the lower bound for Ramsey
numbers coming from random graphs and solves, in a strong form, a problem of Alon and Orlitsky
motivated by information theory.

1 Introduction
Given a group G and a subset S of G with the property that s−1 ∈ S whenever s ∈ S, the Cayley graph GS
is the graph with vertex set G where two vertices x and y are joined by an edge if and only if xy−1 ∈ S.
For example, for N ≡ 1 (mod 4) prime, the Paley graph PN is the Cayley graph on ZN whose generating
set S is the set of quadratic residues, so that vertices x and y are joined by an edge if and only if x− y is a
quadratic residue.

Our first concern in this paper will be with estimating the clique number, the order of the largest complete
subgraph, of random Cayley graphs. For the usual binomial random graph GN,1/2, the graph with N vertices
where each edge is chosen independently with probability 1/2, it has been known since seminal work of
Erdős [16] in the 1940s that the clique number is at most 2 log2N with high probability and this bound was
later shown to be asymptotically tight (see, for example, [8, 27] and their references).

Building on work of Green [23], Green and Morris [24] showed that the same upper bound holds with
high probability for the clique number of the uniform random Cayley graph on ZN with N prime, where each
set {s,−s} is included in the generating set S independently with probability 1/2. One of our main results
says that there is an absolute constant C such that the uniform random Cayley graph on any group G with
N elements has clique number at most C logN log logN with high probability, which improves on an earlier
bound of C log2N due to Alon [2] and, for some groups such as Fn2 , is best possible up to the constant.

Surprisingly, the proof of this result does not make use of the structure of groups in any meaningful way
and applies in a much more general combinatorial setting, to what we call random entangled graphs. The
main input, and arguably our real main result, is an essentially best possible upper bound for the number
of subsets of order n that contain at most Kn colors in a proper edge-coloring of the complete graph KN .
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To show the power of this result, we also use it to make progress on an important conjecture of Alon [2]
on the existence of Ramsey Cayley graphs. A graph on N vertices is said to be C-Ramsey if both its
clique number and its independence number, the clique number of its complement, are at most C logN . This
definition is motivated by an old result of Erdős and Szekeres [18] saying that there are no 1/2-Ramsey graphs
(see also the recent breakthrough by Campos, Griffiths, Morris and Sahasrabudhe [12] which improves this
1/2 to 1/2 + ε for some absolute constant ε > 0), implying that Ramsey graphs, if they exist, are essentially
best possible. In the other direction, Ramsey graphs do exist, since the result of Erdős [16] on the clique
number of random graphs implies that almost all graphs on N vertices are 2-Ramsey. It has also long been
conjectured that the family of Paley graphs should be a good source of Ramsey graphs, though the difficulty
in proving this was one of the sparks that initiated the closer study of both the clique number and the
Ramsey properties of random Cayley graphs.

With this notation in hand, Alon’s conjecture states that there is an absolute constant C such that
every finite group has a C-Ramsey Cayley graph. The results of Green [23] and Green and Morris [24]
mentioned earlier imply that this conjecture is true over ZN . There it is sufficient to consider uniform
random Cayley graphs, but over other groups such as Fn2 , where the clique number of the random Cayley
graph is Ω(logN log logN) with high probability, this cannot work. Nevertheless, by using our counting
result together with some additional ideas, we are able to prove Alon’s conjecture for a range of groups,
including abelian groups of order N for almost all N and finite vector spaces of characteristic at least
5. Arguably our strongest result in this direction says that if G is a finite vector space of order N with
characteristic congruent to 1 (mod 4), then it has a self-complementary Cayley graph whose clique number
and independence number are both at most (2 + o(1)) logN . This solves, in strong form, a problem of Alon
and Orlitsky [7] arising from information theory asking whether self-complementary Ramsey Cayley graphs
exist.

We will describe our work on Alon’s conjecture in detail below, but first we look more closely at our
results on the clique number of random Cayley graphs and the more general combinatorial results from
which they follow.

1.1 Clique number of random Cayley graphs
Given a group G, the random Cayley graph Gp is obtained by including, for each s 6= 1, the set {s, s−1}
in the generating set S with probability p independently of all other such sets. In particular, G1/2 is the
uniform random Cayley graph on G. The first question of concern to us here is that of estimating the clique
number of random Cayley graphs, a natural problem with applications and connections in several fields,
including discrete geometry, graph Ramsey theory and information theory (see, for instance, [1] and [7]).

The main general result on the clique number of uniform random Cayley graphs to date is due to Alon [2],
who showed that there is an absolute constant C such that if G is a group of order N , then the uniform
random Cayley graph on G has clique number at most C log2N with high probability (see [1, 5, 7, 14] for
proofs of various special cases and variants of this result). For the particular case of cyclic groups, this result
was improved by Green [23], who showed that there is an absolute constant C such that the clique number
of the uniform random Cayley graph on ZN is at most C logN with high probability. This result was later
improved by Green and Morris [24] for N prime, in which case they showed that the clique number is at
most (2 + o(1)) logN with high probability, asymptotically matching the bound for the clique number of the
uniform random graph on N vertices.

In the other direction, Green [23] observed that the uniform random Cayley graph on Fn2 has clique
number Θ(logN log logN) with high probability (see also [29] for more precise estimates). The reason for
this is that Fn2 has many subgroups and if all the nonidentity elements of a subgroup H are included in
the generating set S, then H forms a clique in the Cayley graph. Over Fn2 and other groups with many
subgroups of an appropriate size, such as abelian groups of bounded exponent, this becomes the dominant
source of cliques in random Cayley graphs.

In light of such examples, our first result gives an upper bound for the clique number of uniform random
Cayley graphs over a general finite group which is tight up to the value of the absolute constant C. Since
the result also holds for Gp for any fixed 0 < p < 1, we will state it in that level of generality.

Theorem 1.1. For every 0 < p < 1, there exists a constant C such that, for any finite group G of order N ,
the clique number of the random Cayley graph Gp is at most C logN log logN with high probability.
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We prove Theorem 1.1 via the first moment method, for which we need to calculate the expected number
of cliques of given order n in a random Cayley graph. This in turn leads to the following deterministic
question: given a finite group G of order N , how many subsets A of G of size n satisfy |AA−1| ≤ K|A|?
Note that here A−1 = {a−1 : a ∈ A} and AB = {ab : a ∈ A, b ∈ B}. One of our main results is the following
general upper bound on this count.

Theorem 1.2. There is an absolute constant C such that, for any finite group G of order N , the number
of subsets A of size n with |AA−1| ≤ Kn is at most NC(K+lnn)(CK)n.

The bound in this theorem is again tight up to the value of the absolute constant C. Indeed, if G = Fm2 ,
which has order N = 2m, the number of subspaces of order Kn = 2d is

d−1∏
i=0

2m − 2i

2d − 2i
≥ 2md−d

2

,

which is at least N c log(Kn) provided Kn ≤ N1−c. The number of subsets of size n in each such subspace is(
Kn
n

)
≥ Kn. As long as n = d + ω(1), most such subsets span the subspace and so are subsets of only one

such subspace. Thus, under these mild assumptions, we get at least (1− o(1))N c log(Kn)Kn subsets A ⊂ Fm2
with |A| = n and |A−A| ≤ Kn. To show that the factor NCK is also necessary, let G be an abelian group
which has a subgroup of order n − K. This subgroup, together with any K additional elements, gives a
subset A of n elements with |A−A| ≤ K(K − 1) + 1 + 2K(n−K) ≤ 2Kn. But the number of such subsets
is
(
N−n+K

K

)
, which is at least (N/2K)K provided n ≤ N/2.

Over certain abelian groups, and particularly ZN , beginning with the work of Green [23] and Green and
Morris [24] on the clique number of uniform random Cayley graphs, there has been a large amount of work
devoted to understanding the bounds for the number of subsets A of G of size n satisfying |A+ A| ≤ K|A|
(and the methods generally extend to counting those A of size n satisfying |A− A| ≤ K|A|, the problem of
interest to us here). For example, if K = o(n/ log3N), one can obtain very precise results, accurate up to a
multiplicative error of exp(o(n)), through a delicate application of the hypergraph container method (see, for
instance, [9, 10, 11]). Unfortunately, these results are quite specific to the particular abelian groups under
consideration and it seems that entirely different approaches are needed for the general case. Our approach
here, which we now describe in more detail, is to pass to a more general combinatorial framework and to
prove results in this setting which imply, and considerably generalize, our stated results for groups.

Combinatorial generalizations of Cayley graphs

Consider an edge-coloring c of the complete graph KN . An entangled graph with respect to c is a spanning
subgraph of KN obtained from a subset S of the colors whose edge set is the union of all edges whose color
is in S. We say that an edge-coloring is ∆-bounded if each color class has maximum degree at most ∆ and,
more informally, locally bounded if it is ∆-bounded for some constant ∆. We will also use the standard
phrase proper edge-coloring as a synonym for a 1-bounded edge-coloring. Observe that Cayley graphs can
be thought of in these terms, since we can color each edge xy with the set {xy−1, yx−1} and each vertex is
then incident with the same color at most twice. That is, Cayley graphs are 2-bounded or, if the exponent
of the group is 2, 1-bounded entangled graphs.

Given an edge-coloring c of KN and 0 < p < 1, the random entangled graph Gc(p) is the entangled graph
with respect to c formed by including each color in the defining set S with probability p independently of all
other colors. Several important random graph models, including Erdős–Rényi random graphs and random
Cayley graphs, are special cases of random entangled graphs coming from locally-bounded edge-colorings.
Indeed, the random Cayley graph Gp is Gc(p) with c the 2-bounded edge-coloring coming from the group
G, while the Erdős–Rényi random graph G(N, p) is Gc(p) with c the 1-bounded edge-coloring of KN where
all edges have a different color.

Theorem 1.1 is therefore a simple corollary of the following result, which gives an upper bound for the
clique number of random entangled graphs coming from locally-bounded edge-colorings.

Theorem 1.3. For every natural number ∆ and 0 < p < 1, there exists a constant C such that, for
any ∆-bounded edge-coloring c of KN , the clique number of the random entangled graph Gc(p) is at most
C logN log logN with high probability.
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The assumption that each color class has bounded degree is essential for the bound in Theorem 1.3 to
hold. For example, consider the edge-coloring c of the complete graph on vertex set [N ] where each edge
(i, j) with i < j is given color i. In particular, each color class is sparse, but the coloring is not locally
bounded. However, for any subset S of the set of colors, which may be identified with [N − 1], the colors in
the clique on vertex set S are all from S, so the clique number of the random entangled graph Gc(p) will be
(p+ o(1))N with high probability for p fixed and N tending to infinity.

As we already indicated in the Cayley graph case, the real result underlying Theorem 1.3 is a counting
result, which, in our combinatorial setting, says that in any proper edge-coloring of KN , there are few
vertex subsets of a given order that have few colors on their edges. A similar result for locally-bounded
edge-colorings follows in a straightforward fashion (see, for instance, Theorem 2.2) from this result and an
application of Vizing’s theorem.

Theorem 1.4. There is an absolute constant C such that, for any proper edge-coloring of KN , the number
of subsets with n vertices in which at most Kn colors appear is at most NC(K+lnn)(CK)n.

In fact, a weaker version of Theorem 1.4, saying that the number of subsets with n vertices in which
at most Kn colors appear is at most NCK lnn(CK)n, is already sufficient to prove Theorem 1.3. Since the
proof of this weaker bound is considerably simpler, we give it in full in Section 2 as a warm up to the proof
of Theorem 1.4. The main idea in the proof is to show that for each n-vertex subset A that contains few
colors, there is a spanning tree in A using very few colors. We show the existence of such a spanning tree
through a greedy growth procedure. Starting from a vertex v1 of A, we select a sequence of colors ci and let
Vi denote the connected component of A containing v1 in the graph whose edges are all those whose color
is in {c0, c1, . . . , ci−1}. In each step, we select the color ci which maximizes |Vi+1| − |Vi|, which allows us to
conclude that Vs = A for some s = O(K log n).

The proof of the stronger estimate in Theorem 1.4 requires a more sophisticated growth procedure. The
target structure for this procedure is no longer a spanning tree on A, but rather a tree spanning a large
subset of A. This is not just a technical device, because, as shown by the following theorem, Ω(K log n)
colors are sometimes needed to build a spanning tree of A.

Theorem 1.5. There is an absolute constant C such that, for any proper edge-coloring of Kn which uses
at most Kn colors, there is a spanning tree using at most CK log(n/K) colors. Moreover, provided K ≤
n/(log n)8, this bound is tight up to the constant factor.

To build a tree on a large subset of A using very few colors, we expose a random sequence of colors and
keep track of the evolution of the connected components of the graph on A whose edge set is the union of
these colors. For our purposes, the evolution of these components will split into two phases. In the first
phase, where we expose O(K) colors, the components grow steadily until a typical component is adjacent to
Ω(Kn) different colors, a constant fraction of all the colors in A. Then, in the second phase, the components
coalesce, the total number of components decreasing by a multiplicative factor for each new exposed color.
Therefore, after O(log n) more steps, we will have connected a component of order Ω(|A|), as required. The
actual counting result then follows from carefully tracking the number of different colored trees that can
arise from this growth procedure together with some additional ideas.

Connections to additive dimension

Given a sequence of elements S = (c1, . . . , ct) in a group G, define span(S) to be the set of all elements
of the form

∏t
i=1 c

wi
i for wi ∈ {−1, 0, 1}. Given a subset A of G, we define the additive (or multiplicative)

dimension d∗(A) of A to be the minimum size of a sequence S such that A is contained in span(S). There
have been numerous previous results regarding the additive dimension of subsets with small doubling in an
abelian group G. Notably, Sanders [32] (see also Schoen and Shkredov [34]) showed that, for G abelian, if A
is a subset of G of size n with doubling at most K, that is, with |A+A| ≤ K|A|, then d∗(A) = O(K log n).

There are other notions of additive/multiplicative dimension which are closely related to d∗(A) in the
abelian case. A set S in a group G is said to be dissociated if the identity element is not equal to any
product of the form

∏t
i=1 c

wi
i with c1, . . . , ct a nonempty sequence of distinct elements of S and wi ∈ {−1, 1}

for 1 ≤ i ≤ t. We may then define dim(A) to be the maximum size of a dissociated subset S of A. In an
abelian group, any maximal dissociated subset S of A satisfies A ⊆ span(S) and, hence, dim(A) ≥ d∗(A).
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Moreover, Schoen and Shkredov [34] observed that dim(A) = O(d∗(A) log d∗(A)) in abelian groups. The
results of [32] and [34] actually say that if A is a subset of an abelian group G with doubling at most K,
then dim(A) = O(K log n), which then implies the result highlighted in the previous paragraph. In recent
work, Alon, Bucić, Sauermann, Zakharov and Zamir [6] proved a bound for general groups G, showing that
if A is a subset of G of size n > 2 with |AA| ≤ K|A|, then dim(A) = O(K log n log log n).

Here we show that the upper bound d∗(A) = O(K log n) extends from abelian groups to general groups
and, moreover, that an analogous result holds in the following broader combinatorial setting. Consider a
proper edge-coloring of the complete graph Kn. For a vertex v of this graph and a sequence S of colors, let
span(S; v) be the set of vertices which can be reached from v via a path whose edge colors form a subsequence
of S. Our combinatorial generalization of the bound d∗(A) = O(K log n), which is an easy corollary of the
proof of our weak version of Theorem 1.4, is then as follows.

Corollary 1.6. For any proper edge-coloring of Kn using at most Kn colors and any vertex v, there is a
sequence S of O(K log n) colors such that all vertices are contained in span(S; v).

The promised upper bound on d∗(A) for sets A with small doubling in general groups is in turn a simple
corollary of this result.

Corollary 1.7. For any subset A of a group G of size n with |AA−1| ≤ K|A|, there is a set S of size
O(K log n) such that A ⊆ span(S). That is, d∗(A) = O(K log n).

One might notice that Corollary 1.7 considers sets A with |AA−1| ≤ K|A| rather than |AA| ≤ K|A|.
However, the analogous result does also hold for AA. The proof requires some minor modifications, mainly,
that instead of coloring the edges of the complete graph on A, we must color the edges of the complete
bipartite graph whose parts are copies of A. We say more about this after Theorem 2.3.

If we make use of ideas from the proof of the full strength version of Theorem 1.4, we may, in the case
of abelian groups, improve the upper bound on d∗(A) in Corollary 1.7 to d∗(A) = O(K log log n + log n).
Moreover, if the group has exponent at most r, we may push the bound to d∗(A) = O(K log r+log n). These
bounds get much closer to the lower bound of Ω(K + log n) that comes from considering the union of K
generic parallel subspaces of size n/K in Fm2 .

Theorem 1.8. If G is an abelian group and A is a subset of G of size n with |A − A| ≤ K|A|, then
d∗(A) = O(K log log n+ log n). Furthermore, if G has exponent r, then d∗(A) = O(K log r + log n).

As was the case for Corollary 1.7, a result analogous to Theorem 1.8 also holds for sets A with |A+A| ≤
K|A|. This again follows from working with respect to the complete bipartite graph whose parts are copies
of A, though we will not go into this in detail.

In subsequent work [22], using as input some of the combinatorial ideas behind the proof of Theorem 1.4,
the second and third authors establish a conjecture of Ruzsa which sharpens the above upper bound on d∗(A)
for abelian groups with bounded exponent. More precisely, Ruzsa [31] conjectured that, in any abelian group
G with exponent r, any subset A of G of size n with |A − A| ≤ K|A| must be contained in a subgroup of
size at most exp(Or(K))n. The result in [22] confirms this conjecture, showing that any such A must be
contained in a subgroup of size at most r(2+oK(1))Kn, which is sharp up to the oK(1) term. Note that this
implies and gives a stronger conclusion than the upper bound d∗(A) ≤ O(K log r+ log n), which would only
yield that A is contained in a subgroup of size at most rO(K log r+logn) = rO(K log r)nO(log r).

1.2 Alon’s conjecture on Ramsey Cayley graphs
Our other main results, for which Theorem 1.2 is an essential input, concern the following striking conjecture
of Alon [2] (see also [3, 4]).

Conjecture 1.9 (Alon). There is a constant C such that every finite group has a C-Ramsey Cayley graph.

While this conjecture was verified by Green [23] in the particular case of cyclic groups by studying the
clique number of the uniform Cayley graph, essentially nothing was previously known in the general case.
Indeed, as we have seen above, even when G is an abelian group, it is not always the case that a random
Cayley graph on G is Ramsey with high probability, a fact which led Green [23] to remark that ‘one should
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not expect the full conjecture, if it is true, to be easy to prove’. Despite this difficulty, by analyzing the
clique number of appropriate non-uniform random Cayley graphs, we are able to prove Alon’s conjecture for
a broad range of groups. For instance, we have the following result.

Theorem 1.10. There is a constant C such that if the largest factor of N which is a product of powers of
2 and 3 is at most (logN)1/1000, then, for every abelian group G of order N , there is a C-Ramsey Cayley
graph on G.

In particular, this theorem applies when G = Fn5 , so there are groups for which the uniform random
Cayley graph fails to be Ramsey with high probability, but for which Ramsey Cayley graphs nevertheless
exist. One takeaway from Theorem 1.10 which we highlight is that Alon’s conjecture holds for abelian groups
of order N for almost all N .

Corollary 1.11. There is a constant C such that, for almost all N , every abelian group G of order N has
a C-Ramsey Cayley graph on G.

For finite vector spaces of characteristic at least 5, we can prove a much more precise result, saying that
there are Cayley graphs whose clique and independence number both asymptotically match those in the
binomial random graph GN,1/2.

Theorem 1.12. For every vector space V of order N whose characteristic is at least 5, there is a Cayley
graph on V whose clique and independence numbers are both at most (2 + o(1)) log2N .

Our methods also allow us to solve a longstanding problem of Alon and Orlitsky [7] asking whether
there are Ramsey Cayley graphs which are self-complementary, where a graph is self-complementary if it is
isomorphic to its complement. Without the extra stipulation that the graph be Cayley, self-complementary
graphs whose clique and independence numbers are both at most (2 + o(1)) log2N were constructed by
McDiarmid and Steger [28]. We prove a similar result in the Cayley setting.

Theorem 1.13. For every vector space V of order N whose characteristic is congruent to 1 (mod 4),
there is a self-complementary Cayley graph on V whose clique and independence numbers are both at most
(2 + o(1)) log2N .

The motivation for the problem of Alon and Orlitsky came from information theory, where they studied
how much one can save in zero-error communication problems through repeated use of a channel. Over a
channel with confusion graph G, the maximum possible number of messages that can be sent without error
with k uses of the channel is the independence number α(Gk) of Gk, the strong product of k copies of G.
Normalized, the number of messages per use of the channel over k uses is ck(G) := α(Gk)1/k. The Shannon
capacity of G is the limit c(G) := limk→∞ ck(G), which exists as the independence number of the strong
product is supermultiplicative. If G is a self-complementary Ramsey graph on N vertices, which Alon and
Orlitsky [7] show exist for N a multiple of 4, then α(G) = O(logN) and α(G2) ≥ N . Such a graph G
satisfies c1(G) = O(logN) and c2(G) ≥

√
N . Thus, one can get substantially more efficient communication

by repeated use of such a channel rather than through a single use.
In their work, Alon and Orlitsky were interested in whether a variant of their result holds for dual-

source coding. They observed that such a variant, which brings in the chromatic number rather than the
independence number of strong graph powers, would follow from the existence of self-complementary Ramsey
Cayley graphs, which is now addressed by Theorem 1.13. To say more, we next explain the dual-source coding
problem.

Suppose that there are two sets X and Y and a collection of pairs S ⊆ X ×Y . A sender is then given an
element x of X and a receiver an element y of Y such that (x, y) ∈ S. Assume that both the receiver and
the sender know S and their own positions in X and Y . What is the smallest number of messages the sender
needs available to them to allow them to communicate the value of x? If we let G be the characteristic graph
with vertex set X where x and x′ are adjacent if and only if there exists y with (x, y), (x′, y) ∈ S, then it is
a simple exercise to show that the answer to this question is χ(G), where χ(G) is the chromatic number of
G. We also note that, for any given graph G, there exist X, Y and S for which G is the associated graph.

Suppose now that the sender is given k elements x1, . . . , xk ∈ X and the receiver k elements y1, . . . , yk ∈ Y
such that (xi, yi) ∈ S for all i. What is the smallest number of messages the sender now needs available
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to them to allow them to communicate the values of x1, . . . , xk? The answer is χ(Gk). The reason for
Alon and Orlitsky’s question is their observation that if G is a self-complementary Cayley graph with N
vertices, then χ(G2) ≤ N . Therefore, if there is a self-complementary Cayley graph G with N vertices
whose independence number is O(logN) and G is the characteristic graph of a dual source, then at least
χ(G) = Ω(N/ logN) messages must be available to communicate one element of X, but at most N messages
are needed to communicate two elements of X. Our Theorem 1.13 answers Alon and Orlitsky’s question in
a strong form, asymptotically matching the lower bound for Ramsey numbers coming from random graphs.
It also improves on work of Alon and Orlitsky themselves, who showed that there are self-complementary
Cayley graphs with N vertices whose independence number is O(log2N).

Getting back to the proofs of Theorems 1.10, 1.12 and 1.13, we have already mentioned that, because
uniform random Cayley graphs can fail to be Ramsey for finite vector spaces, we must instead consider a
different distribution on random Cayley graphs. This distribution is designed so that subspaces cannot form
cliques or independent sets and, more generally, that any potential clique or independent set A must have
large doubling |A − A|/|A|. Combined with our counting result, Theorem 1.2, this expansion property of
potential cliques allows us to remove the log log |G| factor from the bound on the clique number. Unlike
the results of Section 1.1, we do need to make use of additive structure here. Indeed, our method relies on
showing that any potential clique lacks solutions to certain systems of linear equations and we then make
use of known results in additive combinatorics to prove the required expansion property.

The more precise results in Theorems 1.12 and 1.13 also require an additional input, namely, an essentially
tight upper bound on the Freiman dimension of sets with small doubling in finite vector spaces. For |A +
A|/|A| instead of |A− A|/|A|, such a result was already shown by Even-Zohar and Lovett [21]. We get the
result we need by appropriately modifying their technique.

Organization of the paper. In Section 2, we give the short proof of a weak version of Theorem 1.4 that
is already sufficient to recover Theorems 1.1 and 1.3. In Section 3, we then give the full details of the proofs
of our main counting results, Theorems 1.2 and 1.4. We prove Theorem 1.5 on spanning trees with few colors
in Subsection 3.4 and Theorem 1.8 on the additive dimension of sets with small doubling in Section 3.5. In
Section 4, we prove our results on Alon’s conjecture, Theorems 1.10, 1.12 and 1.13. We conclude with some
further remarks on open problems and ongoing related work.

2 Counting subsets with few colors
In this section, we give a first estimate for the number of vertex subsets of given order in a locally-bounded
edge-colored complete graph that contain few colors inside. This estimate will already be sufficient to show
that the clique number of random entangled graphs withN vertices, and therefore random Cayley graphs over
groups of order N , is O(logN log logN) with high probability. We begin by working under the assumption
that the edge-coloring is proper, that is, that each color class has maximum degree at most one. We will
then use Vizing’s theorem to lift this result to locally-bounded edge-colorings.

Theorem 2.1. There is an absolute constant C such that in any properly edge-colored complete graph on N
vertices, the number of subsets of n vertices in which at most Kn colors appear is at most NCK lnn(CK)n.

Proof. Label the vertex set of the complete graph as [N ] = {1, . . . , N}. Instead of directly counting subsets,
we will give an upper bound on the number of sequences of n distinct vertices which have at most Kn colors
between them. Each set of n vertices gives rise to n! > (n/e)n such sequences, so it will suffice to prove that
there is an absolute constant C such that the number of sequences of n distinct vertices which have at most
r = Kn colors between them is at most NCK lnn(Cr/e)n.

Let V = (vi)
n
i=1 denote an arbitrary (but not yet determined) sequence of n distinct vertices that induce

at most r colors between them. Observe that r ≥ n−1 as the induced coloring on V is also proper. We view
V as a set together with an ordering of its vertices. We can fix v1 as any one of the N possible vertices and
set V0 = {v1} and n0 = 1. After step i, we will have picked out a subset Vi of ni distinct vertices together
with the location of each of these vertices in the ordering. Furthermore, we will be able to determine both
Vi and the location of its elements using only a small number of choices. These subsets will be nested, in
that Vi−1 is a subset of Vi for each i for which Vi is defined. We stop after step i if ni = n (so that Vi = V ).
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Otherwise, ni < n and we continue on to step i+ 1. We then let ui = dni(n− ni)/re and ni+1 = ni + ui. In
particular, the sequence (ni) only depends on n and r.

Observe that between Vi and V \ Vi there are ni(n−ni) edges and, as at most r colors are used on these
edges, there is a color ci with at least ni(n − ni)/r edges of color ci between Vi and V \ Vi. Furthermore,
there are at most

(
N
2

)
< N2 choices for the color ci. Since each color forms a matching there are ui vertices

in V \ Vi that form a matching to Vi in the color ci. We can pick the indices (in the sequence V ) of the
vertices of this matching which are in V \ Vi in

(
n−ni

ui

)
ways. Suppose these indices are j1, . . . , jui . We can

pick which vertices in Vi they each connect to in the matching in at most (ni)ui
≤ nui

i ways. That is, we
have at most ni choices for the vertex with index j1 to match to in Vi, then at most ni − 1 choices for the
vertex with index j2 to match to in Vi and so on. As the ui vertices in Vi that are matched to the vertices
in V \ Vi are already determined from these choices and the color ci forms a matching, the ui vertices in
V \ Vi with indices j1, . . . , jui are determined as the unique vertices that are adjacent in color ci to the
corresponding vertices in Vi. We add these ui vertices in V \ Vi to Vi to obtain Vi+1. In total, we made at
most N2

(
n−ni

ui

)
nui
i choices to determine the vertices in Vi+1 \ Vi together with their location in the ordering

provided we had already determined Vi and the location of its elements in the ordering.
Note that if ni < n, then ui ≤ n − ni is a positive integer and so ns = n and Vs = V for some positive

integer s. Moreover, if ni ≤ n/2, then

ni+1 = ni + ui ≥ ni (1 + (n− ni)/r) ≥ ni(1 + 1/2K) ≥ nie1/4K .

Therefore, after at most 4K lnn steps, we arrive at ni ≥ n/2. If ni ≥ n/2, then

n− ni+1 = n− ni − ui ≤ n− ni − (n− ni)/2K = (n− ni)(1− 1/2K) ≤ (n− ni)e−1/2K .

Therefore, after another at most 2K lnn additional steps, we stop with n = ns. Hence, s ≤ 6K lnn.
Thus, there are at most

N

s−1∏
i=0

N2

(
n− ni
ui

)
nui
i ≤ N

2s+1
s−1∏
i=0

(
e
n− ni
ui

)ui

nui
i ≤ N

2s+1(er)n−1 ≤ N12K lnn+1(er)n

choices for the sequence V . The second inequality follows from substituting in the value of ui and using the
identity

∑s−1
i=0 ui = n − 1. Indeed, using induction one can show that

∑j−1
i=0 ui is the number of edges in a

tree on nj vertices and n = ns. The last inequality follows from the upper bound on s. This completes the
proof.

Let us quickly note that the proof above also yields Corollary 1.6. Recall the statement, that, in any
proper edge-coloring of Kn using at most Kn colors, there is a vertex v and a sequence S of O(K log n)
colors such that all vertices are contained in span(S; v).

Proof of Corollary 1.6. Following the proof of Theorem 2.1, we can find a sequence of colors c1, . . . , cs with
s ≤ 6K lnn and sets of vertices {v1} = V0 ⊆ V1 ⊆ · · · ⊆ Vs = V (Kn) such that all vertices of Vi+1 \ Vi have
an edge with color ci to Vi. It follows immediately from induction that for all vertices v in Vs there is a path
from v1 such that the sequence of colors on the path is a subsequence of the sequence c1, . . . , cs.

We also deduce Corollary 1.7, which states that if A is a subset of a group G of size n with |AA−1| ≤ K|A|,
then d∗(A) = O(K log n). That is, there is a set S of size O(K log n) such that A ⊆ span(S).

Proof of Corollary 1.7. Given a group G and A ⊆ G with |AA−1| ≤ K|A|, consider the edge-coloring of the
complete graph on A using r ≤ K|A| colors where {x, y} receives the color {xy−1, yx−1}. Note that each
color class is either 1-regular or 2-regular. Let n = |A|. By partitioning the color classes that are 2-regular,
we obtain a proper edge-coloring of the complete graph on A using at most 3Kn colors.

Applying Corollary 1.6 to this proper edge-coloring, we obtain a sequence of colors c1, . . . , cs with s =
O(K log n) and a vertex v1 such that every vertex is connected to v1 via a path whose colors form a
subsequence of c1, . . . , cs. Each color ci corresponds to an element ofG (more precisely, each color corresponds
to an equivalence class {g, g−1} from which we make an arbitrary choice of an element g ∈ G). It is then
easy to check that A ⊆ {v1

∏s
i=1 c

wi
i : wi ∈ {−1, 0, 1}}. This implies d∗(A) = O(K log n), as required.
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As promised, we now lift Theorem 2.1 to locally-bounded edge-colorings using Vizing’s theorem.

Theorem 2.2. There is an absolute constant C such that in any edge-colored complete graph on N vertices
in which each color class has maximum degree at most ∆, the number of subsets of n vertices in which at
most Kn colors appear is at most NC∆K lnn(C∆K)n.

Proof. Vizing’s theorem [35] says that every graph of maximum degree ∆ can be properly edge-colored with
∆+1 colors. We may therefore split each color class in our edge-coloring into at most ∆+1 color classes so that
we get a proper edge-coloring. Any subset which had at mostKn colors originally now has at most (∆+1)Kn
colors. By Theorem 2.1, the new proper edge-coloring ofKN has at most NC(∆+1)K lnn(C(∆+1)K)n subsets
with at most (∆ + 1)Kn colors. Thus, the original edge-coloring of KN has at most NC(∆+1)K lnn(C(∆ +
1)K)n subsets with at most Kn colors. Substituting in ∆ + 1 ≤ 2∆ and increasing C by a factor of 2, we
get the desired result.

The same proof actually gives a more general result. We call a graph G = (V,E) a λ-edge-expander if,
for every subset S of V , e(S, V \ S) ≥ λ|S|(n− |S|). Note that a complete graph is a 1-edge-expander and a
balanced complete bipartite graph is a 1/2-edge-expander.

Theorem 2.3. There is an absolute constant C such that in any edge-colored graph on N vertices in which
each color class has maximum degree at most ∆, the number of subsets S of n vertices in which there are
Kn colors such that these Kn colors induce a λ-edge-expander on S is at most NC∆λ−1K lnn(C∆λ−1K)n.

We may use this result to prove the variant of Corollary 1.7 with AA instead of AA−1. Indeed, since
Kn,n is a 1/2-edge-expander, we can apply the same argument to that used in the proof of Corollary 1.6
to conclude that for any proper edge-coloring of Kn,n using at most Kn colors, there is a vertex v and a
sequence S of O(K log n) colors such that all vertices are contained in span(S; v). The promised variant of
Corollary 1.7 then follows by considering the coloring of the edges of the complete bipartite graph whose
parts are copies of A where the color of each edge (a, b) is equal to ab. The key observation is that if v is
the starting vertex, chosen to be on the second side of the bipartition, and w is another vertex on the same
side that can be reached via a path of edges with colors c1, . . . , ct, then w = vc−1

1 c2c
−1
3 · · · ct.

The following corollary of Theorem 2.2 comes from simply coloring the edge (a, b) of the complete graph
on G with one of the colors ab or ba arbitrarily or, alternatively, from coloring (a, b) with the color {ab, ba}.

Corollary 2.4. There is a constant C such that if G is a finite group of order N , then the number of subsets
A ⊂ G with |A| = n and |AA| ≤ K|A| is at most NCK lnn(CK)n. Similarly, the number of subsets A ⊂ G
with |A| = n and |AA−1| ≤ K|A| is at most NCK lnn(CK)n.

Given a group G of order N , consider the complete balanced bipartite graph with 2N vertices whose
parts V1 and V2 are each a copy of G and where each edge (a, b) ∈ V1 × V2 is colored ab. Each color class in
this coloring forms a perfect matching and so has maximum degree one. Therefore, using the fact that the
balanced complete bipartite graph is a 1

2 -edge-expander, we have the following corollary of Theorem 2.3.

Corollary 2.5. There is a constant C such that if G is a finite group of order N , then the number of pairs
of subsets A,B ⊂ G with |A| = |B| = n and |AB| ≤ K|A| is at most NCK lnn(CK)2n.

We now turn our attention to estimating the clique number of random entangled graphs. It will be
slightly more convenient to phrase our results in terms of estimating the independence number rather than
the clique number, but the two problems are clearly equivalent. We first note a probabilistic lemma.

Lemma 2.6. Let G = (V,E) be a graph on n vertices with maximum degree ∆ and let t be a positive integer
with ∆t ≤ n/8. If T is a uniform random subset of t vertices from G and X is the random variable counting
the number of edges in the induced subgraph G[T ], then the probability that T is not an independent set is at
least min(1/4,E[X]/2).

Note that the lower bound on the probability in Lemma 2.6 is tight up to a constant factor since the
probability is trivially at most 1 and, as X is a nonnegative integer-valued random variable, at most E[X].
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Proof of Lemma 2.6. The event that T is not an independent set is the same as the event that X ≥ 1.
We may assume that Pr[X ≥ 1] < 1/4, as otherwise we are done. Under this assumption, we prove that
Pr[X = 1] ≥ E[X]/2, which will complete the proof. We have

Pr[X = 1] =
∑
e∈E

Pr[e ⊂ T ]Pr[f 6⊂ T ∀ f ∈ E \ {e} | e ⊂ T ]. (1)

For incident edges e and f , the probability that f ⊂ T conditioned on e ⊂ T is t−2
n−2 . As each edge e ∈ E

is incident to at most 2(∆ − 1) other edges, the probability that there is an edge of G incident to e that is
in T conditioned on e ⊂ T is at most 2(∆− 1) t−2

n−2 ≤ 1/4. Moreover, since the probability a random subset
of order t− 2 contains an edge is at most the probability that a random subset of order t contains an edge,
the probability that there is an edge of G not incident to e that is in T conditioned on e ⊂ T is at most
Pr[X ≥ 1] and, hence, Pr[∃f ∈ E \ {e} satisfying f ⊂ T |e ⊂ T ] ≤ 1/4 + Pr[X ≥ 1] < 1/2. Substituting into
(1), we have

Pr[X = 1] ≥ 1

2

∑
e∈E

Pr[e ⊂ T ] = E[X]/2,

completing the proof.

We now use this result to prove that locally-bounded edge-colorings of the complete graph contain subsets
of any large order with many colors.

Lemma 2.7. For any edge-colored complete graph on n vertices in which each color class has maximum
degree at most ∆ ≤ n/100 and any t ≥

√
n/∆, there is a subset of t vertices that contains at least n

20∆
colors.

Proof. Let t0 be the maximum positive integer for which ∆
(
t0
2

)
≤ (n − 1)/4. Such a t0 satisfies 1

2

√
n/∆ ≤

t0 ≤
√
n/∆. Since t0 ≥ 5, we also have ∆t0 ≤ n/8. We will prove that there is a subset T of t0 vertices that

contains at least 1
2

(
t0
2

)
≥ n

20∆ colors. As every superset of T contains at least as many colors as T does, this
will complete the proof.

Consider a random subset T of t0 vertices. We will show that the expected number of colors in T is at
least 1

2

(
t0
2

)
and, hence, that there exists a subset of t0 vertices with at least 1

2

(
t0
2

)
colors inside. For any given

color c in the edge-coloring, the maximum degree condition implies that the number m of edges in that color
satisfies m ≤ ∆n/2. The number X of edges of that color in a uniform random subset of order t0 satisfies

E[X] = m

(
t0
2

)
/

(
n

2

)
≤ ∆n

2

(
t0
2

)
/

(
n

2

)
= ∆

(
t0
2

)
/(n− 1) ≤ 1/4.

Therefore, by Lemma 2.6, which we can apply since ∆t0 ≤ n/8, the probability that T does not form an
independent set in color c is at least E[X]/2. Summing over all colors, the expected number of colors in the
random subset of t0 vertices is at least 1

2

(
t0
2

)
.

Note that the bound in Lemma 2.7 on the number of colors in the subset is sharp up to a constant factor,
as, if n− 1 is a multiple of ∆ and n is even, we can edge-color the complete graph on n vertices so that each
color is ∆-regular and, hence, has exactly (n−1)/∆ colors. The lower bound on the subset size is also sharp
up to a constant factor, as a set of t vertices can have at most

(
t
2

)
colors inside.

We now note the main corollary of Theorem 2.2 that will be needed in estimating the independence
number of a random entangled graph.

Lemma 2.8. Let c be an edge-coloring of KN in which each color class has maximum degree at most ∆
and consider the random entangled graph Gc(p) in which each color class from this edge-coloring is included
with probability p = 1− q independently of the other color classes. Let C be the constant from Theorem 2.2
and suppose K0 ≥ 10q−1 ln(C∆/q) and t ≥ x lnx, where x = 10Cq−1∆ lnN . Then, with high probability,
no subset of t vertices with at least K0t colors is a clique in Gc(p).

Proof. Let r = Kt with K ≥ K0. By Theorem 2.2, the number of subsets of t vertices with exactly r colors
is at most NC∆K log t(C∆K)t. The probability that a given set of t vertices with r colors is a clique in Gc(p)
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is at most pr ≤ e−qr. Hence, the expected number of vertex subsets of order t with r colors inside which
form a clique is at most NC∆K log t(C∆K)te−qr ≤ e−qr/3. Indeed, the assumed lower bound on t implies
that NC∆K log t ≤ eqr/3 and the lower bound on K implies that (C∆K)t ≤ eqr/3. Summing over all r ≥ K0t,
the probability that there is a subset of t vertices with at least K0t colors that forms a clique in Gc(p) is at
most ∑

r≥K0t

e−qr/3 ≤ e−qK0t/3(1− e−q/3)−1 = o(1),

as required.

By combining Lemmas 2.7 and 2.8, we can now prove the promised result, saying that, for q > 0 and ∆
fixed and any edge-coloring c of the complete graph KN in which each color class has maximum degree ∆,
the independence number of the random entangled graph Gc(q) is O(logN log logN) with high probability.
In particular, this implies Theorems 1.1 and 1.3.

Theorem 2.9. Let 2 ≤ ∆ ≤ N − 1, 0 < q < 1 and let c be an edge-coloring of KN in which each color class
has maximum degree at most ∆. Let n = C ′q−2∆2 ln(∆/q) lnN ln(q−1∆ lnN), where C ′ is a sufficiently
large constant. Then, with high probability, the independence number of the random entangled graph Gc(q)
is less than n.

Proof. Let K = 10q−1 ln(C∆/q), where C is the constant from Lemma 2.8, and let t = n/(20∆K). Note
that an independent set in Gc(q) is the same as a clique in Gc(p) with p = 1 − q. By Lemma 2.8 and our
choice of n, which implies that t ≥ x log x with x = 10Cq−1∆ lnN , with high probability no set of t vertices
which contains at least Kt colors is an independent set in Gc(q).

Note that our choice of n guarantees that t ≥
√
n/∆ and ∆ ≤ n/100. Hence, by Lemma 2.7, every set

of n vertices in our edge-colored complete graph KN contains a subset of t vertices with at least n
20∆ = Kt

colors inside. Thus, with high probability, the independence number of Gc(q) is less than n.

In the next section, among other things, we will prove Corollary 3.10, which replaces the K lnn factor
in the exponent of N in Theorem 2.2 by K + lnn. In turn, writing s = ∆/q, this implies that we can
improve Lemma 2.8 to say that if K0 = Θ(q−1 ln s) and t = Ω(s lnN max(1, q ln(∆ lnN

ln s )/ ln s)), then, with
high probability, no subset of t vertices with at least K0t colors is a clique in Gc(p). Substituting this into
the proof of Theorem 2.9, we see that if n = O(s2 lnN max(ln s, q ln

(
∆ lnN

ln s

)
)), then, with high probability,

the independence number of the random entangled graph Gc(q) is less than n. For comparison, Theorem 2.9
allows us to take n = O(s2 lnN ln s ln(s lnN)), so we get a noticeably better bound for small q.

3 Connected components with few colors and improved counting
Let A be a subset of n vertices in a properly edge-colored complete graph with at most Kn colors appearing
in A. In this section, we study a random process where we select a random subset of the colors and connect
vertices in A using these colors. In Section 3.1, we will describe this process in detail and warm up by
showing that exposing O(K logK) random colors results in a subgraph where most vertices are in connected
components whose incident edges to the rest of the graph use at least a constant fraction of the total number
of colors. Then, in Section 3.2, we give an improved, although significantly more difficult, analysis to show
that the same conclusion holds with only O(K) colors, which is best possible up to the value of the implied
constant. We use this result in Section 3.3 to improve the results of the last section counting the number
of vertex subsets of order n with at most Kn colors inside in a properly edge-colored complete graph. In
Section 3.4, we use our results to estimate the minimum number of colors needed to find a connected spanning
subgraph in A and give a construction to show that our bound is tight. Finally, in Section 3.5, we give an
improved bound on additive dimension in abelian groups.

3.1 Connected components using O(K logK) random colors
Before describing our random process, we note a relatively simple lemma showing that we may always assume
that each color appears at most n/K times.
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Lemma 3.1. Given a vertex set A of order n and a proper edge-coloring of any graph on A with at most
Kn colors, there is a proper edge-coloring of the same graph which refines the given coloring, uses at most
2Kn colors and where the number of edges in each color class is at most n/K.

Proof. We refine the coloring as follows: for each color class, we arbitrarily partition the set of edges of that
color into sets of size bn/Kc and a remaining nonempty set (if it exists) of size smaller than bn/Kc. The
number of colors in the new coloring with size less than bn/Kc is at most the number of colors in the original
coloring. On the other hand, the number of colors with bn/Kc edges is at most

(
n
2

)
/bn/Kc < Kn. Hence,

the number of colors in the new coloring is at most 2Kn.

We now describe our random process for selecting the colors and fix some notation that we will use in
analyzing it. We choose a sequence s = (si)i≥1 of random colors, where each si is chosen uniformly at
random, allowing repetitions, from the set of colors that appear on A. Let s[i] = {s1, . . . , si} denote the
set consisting of the first i colors in this sequence and let Ci be the collection of connected components
induced by the union of the edges with colors in s[i]. For each component C ∈ Ci, let N(C) denote the set of
colors between C and the remaining components. For any vertex v ∈ A, we write N(v) for the set of colors
of edges incident to v and Ci(v) for the component in Ci containing v. For a component C and a vertex
subset U , we let N(C;U) denote the set of colors that appear on edges between C and U . Finally, we let
N+(ε;C) = min|U |≥(1−ε)n |N(C;U)|, where we note that in this subsection we will take ε = 1/4. This may
be thought of as a robust measure of the number of colors emerging from C.

Lemma 3.2. Consider a proper edge-coloring of the complete graph on a set A of n vertices using at most
2Kn colors, where each color class contains at most n/K edges. Then there exists a set Ŝ of 80K lnK colors
such that, for at least 9n/10 vertices v ∈ A, v is contained in a connected component C(v) formed using
edges with colors in Ŝ satisfying |N+(1/4;C(v))| ≥ Kn/64.

Proof. For each vertex v, we define a (nondecreasing) set of vertices Ti(v) and a set of colors Si(v) inductively
in i. For i = 0, we set T0(v) = {v}. In each step i ≥ 0, we set Si(v) =

⋃
x∈Ti(v)N(x). We say that a vertex

u is (v, i)-bad if |N(u) ∩ Si(v)| ≥ n/2 and (v, i)-good otherwise. We call a vertex u ∈ Ci(v) \ Ci−1(v) a
(v, i)-core vertex if u is (v, i − 1)-good. If (v, i)-core vertices exist, we pick an arbitrary (v, i)-core vertex u
and update Ti(v) = Ti−1(v) ∪ {u}. Otherwise, we set Ti(v) = Ti−1(v) and proceed to the next step.

For w ≥ 0, let Fw(v) be the smallest i such that |Ti(v)| ≥ w+ 1. Note that F0(v) = 0 as |T0(v)| = 1. Let
tw := Fw(v)− Fw−1(v). Our aim now is to bound E[tw].

Let i = Fw−1(v) and C = Ci(v). Let u1, . . . , uw be the vertices in Ti(v). Then, by definition, each vertex
uj adds at least n/2 new colors N(uj)\

⋃
j′<j N(uj′). Among them, at most 4|Si(v)|/K colors go to vertices

that are (v, i)-bad. This is because the number of vertices which are (v, i)-bad is at most 4|Si(v)|/K, by the
following claim.
Claim 3.3. For any set of colors S, the number of u with |N(u) ∩ S| ≥ n/2 is at most 4|S|/K.

Proof. The number of edges with some color in S is at most |S|n/K. The number of pairs (u, s) where
u ∈ A, s ∈ S and s ∈ N(u) is thus at most 2|S|n/K. Hence, the number of u with |N(u) ∩ S| ≥ n/2 is at
most 2|S|n/K

n/2 = 4|S|/K.

Let Q be the set of colors between C and (v, i)-good vertices. If w ≤ K/16, then

|Q| ≥ (n/2− 4|Si(v)|/K) |Ti(v)| ≥ wn/4,

where we note that |Si(v)| ≤ n|Ti(v)| = nw ≤ Kn/16. Let jQ denote the smallest j ≥ i such that sj ∈ Q.
Since the Cj(v) are nondecreasing and Sj(v) = Si(v) for all j ∈ [i, i + tw), we have that i + tw ≤ jQ. But
then, since tw ≤ jQ − i and jQ − i is the number of time steps starting from i until a color in Q is sampled,
we have

E[tw] ≤ 2Kn

|Q|
≤ 2Kn

wn/4
= 8K/w.

In particular, the expected value of FK/16(v) is at most

K/16∑
w=1

E[tw] ≤
K/16∑
w=1

8K/w ≤ 8K lnK.
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Thus, by Markov’s inequality, the event FK/16(v) ≥ 80K lnK has probability at most 1/10. Hence, the
expected number of vertices v where we need i ≥ 80K lnK to have |Ti(v)| ≥ K/16 is at most n/10.

By averaging, there is i ≤ 80K lnK and a sequence of i colors such that at least 9n/10 vertices v satisfy
|Ti(v)| ≥ K/16. Each u ∈ Ti(v) contributes at least n/2 many distinct colors on the edges between Ci(v) and
the entire vertex set. Since N+(ε;Ci(v)) is defined by taking the minimum of |N(Ci(v);U)| over all vertex
sets U with |U | ≥ (1 − ε)n and the coloring is proper, we may lose at most εn colors for each u ∈ Ti(v).
Hence, for all v with |Ti(v)| ≥ K/16, we have

|N+(ε;Ci(v))| ≥
|Ti(v)|∑
j=1

(n/2− εn) ≥ Kn/64,

where we used that ε = 1/4.

3.2 Connected components using O(K) random colors
We now improve the main result of the previous subsection by removing the logK factor from the number of
colors required. This will then allow us to find a large component (of order at least n/4) using O(K + lnn)
colors.

Lemma 3.4. Consider a proper edge-coloring of the complete graph on a set A of n vertices using at most
2Kn colors, where each color class contains at most n/K edges. Then there exists a set Ŝ of 900K colors
such that, for at least 9n/10 vertices v ∈ A, v is contained in a connected component C(v) formed using
edges with colors in Ŝ satisfying |N+(3/8;C(v))| ≥ Kn/128.

We first give an overview of our proof strategy and introduce several key parameters and objects. We are
given a proper edge-coloring of the complete graph on a set A of n vertices using at most 2Kn colors, where
each color class contains at most n/K edges. As before, we pick a sequence of colors s1, s2, . . . randomly one
at a time. Let δ = 1/16 and W = log(δK). Given the (infinite) sequence s = (si)i≥1 of random colors, we
consider the following procedure which defines, for each vertex v and each integer j ∈ [1, 2W ], a set of vertices
Bj = Bj(v) of order j which is determined by the sequence of colors s. Note that here and throughout the
remainder of this section, we fix a vertex v and drop the dependence on v in the notation.

We let B1 = {v}. For each j ≥ 2, we define Pj to be the set of vertices u with |N(u) \N(Bj−1)| ≥ n/2,
where, for B ⊆ A, N(B) denotes the set of colors on the edges between B and A \ B. We then define
tj to be the smallest positive integer distinct from t2, . . . , tj−1 such that the sampled color stj connects
B2blog2(j−1)c with a vertex u in Pj (if there is more than one possible choice for u, we choose the first in
some predetermined ordering of the vertices). We let Bj = Bj−1 ∪ {u}. We will run this procedure for
j ≤ 2W = δK, setting Tj = maxj′≤j tj′ at each step.

Our key lemma is the following.

Lemma 3.5. Suppose κ ≥ 900K and J = 2W = δK. Then

P(TJ > κ) ≤ 2 exp(−κ/(128K)).

We now quickly deduce Lemma 3.4 from Lemma 3.5.

Proof of Lemma 3.4. For each vertex v and BJ = BJ(v), |N+(3/8;BJ)| ≥ J(n/2 − 3n/8) = Jn/8 =
Kn/128, since each vertex in BJ introduces at least n/2 new colors. Moreover, BJ is connected using the
colors s1, . . . , sTJ

. Therefore, by Lemma 3.5 with κ = 900K, the expected number of vertices v for which
the component C containing v built using colors s1, . . . , sκ satisfies |N+(3/8;C)| ≥ Kn/128 is at most
2n exp(−κ/(128K)). Hence, there exists a choice of colors s1, . . . , sκ such that at least 9n/10 vertices v are
contained in a component C with |N+(3/8;C)| ≥ Kn/128 using the colors s1, . . . , sκ.

We next turn to the proof of Lemma 3.5.
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Proof of Lemma 3.5. For each j ∈ (2w, 2w+1], define Sj = N(B2w , Pj) \ N(B2w−1), where, for B,P ⊆ A,
N(B,P ) denotes the set of colors on the edges between B and P . Note that the Sj form a nonincreasing
sequence of sets for j ∈ (2w, 2w+1]. For j ≤ J , we have that

|Sj | ≥ 2w−1(1/2− 4δ)n, (2)

since each vertex Bj′ \ Bj′−1 introduces at least n/2 new colors for j′ ∈ (2w−1, 2w], at most 4jn/K ≤ 4δn
of which are not to Pj . In turn, the latter claim follows since, by Claim 3.3, the number of vertices not
contained in Pj is at most 4|Bj |n/K = 4jn/K.

Let Hw denote the set {tj : 2w < j ≤ 2w+1} of size 2w. Note that, by definition, all of the tj are
distinct. Let I be the set of w ∈ [0,W − 1] for which T2w+1 > T2w . For each Ĩ ⊆ [0,W − 1], each sequence
(τ2w+1)w∈[0,W−1] of positive integers and each choice of sets H̃w ⊆ [1, τ2w+1 ] of size 2w for each w ∈ Ĩ, we
bound the probability of the event E that I = Ĩ and, for all w ≤ W − 1, T2w+1 = τ2w+1 and Hw = H̃w. Let
Ew be the event that T2w′+1 = τ2w′+1 and Hw′ = H̃w′ for all w′ ≤ w. Let Fw denote the σ-algebra generated
by the (tj , stj ) for j ≤ 2w+1. Note that Ew is measurable in Fw. We have the following claim.

Claim. Conditional on Fw, the distribution of the sequence of colors (st) can be described as follows.
For t ∈

⋃
w′≤wHw′ , st is determined by Fw. For t /∈

⋃
w′≤wHw′ , st is a uniformly random color outside

Ew,t =
⋃
j≤2w+1:tj>t

N(B2blog2(j−1)c , Pj). Furthermore, the st are conditionally independent given Fw.

Proof. Consider a sequence of distinct integers t∗j and colors s∗j such that there is a positive probability
that tj = t∗j and stj = s∗j for all j ≤ 2w+1. In particular, there exists a sequence of colors s̃t such that
the corresponding tj(s̃) = t∗j and s̃t∗j = s∗j . For clarity, in this proof, we emphasize the dependence on the
sequence of colors (s or s̃) of tj , Bj , Pj .

For each sequence of colors (st) such that st∗j = s∗j for j ≤ 2w+1 and st /∈ Ew,t for all t /∈
⋃
w′≤wHw′ , we

will prove by induction on j that tj(s) = tj(s̃). As t2 is the smallest time at which a color in N(B1, P2) is
sampled, when st /∈ N(B1, P2) for all t < t∗2 and st∗2 = s̃t∗2 , we have t2(s) = t2(s̃).

For the induction step, assume tj′(s) = tj′(s̃) for all j′ < j. We have that Bj′(s) = Bj′(s̃) for all j′ < j
and, therefore, Pj′(s) = Pj′(s̃) for all j′ ≤ j. Recall that tj is defined as the smallest time distinct from
t2, . . . , tj−1 for which a color is sampled that connects B2blog2(j−1)c to a vertex u ∈ Pj . As B2blog2(j−1)c(s) =
B2blog2(j−1)c(s̃) and Pj(s) = Pj(s̃), it is easy to check that under the conditions st /∈ N(B2blog2(j−1)c(s̃), Pj(s̃))
for t < t∗j distinct from t∗2, . . . , t

∗
j−1 and st∗j = s̃t∗j , we have tj(s) = tj(s̃).

If a sequence s does not satisfy that st /∈ Ew,t for all t /∈
⋃
w′≤wHw′ , then there is a smallest j such

that st ∈ N(B2blog2(j−1)c(s̃), Pj(s̃)) for some t < t∗j with t /∈
⋃
w′≤wHw′ . We then have inductively that

Bj′(s) = Bj′(s̃) for all j′ < j and Pj(s) = Pj(s̃), from which it follows that tj(s) < tj(s̃).
Therefore, conditional on tj = t∗j , sj = s∗j for all j ≤ 2w+1, all consistent sequences of colors s are exactly

given by the conditions that st∗j = s∗j for j ≤ 2w+1 and st /∈ Ew,t for all t /∈
⋃
w′≤wHw′ . This immediately

implies the conclusion of the claim.

Conditional on Fw−1, under the event Ew, we have that st /∈ S2w+1 for all t ∈ (0, τ2w+1) \
⋃
w′≤w H̃w′ and

st ∈ N(B2w) for t ∈ H̃w. From the claim, these events are independent for different t. Noting that S2w+1 is
disjoint from Ew−1,t ⊆ N(B2w−1) and using (2), we have that the probability st /∈ S2w+1 conditional on Fw−1

is at most 1 − 2w−1(1/2−4δ)n
2Kn . Similarly, as |N(B2w)| ≤ 2wn, the probability that st ∈ N(B2w) conditional

on Fw−1 is at most 2wn
Kn/4 = 2w+2

K , which we used that the number of colors is at least
(
n
2

)
/(n/K) ≥ Kn/4.

Thus,

P(Ew | Fw−1) ≤
(

2w+2

K

)2w (
1− 2w−1(1/2− 4δ)n

2Kn

)τ2w+1−2w

≤
(

2w+2

K

)2w

exp(−(τ2w+1 − 2w)2w−4/K).

Let ` = max Ĩ. By taking a union bound over the possible sets H̃` ⊆ [1, τ2`+1 ] of size 2` which include
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τ2`+1 , we see that

P(TJ > κ | F`−1)

≤
∑

τ
2`+1>κ

P(T2`+1 = τ2`+1 | F`−1)

≤
∑

τ
2`+1>κ

(
τ2`+1

2` − 1

)(
2`+2

K

)2`

exp
(
−(τ2`+1 − 2`)2`−4/K

)
≤

∑
τ
2`+1>κ

2`

τ2`+1 − 2` + 1

(
4eτ2`+1

K

)2`

exp
(
−(τ2`+1 − 2`)2`−4/K

)
.

Note now that ln(4ex)− x/32 ≤ −x/64 for x ≥ 600 and, hence, for τ2`+1 ≥ max(2`+1, κ) ≥ 900K,

2` ln(4eτ2`+1/K)− (τ2`+1 − 2`)2`/(16K) ≤ 2` ln(4eτ2`+1/K)− τ2`+12`/(32K) ≤ −2`τ2`+1/(64K).

Hence, summing over all possible choices of `,

P(TJ > κ)

≤
∑
`≥1

∑
τ
2`+1>κ

2`

τ2`+1 − 2` + 1

(
4eτ2`+1

K

)2`

exp
(
−(τ2`+1 − 2`)2`−4/K

)
≤
∑
`≥1

∑
τ
2`+1>κ

2`

τ2`+1 − 2` + 1
exp

(
−2`τ2`+1/(64K)

)
≤

∑
`≥1:2`<K

2`+1

κ

exp
(
−2`κ/(64K)

)
(1− exp(−2`/(64K)))

+
∑

`≥1:2`≥K

2`

(τ2`+1 − 2` + 1)

exp
(
−2`κ/(64K)

)
(1− exp(−2`/(64K)))

≤
∑

`≥1:2`<K

256K

κ
exp

(
−2`κ/(64K)

)
+ 80

∑
`≥1:2`≥K

exp
(
−2`κ/(64K)

)
≤ 2 exp(−κ/(128K)).

Here we used the simple estimates 1− exp(−x) ≥ x/2 for x ≤ 1/64 and 2`

(τ
2`+1−2`+1)(1−exp(−2`/(64K)))

≤ 80

for τ2`+1 ≥ 2`+1 ≥ 2K.

As a corollary of Lemma 3.4, we now show that there is a set of at most 900(K + lnn) colors such that
there is a component of order at least n/4 formed by these colors in any proper edge-coloring of Kn with at
most Kn colors. The key additional ingredient is contained in the following lemma.

Lemma 3.6. Assuming the setup and conclusion of Lemma 3.4, there exists a set Ŝ′ of 900 lnn colors such
that there is a connected component using colors in Ŝ′ ∪ Ŝ of order at least n/4.

Proof. We say that a vertex v is good if the connected component C(v) containing this vertex formed by
edges with colors in Ŝ has |N+(3/8;C(v))| ≥ Kn/128. We run a process where, at each time step i ≥ 1,
we choose a random color si and consider the connected components formed by {si′ : i′ ≤ i} ∪ Ŝ. Let Ni
be the number of good connected components at step i, where a component is good if it contains only good
vertices. We stop the process once there is a component of order at least n/4, so we can assume that there
is no component of order at least n/4 until 900 lnn colors have been sampled. For each good component
C(v) at step i, let P denote the set of good vertices outside C(v). We have |P | ≥ n − n/4 − n/10 > 5n/8,
as |C(v)| ≤ n/4 and the number of vertices which are not good is at most n/10. Thus, the number of colors
between C(v) and P is at least |N+(3n/8;C(v))| ≥ Kn/128. Hence, picking a uniformly random color, the
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expected number of good components with an edge in that color to a different good component is at least
(Kn/128)/(2Kn) ·Ni = Ni/256. Therefore, there exists a color for which at least Ni/256 good components
have an edge in that color to a different good component. This implies that a color can be chosen to guarantee
that Ni+1 ≤ Ni(1 − 1/512). Hence, we can choose the colors so that 1 < Ni ≤ n(1 − 1/512)i for all i ≥ 1,
which is a contradiction if i ≥ 900 lnn.

Combining Lemmas 3.4 and 3.6, we obtain the promised result.

Lemma 3.7. Consider a proper edge-coloring of the complete graph on a set A of n vertices using at most
2Kn colors, where each color class contains at most n/K edges. Then there exist 900(K + lnn) colors such
that there exists a component Ac of order at least n/4 in these colors in A.

3.3 Improved counting
We now prove Theorem 1.4 in the following slightly reworded form.

Theorem 3.8. There is an absolute constant C such that, for any proper edge-coloring of KN , the number
of vertex subsets A of order n spanning at most Kn colors is at most NC(K+lnn)(CK)n.

A key part in the proof of this theorem is played by structures that we call efficiently colored trees.
Given a vertex subset A of order n in a proper edge-colored complete graph, an efficiently colored tree on a
subset Ac of A is a tree together with an edge-coloring using an ordered list of 900(K + lnn) colors with the
following properties:

• There is a partition of Ac into components B1, . . . , B`, each connected by edges with the first 900K
colors.

• After revealing i of the remaining 900 lnn colors and the corresponding edges between the connected
components, the number of connected components is at most (1− 1/512)in.

The importance of efficiently colored trees for us stems from the following result, which has essentially the
same proof as Lemma 3.6 above.

Lemma 3.9. In any proper edge-coloring of a complete graph, for every vertex subset A of order n which
spans at most Kn colors, there exists a subset Ac of A of order at least n/4 and an efficiently colored tree
on Ac.

We now give the proof of Theorem 3.8.

Proof of Theorem 3.8. By Lemma 3.9, for any set A of the required form, there is a subset Ac of A which
admits an efficiently colored tree. We will bound the number of sets A by first bounding the number of
efficiently colored trees, thereby giving an upper bound on the number of possible choices for Ac. We then
bound, for each Ac admitting an efficiently colored tree, the number of sets A extending Ac.

We first count the number of efficiently colored trees. Each efficiently colored tree can be specified as
follows:

1. Select a set S1 of 900K colors and a set S2 of 900 lnn colors.

2. Select an unlabelled tree on n′ ∈ [n/4, n] vertices (in at most 3n ways for n sufficiently large by a
theorem of Otter [30]) and a partition of the tree into components B1, . . . , B`.

3. Select a color for each edge in the components Bi using the colors in S1.

4. For each 0 ≤ i ≤ 900 lnn, we keep track of a set of `i components, starting with the components
B1, . . . , B` for i = 0. There are `i − 1 edges of the tree between the components. We then select a
subset of these `i − 1 edges and assign the edges in this set the i-th color in S2.
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Upon performing the above steps, we obtain a tree on n′ vertices together with a coloring of its edges. We
only consider such trees where `i satisfies `i ≤ (1 − 1/512)in. As the edge-coloring is proper, for each such
colored tree, upon specifying the choice of the root of the tree among the N vertices of KN , there is at most
one way to identify all remaining vertices of the tree with vertices in KN . Thus, the number of efficiently
colored trees, and hence the number of choices for Ac, is at most(

N2

900K

)(
N2

900 lnn

)
· 3n ·

(
n′ − 1

`− 1

)
· (900K)n

′−` ·
900 lnn∏
i=0

2`i−1 ·N.

Here, the first term
(
N2

900K

)(
N2

900 lnn

)
corresponds to the number of choices for S1 and S2, the term

(
n′−1
`−1

)
corresponds to the number of ways to select ` − 1 edges of the tree partitioning it into ` components, the
term (900K)n

′−` is an upper bound on the number of ways to color each edge in the components Bi with
a color in S1, the terms 2`i−1 correspond to the number of ways to choose the subsets of the sets of `i − 1
edges to be colored with the i-th color in S2 and the last term N is the number of ways to assign the root
of the tree to a vertex in KN .

Next, we identify A from Ac. Starting from A′ = Ac, we consider the following process. Let N(A′) be
the set of colors between vertices in A′. If there exists a vertex a in A for which there are at least n/8 colors
between a and A′ which are not contained in N(A′), then we include a in A′, noting that there are at most
N choices for a. This can occur at most 8K times. In the end, we obtain a set A′ such that, for all a ∈ A,
there are at least n/8 edges between a and A′ with color in N(A′). Let Y be the set of all vertices in KN

such that the number of edges between this vertex and A′ with color in N(A′) is at least n/8. We have
|Y | ≤ n·|N(A′)|

n/8 = 8|N(A′)| ≤ 8Kn. The number of choices for the remaining vertices of A, given that they

are all in Y , is therefore at most
( |Y |
n−n′

)
≤ (8eKn/(n− n′))n−n′ .

Hence, the number of sets A is at most∑
n′∈[n/4,n],`≤n′

N1800(K+lnn)3n
(
n′ − 1

`− 1

)
(900K)n

′−` · 2900n ·N ·N8K · (8eKn/(n− n′))n−n
′

≤
∑

n′∈[n/4,n]

N1800(K+lnn)3n(900K)n
′−1 · 2950n ·N8K+1 · (8eKn/(n− n′))n−n

′

≤ N1800(K+lnn)(21000K)nN20K ,

as required.

We note the following immediate corollary counting the number of subsets spanning few colors in locally-
bounded colorings. The proof, which we omit, is almost exactly the same as that of Theorem 2.2, but with
Theorem 3.8 replacing Theorem 2.1 as the main input.

Corollary 3.10. There is an absolute constant C such that in any edge-colored complete graph on N vertices
in which each color class has maximum degree at most ∆, the number of subsets of n vertices in which at
most Kn colors appear is at most NC(∆K+lnn)(C∆K)n.

The following improvement of Corollary 2.4, which includes Theorem 1.2, is now an immediate corollary.

Corollary 3.11. There is a constant C such that if G is a finite group of order N , then the number of
subsets A ⊂ G with |A| = n and |AA| ≤ K|A| is at most NC(K+lnn)(CK)n. Similarly, the number of subsets
A ⊂ G with |A| = n and |AA−1| ≤ K|A| is at most NC(K+lnn)(CK)n.

Though we will not go into the matter in detail, it is again possible, as in Theorem 2.3, to extend our
results to λ-edge-expanders, a result which in turn has the following corollary.

Corollary 3.12. There is a constant C such that if G is a finite group of order N , then the number of pairs
of subsets A,B ⊂ G with |A| = |B| = n and |AB| ≤ K|A| is at most NC(K+lnn)(CK)2n.
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3.4 The number of colors required to connect the entire graph
In this subsection, we take a look at the number of colors needed to find a connected spanning subgraph in
a proper edge-coloring of Kn with at most Kn colors. We begin with a simple observation that, together
with the results of the previous subsections, will give our upper bound.

Lemma 3.13. Given a proper edge-coloring of Kn with at most Kn colors, a subset S of V (Kn) of order s
and any δ > 0, there exist (n/s)K ln(1/δ) colors such that all but at most δn vertices of Kn are connected
to S by a path using these colors.

Proof. Starting with S0 = S, for every i ≥ 0, the number of edges between Si and the remaining vertices
is |Si|(n − |Si|) and thus there is a color which connects at least |Si|(n − |Si|)/(Kn) new vertices to Si.
Define Si+1 to be the union of Si and these new vertices. We can then guarantee that n − |Si+1| ≤
(n−|Si|)(1−|Si|/(Kn)) ≤ (n−|Si|)(1− (s/n)/K). Thus, after at most t = (n/s)K ln(1/δ) steps, we obtain
that the complement of St has size at most δn.

Theorem 3.14. In any proper edge-coloring of Kn with at most Kn colors, there is a spanning tree con-
taining at most 1000K ln(n/K) colors.

Proof. By Lemma 3.7, we can find a set of 900(K + log n) colors that connects a component of order at
least n/4. By Lemma 3.13 with δ = K/n, by using an additional 4K ln(n/K) colors, we obtain a component
whose complement has order at most K. By using K additional colors, we can thus connect all n vertices.
This implies that there is a spanning tree using at most 900(K+ log n) + 4K ln(n/K) +K < 1000K ln(n/K)
colors, yielding the required result.

We now give a construction which shows that the bound in Theorem 3.14 is tight up to a constant factor.

Lemma 3.15. For any sufficiently large n and 1 ≤ K ≤ n/(lnn)8, there is an edge-coloring of the complete
graph Kn with at most Kn colors such that every connected spanning subgraph has at least 1

50K ln(n/K)
colors.

Proof. Let s =
√
Kn. We show that there exists a proper edge-coloring of the complete graph Kn+s with at

most 5Kn colors for which any spanning tree uses at least M := 1
8K ln(n/K) colors. The conclusion of the

lemma follows from rescaling the parameters by appropriate factors.
For disjoint vertex subsets A and B, we say that a set S of colors connects A to all of B if each vertex in

B has at least one incident edge whose other vertex is in A and whose color is in S. Partition the vertex set
of Kn+s into parts An of size n and As of size s. We will construct a proper edge-coloring of the complete
bipartite graph Ks,n with parts As and An using at most Kn+ 2s2/K = (K+ 2)n colors such that no set of
M colors connects An to all of As. We then properly edge-color the complete graph on An arbitrarily with
a new set of n colors and all edges in the complete graph on As with

(
s
2

)
≤ Kn/2 new colors. In total, we

will use at most (K + 2)n+ n+Kn/2 ≤ 5Kn colors.
If there is a spanning subgraph that uses at most M colors, then we may assume it is a spanning tree.

Furthermore, we can replace edges of the tree that have both vertices in As by edges in the complete bipartite
graph between As and An to get a spanning tree that still uses at most M colors and does not have any
edge with both vertices in As. It follows that there would be a set of M colors that connects An to all of
As, contradicting the claimed property. It therefore suffices to show that there is an edge-coloring of the
complete bipartite graph Ks,n with parts As and An using at most Kn + 2s2/K colors such that no set of
M colors connects An to all of As.

First consider the following random edge-coloring of Ks,n. For each vertex v in As, pick a uniformly
random proper coloring of the edges adjacent to v from a fixed set of Kn colors. We refer to this random
edge-coloring as the original edge-coloring of Ks,n. For each edge e, declare that e is bad if there exists an
edge e′ adjacent to e (necessarily at the vertex of e that lies in An) such that e′ is assigned the same color
as e. For each bad edge, we assign to that edge a distinct color from a new set of colors. After recoloring
the bad edges in this way, we obtain a random proper edge-coloring of Ks,n, which we refer to as the new
edge-coloring.
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For each edge e, the colors of the edges adjacent to e on the An side are independent choices each taken
from a set of Kn colors. Thus, the probability that e is not bad is

(1− 1/(Kn))s−1 ≥ 1− s/(Kn).

Therefore, the expected number of bad edges is at most sn · s
Kn = s2/K. Hence, the expected number of

additional colors used to color Ks,n is at most s2/K. Thus, by Markov’s inequality, with probability at least
1/2, the number of additional colors used to color Ks,n is at most 2s2/K.

Next, we bound the probability that there exist M colors in the original coloring which connect An to all
of As. Note that if the new edge-coloring hasM colors which connect An to all of As, then so did the original
edge-coloring using the same set of edges. Fix a set S of M colors. In the original coloring, the probability
that a given vertex in As is not incident to an edge whose color is in S is at least

(
1− M

Kn

)n ≥ e−2M/K ,
where, for the inequality, we used that 0 < M

Kn < 1/8. Therefore, the probability that a given vertex in
As is incident to at least one edge of color in S is at most 1− e−2M/K . These events are independent over
different vertices in As, so the probability that S connects An to all of As is at most

(1− e−2M/K)s ≤ e−se
−2M/K

= e−K(n/K)1/4 .

Taking a union bound over all
(
Kn
M

)
possible sets S of M colors, the probability that there exists a set of

M colors that connects An to all of As is at most(
Kn

M

)
e−K(n/K)1/4 ≤

(
eKn

M

)M
e−K(n/K)1/4 ≤ nMe−K(n/K)1/4 ≤ 1/e.

The second to last inequality follows from the choice of M and the conditions in the lemma statement on
n and K. To see the last inequality, note that by taking the natural logarithm it suffices to show that
M lnn − K(n/K)1/4 ≤ −1. As M = 1

8K ln(n/K), by dividing by K and reorganizing, it suffices to show
that (n/K)1/4 ≥ 1

8 ln(n/K) lnn+1/K, which would follow from (n/K)1/4 ≥ ln(n/K) lnn. By our conditions
on n and K, n/K can be taken sufficiently large that (n/K)1/8 ≥ ln(n/K) and, by the upper bound on K,
we have (n/K)1/8 ≥ lnn. Hence, the desired inequality holds.

Therefore, with probability at least 1 − 1/2 − 1/e > 0, the new edge-coloring of the complete bipartite
graph Ks,n has the desired properties, completing the proof.

3.5 Improved bounds on additive dimension
In this subsection, we will make use of some of the ideas from the previous subsections to prove Theorem 1.8.
Recall the statement, that if A is a subset of an abelian group G of size n with |A − A| ≤ K|A|, then
d∗(A) = O(K log log n + log n). Moreover, if G has exponent r, then d∗(A) = O(K log r + log n). Most of
the proof works over a general group, so, to stay in keeping with the results and proofs on which it builds,
we will stay in this setting until the very end, only specializing to the case where the group is abelian when
we need to.

Proof of Theorem 1.8. Consider a group G and a subset A ⊆ G with |A| = n and |AA−1| ≤ Kn. As in the
proof of Corollary 1.7, we consider the edge-coloring of the complete graph on vertex set A which assigns
to each edge {x, y} the color {xy−1, yx−1}. This is an edge-coloring where each color class has maximum
degree at most two, so Vizing’s theorem implies that by increasing the number of colors by a factor of at
most three, we may obtain a proper edge-coloring of the complete graph on A.

Applying Lemma 3.5 with J = δK for δ = 1/16 and κ = 900K, we obtain, as in the proof of Lemma 3.4,
a set S1 of κ colors such that for a set G0 of vertices v with |G0| ≥ (1 − 2 exp(−κ/(128K)))n, we can find
a set B(v) of size J such that each vertex of B(v) can be connected to v using a sequence of edges of color
in S1 with length at most dlog Je. Indeed, consider the procedure in Lemma 3.4 for a vertex v such that
the event in Lemma 3.5 holds. Letting Bj = Bj(v), every vertex u ∈ Bj \ Bj−1 is connected to a vertex
in B2blog2(j−1)c through an edge with color in S1. Hence, inductively, we have that every vertex in B2w is
connected to v through a sequence of edges with color in S1 of length at most w. Thus, every vertex in
B(v) = BJ(v) can be connected to v using a sequence of edges of color in S1 with length at most dlog Je.
Furthermore, |N+(3/8;B(v))| ≥ Kn/128.
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Recall that each color s can be identified with a set of group elements {g, g−1}. We may also identify each
color s with an arbitrarily chosen element from the corresponding set of group elements. Abusing notation,
we will sometimes replace a set of colors, such as S1, by the subset of G that its elements identify with.
Using this identification, set

B(t) =

{
t log J∏
i=1

qi : qi ∈ S1 ∪ S−1
1 ∪ {1}

}
.

We will need the following key claim.
Claim 3.16. There exists a sequence S2 of at most L = 1536 lnn elements of G, a set G ⊆ A of size at least
n/4 and a vertex v1 ∈ G such that

G ⊆

(∏
s∈S2

{s, 1}

)
v1B(2L).

Proof. Consider an arbitrary vertex v1 ∈ G0. Let C0 = {v1}. For i ∈ [1, L − 1], we consider the following
process, which defines a set Ci ⊆ G0 for which the sets xB(L − i) are disjoint for all x ∈ Ci. Let Ci−1 =
Ci−1B(L − i)2 ∩ G0. For a suitable si ∈ G to be chosen later, we will define Ci to be a set containing all
x ∈ Ci−1 and, for each x ∈ Ci−1 such that siB(x)∩(G0\Ci−1) 6= ∅, exactly one vertex v ∈ siB(x)∩(G0\Ci−1).

We first observe that the sets xB(L − i) are disjoint for all x ∈ Ci. Indeed, suppose that there exist
x, y ∈ Ci such that xB(L− i)∩ yB(L− i) 6= ∅. Any x ∈ Ci can be written in the form scxi x

∗bx for cx ∈ {0, 1},
x∗ ∈ Ci−1 and bx ∈ (x∗)−1B(x∗) ⊆ B(1). Furthermore, note that we can take bx = 1 if cx = 0. Thus, we can
find x∗, y∗ ∈ Ci−1 and bx ∈ (x∗)−1B(x∗), by ∈ (y∗)−1B(y∗) such that scxi x

∗bxB(L− i)∩ scyi y∗byB(L− i) 6= ∅.
If cx = cy, then we have that x∗B(L − i + 1) ∩ y∗B(L − i + 1) 6= ∅, which cannot occur since the sets
xB(L − i + 1) are disjoint for x ∈ Ci−1. Otherwise, suppose, without loss of generality, that cx = 1 and
cy = 0. Then x = six

∗bx is contained in yB(L− i)B(L− i)−1 = yB(L− i)2 ⊆ Ci−1 for y ∈ Ci−1, contradicting
x ∈ G0 \ Ci−1. This establishes the desired conclusion.

If |Ci−1| < n/4, we claim that we can find si such that |Ci|−|Ci−1| ≥ |Ci−1|/768. Indeed, since |G0\Ci−1| ≥
5n/8, for each x ∈ Ci−1, we have |N(B(x),G0 \ Ci−1)| ≥ Kn/128. Thus, picking a uniformly random color
c, the expected number of x ∈ Ci−1 for which there is an edge in color c between B(x) and G0 \ Ci−1 is at
least |Ci−1|/384 (recall that the proper edge-coloring we constructed uses at most 3Kn colors). Observing
that each edge in color c corresponds to either a group element si or its inverse, we obtain that there exists
si such that the number of x ∈ Ci−1 for which siB(x) ∩ (G0 \ Ci−1) 6= ∅ is at least |Ci−1|/768. Finally, note
that, for x, y ∈ Ci−1, we have siB(x) ∩ siB(y) = ∅, since B(x) ⊆ xB(1) ⊆ xB(L− i) (recalling that we only
consider i ≤ L− 1). Hence, we can find si such that |Ci| − |Ci−1| ≥ |Ci−1|/768.

By our choice of L = 1536 lnn, we cannot have n ≥ |Ci| ≥ (1 + 1/768)|Ci−1| for all i ≤ L− 1. Thus, there
is some i ≤ L− 1 such that |Ci−1| ≥ n/4. We then define G = Ci−1, so that

G ⊆

 i∏
j=1

{sj , 1}

 v1B(2L).

Taking S2 = {s1, s2, . . . } gives the required conclusion.

Let T = |S2| ≤ 1536 lnn. Set

R =

(∏
s∈S2

{s, 1}

)
v1B(2L)

and, for t ≥ 1,
R(t) = (R−1 ∪R)t.

By Claim 3.16, we have that G ⊆ R(1) and G−1 ⊆ R(1).
For each vertex u in A \ G, we say that u is nearly covered if u has a neighbor in G through an edge

with color in G−1G. Thus, for each vertex u which is not nearly covered, the colors between u and G are
distinct from the colors in G. Observe also that the set of nearly covered vertices is contained in R(3).
Consider a vertex u1 which is not nearly covered. For X,Y ⊆ A, let N(X,Y ) denote the set of colors
on the edges between X and Y . Let c1 be the color of an edge between u1 and G. Define G1 to be the
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set of not nearly covered vertices u′ which have N(u′,G) ∩ N(u1,G) 6= ∅. Let v′, v ∈ G be such that
u′(v′)−1 = u1v

−1 or u′(v′)−1 = vu−1
1 . If c1 = u−1

1 v̄ for v̄ ∈ G, we can then write u′ = u1v
−1v′ = v̄c−1

1 v−1v′

or u′ = vu−1
1 v′ = vc1v̄

−1v′. As such, G1 must be contained in

G · {c1, c−1
1 } · G−1G ⊆ R(1) · {c1, c−1

1 } · R(2).

Given vertices u1, . . . , uh, we define Gh to be the set of vertices u′ that are not nearly covered, N(u′,G)∩
N(uh,G) 6= ∅ and N(u′,G) ∩ (

⋃
i<hN(ui,G)) = ∅. Let ch denote an arbitrary color between uh and G. As

above, we have that
Gh ⊆ (

⋃
i<h

Gi) ∪
(
R(1) · {ch, c−1

h } · R(2)
)
.

If there exists a vertex which is not nearly covered and which is not contained in Gi for any i ≤ h, we then
take uh+1 to be an arbitrary such vertex and continue the process. Observe that the N(ui,G) are pairwise
disjoint and each has size at least |G| ≥ n/4. Thus, the number of steps is bounded above by O(K). We
therefore conclude that there is a set of colors S3 of size O(K) such that

A ⊆
⋃

s3∈S3

(
R(1) · {s3, s

−1
3 } · R(2)

)
.

Upon specializing to the case where G is an abelian group, we observe that each element of A can be
represented as a sum of elements of ±(S1 ∪S2 ∪S3) where the multiplicity of each element in ±S3 is at most
1, the multiplicity of each element in ±S2 is O(1) and the multiplicity of each element in ±S1 is at most
O((log n)(logK)). By selecting S̃1 to include all multiples 2bs1 for s1 ∈ S1 and 2b ≤ O((log n)(logK)), we
can then represent every element of A as a {−1, 0, 1}-combination of elements in the multiset ±(S̃1 ∪ S2 ∪
S3) (where the elements in S2 have O(1) multiplicity), which has size O(K log((log n)(logK)) + log n) =
O(K log log n+log n). Hence, d∗(A) = O(K log log n+log n). Furthermore, ifG has bounded exponent r, then
we only need to include in S̃1 all multiples 2bs1 for s1 ∈ S1 and 2b ≤ r, yielding d∗(A) = O(K log r+log n).

4 Alon’s conjecture
In this section, we prove several results relating to Alon’s conjecture that there exists an absolute constant
C such that every finite group has a C-Ramsey Cayley graph. In Section 4.1, we warm up by showing
that there are self-complementary Ramsey Cayley graphs, which already answers a question of Alon and
Orlitsky [7]. Then, in Sections 4.2 and 4.3, we address Alon’s conjecture directly by first proving that it
holds for all abelian groups of order coprime to 6 and then lifting this result to all groups with a large abelian
subgroup of order coprime to 6. In particular, these results imply Corollary 1.11, that Alon’s conjecture
holds for abelian groups of almost all orders. Section 4.4 contains the proofs of Theorems 1.12 and 1.13.
Recall that the first of these states that if p ≥ 5 is a prime and V is a vector space V of order N with
characteristic p, then there is a Cayley graph on V in which the clique and independence numbers are both
at most (2 + o(1)) log2N , while the second says that if the characteristic is 1 (mod 4), then we may even
take the Cayley graph to be self-complementary. Both proofs work in far more general contexts, which we
explain in detail in the section itself. Finally, in Section 4.5, we prove a technical result needed for the
proofs of Theorem 1.12 and 1.13 giving an essentially tight upper bound on the number of subsets A of Fnp
of size t with |A−A| ≤ Kt. The proof is a modification of the proof of a similar result on A+A proved by
Even-Zohar and Lovett [21], but may nevertheless be of independent interest.

4.1 Self-complementary Ramsey Cayley graphs
In this short subsection, we answer a question of Alon and Orlitsky [7] by showing that there are self-
complementary Ramsey Cayley graphs. The proof of this result already contains many of the ingredients we
will use throughout the rest of the section, but in simplified form. Though we present the proof over groups
of the form Zd5, one can easily modify the construction to work over Zdp for any fixed prime p ≡ 1 (mod 4). A
key point to note is that in order to obtain a Ramsey Cayley graph over Zd5 we cannot simply take a uniform
random Cayley graph, since such graphs have clique number Θ(logN log logN) with high probability, where
N = 5d is the number of vertices.
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Theorem 4.1. For every d, there is a self-complementary Ramsey graph over Zd5.

Proof. Let G = Zd5 and N = |G| = 5d. The nonzero elements of the cyclic subgroups of G partition G \ {0}.
The set of nonzero elements of a cyclic subgroup of G is a set of the form {x, 2x, 3x, 4x}. For each such
cyclic subgroup, we pick exactly one of {x, 4x} or {2x, 3x} to be a subset of the generating set S uniformly
at random. This guarantees that the generating set S has several properties:

• S is symmetric.

• The Cayley graph GS is self-complementary through the isomorphism φ : Zd5 → Zd5 given by φ(x) = 2x.

• For each nonzero x ∈ Zd5, exactly one of x and 2x is in S.

It therefore suffices to show that with high probability the clique number of GS is O(logN) = O(d).
We claim that every set A ⊂ G which is a clique in GS satisfies |A− A| ≥ |A|4/3. For a clique A in GS ,

we have A− A ⊂ S and, since S does not contain both x and 2x for any x, A has no nontrivial solution to
the equation a1 − a2 = 2(a3 − a4) or, equivalently, to a1 + 2a4 = a2 + 2a3. This implies that all the sums
a1 + 2a4 with a1, a4 ∈ A are distinct, so A + 2 · A = |A|2. On the other hand, by the Plünnecke–Ruzsa
inequality, |A+ 2 ·A| ≤ |3A| ≤ (|A−A|/|A|)3|A|. Hence, |A−A| ≥ |A|4/3, as claimed.

To complete the proof, it suffices to show that, for some appropriate constant C ′, the expected number
of cliques of order n = C ′ logN in GS is o(1). We will show that we may take C ′ = 100C, where C ≥ 1 is
the constant in Theorem 1.2. By Theorem 1.2, the number of sets A ⊂ G with |A| = n and |A − A| = m
is at most NC(K+lnn)(CK)n, where K := m/n. For any possible clique A of order n in GS , we have that
|A− A| ≥ |A|4/3 and the probability that A is a clique in GS is 2−(|A−A|−1)/2, where we used that nonzero
distinct elements of A−A, no pair of which are inverses, appear in S independently of each other. Therefore,
the expected number of cliques in GS of order n = C ′ logN is at most∑

n4/3≤m≤n2

NC(m/n+lnn)(Cm/n)n2(1−m)/2 = o(1).

Hence, the clique number of GS is less than n with high probability.

The same proof works over Zdp for any fixed prime p ≡ 1 (mod 4), since in this case there exists α ∈ Zp
with α2 = −1 and we can partition Zdp into disjoint sets of the form {x, αx, α2x, α3x}. However, we will
need some additional ideas when we prove the stronger and more general Theorem 1.13 later in the section.

4.2 Abelian groups with order coprime to 6

In this subsection, we prove Alon’s conjecture for abelian groups of order coprime to 6.

Theorem 4.2. There is an absolute constant C ′ such that, for every abelian group G of order coprime to
6, there is a Cayley graph on G with no clique or independent set of order C ′ log |G|.

For the rest of this subsection, let G be an abelian group of order N coprime to 6. We next describe how
we pick a random symmetric subset S of G and we will then show that the random Cayley graph GS with
high probability has no clique or independent set of order C ′ log |G|.

We first consider the equivalence relation x ≡ −x, which partitions the set of nonzero elements of G into
pairs. We then partition the family of such equivalence classes into disjoint orbits of the map x 7→ 2x. We
select a random subset S of G as follows. Partition the set of equivalences classes given by the orbit of x
into consecutive sets of size two {x, 2x}, {4x, 8x}, . . . and possibly one singleton (which happens if and only
if the orbit is of odd size). For each of these sets of size two, we include exactly one of the two corresponding
equivalence classes uniformly at random as a subset of S. If there is a singleton, we pick its equivalence class
to be a subset of S uniformly at random. Note that we make all of these random choices independently of
each other.

From this construction, it is clear that the distribution of the random Cayley graphGS and its complement
are identical. In particular, each nonzero element of G has probability exactly 1/2 of being in S. Furthermore,
we have the following claims.
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Claim 4.3. For any set X of nonzero elements of G, the probability that X is a subset of S is at most 2−|X|/2.
This claim follows from first observing that any such X has a subset X ′ ⊆ X with |X ′| ≥ |X|/2 such

that if x ∈ X ′, then −x 6∈ X ′. The events that elements of X ′ taken from different pairs or singletons are in
S are independent, while for elements of X ′ taken from the same pair there is a zero probability that both
lie in S. Hence, for any such subset X ′, the probability X ′ is a subset of S is either 2−|X

′| or zero.
Claim 4.4. For any nonzero y ∈ G, the quadruple {y, 2y, 4y, 8y} 6⊂ S.

This claim follows from the fact that none of the sets of size two in the partition is a subset of S. We first
observe that we cannot have 2y = −y or 8y = −y, because the order of the group is coprime to 6. Moreover,
if 4y = −y, then {y, 2y, 4y, 8y} = {y, 2y,−y,−2y}, but y and 2y cannot both be in S in this case. We may
therefore assume that none of 2y, 4y or 8y is −y. The quadruple {y, 2y, 4y, 8y} might still not consist of
distinct elements, but, as G has size coprime to 6, the only pair in the quadruple that can be equal is y and
8y. But even in this case, the quadruple (which is then a triple) is not a subset of S.

In particular, for any clique A in the Cayley graph GS with generating set S, since S does not contain
any quadruple {y, 2y, 4y, 8y}, there is no y ∈ G with ty ∈ A − A for t ∈ {1, 2, 4, 8}. Hence, if ty ∈ A − A
for some nonzero y ∈ G and all t = 1, 2, 4, 8, then A − A has nonempty intersection with both S and the
complement of S ∪ {0}, so A cannot be a clique in GS .

The next lemma shows that if T is a set of small positive integers that are coprime to |G| and A ⊆ G is
such that there is no nonzero y ∈ G with ty ∈ A−A for all t ∈ T , then the ratio |A−A|/|A| is large.

Lemma 4.5. Let T be a nonempty set of positive integers, each less than m, with |T | = q and let N be a
positive integer such that every integer in T is coprime to N . If A is a subset of an abelian group G of order
N such that there is no nonzero y ∈ G with ty ∈ A−A for all t ∈ T , then |A−A| ≥ |A|1+1/(2qm).

Proof. Order the elements of the set T in increasing order as t1 < t2 < · · · < tq and suppose |A−A| = K|A|.
Beginning with A0 = A, we will pick a sequence of subsets A0 ⊇ A1 ⊇ · · · ⊇ Aq with |Ai| ≥ K−2im+m|A|
for i ≥ 1 and tjy ∈ A−A for all 1 ≤ j ≤ i and all y ∈ Ai −Ai.

Observe that |Ai−1 + tiAi−1| ≤ |A + tiA| ≤ Kti+1|A| by the Plünnecke–Ruzsa inequality. By the
pigeonhole principle, there is ui ∈ Ai−1 + tiAi−1 such that ui = b+ tia for at least |Ai−1|2/(Kti+1|A|) pairs
(a, b) ∈ Ai−1 ×Ai−1. Let Ai be the set of a ∈ Ai−1 such that ui − tia ∈ Ai−1, so |Ai| ≥ |Ai−1|2/(Kti+1|A|).
We will prove by induction on i that |Ai| ≥ K−2im+m|A| and tjy ∈ A−A for all 1 ≤ j ≤ i and all y ∈ Ai−Ai.
This holds for i = 0. Assuming |Ai−1| ≥ K−2i−1m+m|A|, we then have that

|Ai| ≥ |Ai−1|2/(Kti+1|A|) ≥ K−(ti+1)−2im+2m|A| ≥ K−2im+m|A|,

where we used that max T < m. Moreover, for any ai, a′i ∈ Ai, we have that ti(ai−a′i) ∈ Ai−1−Ai−1 ⊆ A−A.
By induction, since Ai ⊆ Ai−1, we also have that t(ai − a′i) ∈ A − A for all t ≤ ti−1 in T . Thus, we have
that ty ∈ A−A for all y ∈ Ai −Ai and t ≤ ti, completing the induction.

If now |A| > K2qm, then |Aq| > 1 and there is some nonzero y ∈ A− A with ty ∈ A− A for all t ∈ T , a
contradiction. Therefore, K ≥ |A|1/(2qm) and so |A−A| = K|A| ≥ |A|1+1/(2qm).

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. For the random S described earlier, if there is a nonzero y such that {y, 2y, 4y, 8y} ⊂
A − A, then A − A contains both an element of S and a nonzero element not in S, so A is not a clique
in the Cayley graph GS with generating set S. If there is no nonzero y such that {y, 2y, 4y, 8y} ⊂ A − A,
then, for T = {1, 2, 4, 8}, there is no y with ty ∈ A − A for all t ∈ T . Therefore, by Lemma 4.5, if we set
|A−A| = K|A|, then we have K ≥ |A|1/144.

By Theorem 1.2, the number of A ⊂ G with |A| = n and |A − A| = m is at most NC(K+logn)(CK)n,
where K = m/n. By Claim 4.3, the expected number of cliques in GS of order n = C ′ logN is at most∑

n1+1/144≤m≤n2

NC(m/n+logn)(Cm/n)n2−(m−1)/2 = o(1).

Thus, with high probability, there is no clique in GS of order C ′ logN . Similarly, since the complement of
the random Cayley graph GS has the same distribution as GS , with high probability, there is no independent
set in GS of order C ′ logN .
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4.3 More general groups
The main result of this subsection says that if a group G has a large abelian subgroup H of order coprime
to 6, then there is a Cayley graph on the group which is Ramsey. As above, the generating set S is not
picked uniformly at random (which is necessary for groups with many subgroups of a particular size such
as Zd5). However, the elements not in H are picked uniformly and independently at random. In particular,
if |H| = o(|G|), most elements are picked uniformly and independently at random and we only need to be
careful about how we pick the elements on a vanishing proportion of the elements of G.

Theorem 4.6. There is an absolute constant C ′ such that if G is a group of order N with an abelian
subgroup H of order |H| > N/(logN)1/1000 coprime to 6, then G has a Cayley graph which is C ′-Ramsey.

Proof. We pick a random subset S of G to be the generating set of the Cayley graph as follows. We pick
the nonzero elements of H to be in the generating set exactly as described in the proof of Theorem 4.2 for
abelian groups whose size is coprime to 6. In particular, this implies that every subset B of a right coset of
H which could possibly be a clique in the Cayley graph satisfies |BB−1| ≥ |B|1+1/144. Each element not in
H is an element of S with probability 1/2 independently of all other elements except its inverse.

Consider a subset A of n = C ′ logN elements of G. By the pigeonhole principle, there is a right coset
of H which contains a subset B ⊂ A with |B| ≥ n/(N/|H|) ≥ n.999. If A is a clique, then B is as well, so
|AA−1| ≥ |BB−1| ≥ |B|1+1/144 ≥ n1.005. Thus, by Theorem 1.2, the number of sets A ⊂ G of size n with
|AA−1| ≤ Kn that are potential cliques of the random Cayley graph is at most

NC(K+logn)(CK)n = N (C+o(1))K ,

where C is an absolute constant and we used that K ≥ n.005.
Note now that each set A with |A| = n ≥ 2 has probability at most 2−(|AA−1|−1)/2 of being a clique.

Indeed, AA−1 is a symmetric set that contains the identity element 1, each nonidentity element appears in
S with probability 1/2, the events that elements of AA−1 ∩H and their inverses appear in S are negatively
correlated (as in the proof of Theorem 4.2) and, finally, each element of AA−1 \H appears in the generating
set S independently of all other elements except its inverse. Summing over all possible sizes m = |AA−1| of
AA−1 and substituting in N = 2n/C

′
gives that the expected number of cliques of order n in the random

Cayley graph is at most∑
n1.005≤m≤n2

N (C+o(1))m/n2−(m−1)/2 = 2((C+o(1))C′−1−1/2)m = o(1).

Similarly, the expected number of independent sets of order n in this random Cayley graph is o(1). Hence,
with high probability this random Cayley graph is C ′-Ramsey for some appropriate absolute constant C ′.

From the fundamental theorem of finite abelian groups, if N ′ is the largest factor of N that is coprime
to 6, then any abelian group of order N has a subgroup of order N ′. This immediately yields Theorem 1.10
and Corollary 1.11, with the latter stating that, for almost all N , every abelian group of order N has a
C ′-Ramsey Cayley graph.

4.4 Ramsey Cayley colorings
A Ramsey-type problem first raised by Erdős, Hajnal and Rado [17] in 1965 (see also [19]) asks for the order
of the largest clique avoiding one of the colors that can be found in any r-coloring of KN . For r = 2, this
problem is equivalent to the problem of determining the classical diagonal Ramsey number. More generally,
for any 1 ≤ s < r, one may ask for the order of the largest clique containing at most s colors that can
be found in any r-coloring of KN . To get an upper bound, it is easy to check that in a uniform random
r-coloring the largest clique in the union of any s colors has order (2 + o(1)) logr/sN with high probability.

In this subsection, we prove a generalization of Theorem 1.12 saying that there are Cayley r-colorings
that asymptotically match this bound, where an r-edge-coloring of the complete graph on a group G is a
Cayley r-coloring if each color class is a Cayley graph on G. That is, a Cayley r-coloring is formed by taking
a partition of G \ {0} into r symmetric sets S1, . . . , Sr and coloring the edges of the complete graph on G
by letting color i be the Cayley graph with generating set Si for each 1 ≤ i ≤ r.
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Theorem 4.7. Fix integers 1 ≤ s < r. Let V be a finite vector space of order N with characteristic p > 2r.
Then there is a Cayley r-coloring of the complete graph on V such that the clique number of the union of
any s color classes is at most (2 + o(1)) logr/sN .

We also prove Theorem 1.13 in this subsection. Recall that this says that for every vector space V of
order N whose characteristic p is congruent to 1 (mod 4), there is a self-complementary Cayley graph on
V whose clique and independence numbers are both at most (2 + o(1)) log2N . We call a Cayley r-coloring
of Fnp rotational if the coloring is given by c : Fnp \ {0} → Zr and there is a scalar α ∈ F×p of order 2r such
that c(αix) ≡ c(x) + i (mod r) for all x ∈ Fnp \ {0} and i ∈ Z. In such an edge-coloring of the complete
graph on Fnp , the Cayley graphs of each color are isomorphic (through multiplication by a fixed power of
α). In particular, in the case r = 2, the graphs of each color are self-complementary. The following theorem
therefore generalizes Theorem 1.13.

Theorem 4.8. Fix an integer r ≥ 2. Let V be a finite vector space of order N with characteristic p ≡ 1
(mod 2r). Then there is a rotational Cayley r-coloring of the complete graph on V such that the largest
monochromatic clique has order at most (2 + o(1)) logrN .

We first describe the Cayley r-colorings we will use to prove Theorems 4.7 and 4.8.

Constructions for Theorem 4.7. We use two different colorings, depending on whether the characteristic
p is small or not. In each coloring, for each line L through the origin of Fnp , we color the nonzero elements
of L independently of all other lines through the origin.

If p ≤ 22r, then we use the following coloring. For each line L through the origin, we can write its set of
p − 1 nonzero elements as {x, 2x, . . . , (p − 1)x} for some representative x ∈ L. Since the coloring must be
symmetric (so the color of y and −y are the same for each nonzero y), we only need to specify the colors
of the (p− 1)/2 elements x, 2x, . . . , (p− 1)x/2. We equipartition this set of (p− 1)/2 elements uniformly at
random into r sets and then make each set symmetric by adding −y to each set if y is already in the set.
We thus obtain a partition of the set of nonzero elements of L into r nonempty sets L1, . . . , Lr (the fact that
these sets are each nonempty follows from p > 2r). The generating set Si for color i is then the union of the
sets Li over all lines L through the origin. In this Cayley r-coloring, the union of the generating sets of any
set R of colors with |R| < r does not contain all the nonzero elements of a line. Hence, there is no nonzero
y ∈ Fnp such that {y, 2y, . . . , (p− 1)y} are all in SR, where SR :=

⋃
i∈R Si. But then, by Lemma 4.5, for any

A which can possibly be a clique with colors in R, we have |A−A| ≥ |A|1+p−12−p

.
If p > 22r, then we use the following coloring. First note that the order of 2, which we call h, satisfies

h > log2 p. We consider the equivalence relation x ≡ −x which partitions the nonzero elements of Fnp into
pairs. We write x for the equivalence class of x. We then partition the nonzero equivalence classes on each
line L through the origin into orbits of powers of 2, each of size h or h/2 (depending on whether −1 is a
power of 2).

We partition each orbit B, which is of the form {x, 2x, 22x, . . . , 2h
′−1x} with h′ = h or h/2, into intervals

I of size r with at most one remaining interval of size less than r. Note that there is at least one interval
of size r since h′ ≥ r. We color the equivalence classes in each such interval I independently of all other
intervals, randomly coloring the elements of I with colors from [r] while guaranteeing that each color appears
at most once (and exactly once if the interval has size r). The generating set Si for color i then consists of
all elements of color i.

In this Cayley r-coloring, the union of the generating sets of any set R of colors with |R| < r does not
contain all the elements of an interval I of size r. Hence, there is no nonzero y such that {y, 2y, . . . , 23r−3y}
are all in SR, where SR =

⋃
i∈R Si. Here, we note that in the partition of a given orbit into intervals of size

r with at most one additional interval of size less than r, any consecutive interval of size at least 3r− 2 must
fully contain an interval of size r from the partition. But then, by Lemma 4.5 with T = {1, 2, . . . , 23r−3} (so
we may pick q = 3r − 2 and m = 23r−3 + 1), for any A which can possibly be a clique with colors in R, we
have |A−A| ≥ |A|1+2−6r

.
In either case, for any subset R of the colors of size s < r and any set X of nonzero elements, X has a

subset X ′ of size at least |X|/2 which does not contain both an element x and its negative −x and where
the events that elements in X ′ have colors from R are negatively correlated. Therefore, the probability that
a set A ⊂ Fnp forms a clique in the union of the Cayley graphs with colors in R is at most (s/r)(|A−A|−1)/2.
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Moreover, as noted above, for |R| < r and any A which has positive probability of being a clique with all
colors in R, we have

|A−A| ≥ |A|1+c (3)

for some c > 0 depending only on r.

Constructions for Theorem 4.8. We again use two different colorings depending on whether the char-
acteristic p is small or not. As p ≡ 1 (mod 2r), there is α ∈ Fp of order 2r and so αr ≡ −1 (mod 2r).
We fix such an α. We also let ` be a multiple of r that is growing slowly to infinity with N . For exam-
ple, ` ≈ log log log logN will work. The reason that we need to let ` → ∞ slowly with N is that when
the characteristic p is large we lose the negative correlation property that appeared in the construction for
Theorem 4.7, but we do still have that the probability a set A gives a monochromatic clique is at most
r−(1−o(1))|A−A|/2, where the o(1) crucially depends on ` → ∞. However, to get our bounds to match those
of the uniform random r-coloring, we also need that |A− A| = ω(|A| log |A|), which we can guarantee with
our arguments only if ` doesn’t grow too quickly with N .

When p < 22r`, we use the following coloring. The set Fnp \ {0} of nonzero elements is partitioned into
the nonzero elements of the lines through the origin. We can write the nonzero elements of a line through
the origin as Lx = {ax : a ∈ F×p } for some x ∈ Fnp \ {0}. We color the nonzero elements of each such line
independently of the other lines through the origin. Pick a generator g for F×p . We equipartition the set of
elements gjx for j = 0, 1, . . . , p−1

2r − 1 into r color classes uniformly at random and then complete this to a
rotational coloring of the line by letting c(αigjx) ≡ c(gjx)+ i (mod r) for j = 0, 1, . . . , p−1

2r −1 and i ∈ Z. To
ensure that the coloring is well-defined, we claim that the sets {±αigj} for j ∈ [0, p−1

2r − 1] and i ∈ [0, r− 1]
partition Fp \ {0}.

Assume instead that the sets {±αigj} for j ∈ [0, p−1
2r − 1] and i ∈ [0, r − 1] are not disjoint, so there is

|j′| < p−1
2r and |i′| < r, not both zero, such that αi

′
= ±gj′ (mod p). We then have grj

′
= (±αi′)r = ±1

(mod p) and, since |rj′| < (p−1)/2, this implies rj′ = 0 and hence j′ = 0. Then αi
′

= ±1 (mod p) and, since
α has order 2r and |i′| < r, we have i′ = 0, a contradiction. Therefore, the sets {±αigj} for j ∈ [0, p−1

2r − 1]
and i ∈ [0, r − 1] are disjoint and, as there are (p− 1)/2 such sets, they must also partition Fp \ {0}. Since
the nonzero elements of a line through the origin cannot be monochromatic, Lemma 4.5 again implies that,
for any A which can possibly be a monochromatic clique, we have |A−A| ≥ |A|1+p−12−p

.
When p ≥ 22r`, we use the following coloring. Partition Fnp \ {0} into sets of the form Mx = {2aαix :

a, i ∈ Z} for some representative x ∈ Fnp \ {0}. We will color the elements of each Mx independently of the
elements not in Mx. Let h be the order of 2 in F×p , so h > log2 p. Let h′ be the least positive integer such
that 2h

′
is a power of α in F×p . Then h′ = h/d for some divisor d of h with d ≤ 2r and each Mx has size

2rh′. Partition the set {0, 1, . . . , h′ − 1} into intervals of size `, with possibly one interval of size at least `
and at most 2`− 1. We can do this since h′ ≥ `. For each such interval I, we equitably color the elements of
{2ix : i ∈ I} at random. We then extend this to a rotational coloring of all ofMx by setting c(αiy) ≡ c(y)+ i
(mod r). For any monochromatic clique A in this edge-coloring, the set S = {2jαix : j ∈ I} for a given i,
x ∈ Fnp \ {0} and interval I cannot be monochromatic and, hence, cannot be a subset of A−A. Further, for
every nonzero y ∈ Fnp , the set {y, 2y, . . . , 23`−3y} contains such a set S. Hence, by Lemma 4.5, for any A
which can possibly be a monochromatic clique, we have |A−A| ≥ |A|1+`−12−3`

.
Recall that, for any X ⊂ Fnp \ {0}, there is X ′ ⊂ X with |X ′| ≥ |X|/2 such that there is no x with both

x and −x in X ′. For the coloring used when p < 22r`, for any set of the form X = A − A, the events that
elements of the corresponding X ′ each have the same particular color are negatively correlated and each
have probability 1/r. Therefore, the probability that a set A ⊂ Fnp forms a monochromatic clique of a given
color in the rotational Cayley r-coloring is at most r−(|A−A|−1)/2.

For the coloring used when p ≥ 22r`, we no longer have negative correlation. However, the events are
still close to being negatively correlated, so we can show that the probability a set A forms a monochromatic
clique of a given color is at most r−(1+o(1))|A−A|/2. For a set A to have positive probability of being a
monochromatic clique of color c ∈ Zr, there must be no y ∈ X ′ and αiy ∈ X ′ with i 6≡ 0 (mod 2r) of the
same color, where X ′ is the reduced set corresponding to X = A− A. For a given Mx and an interval I as
defined above (which satisfies ` ≤ |I| ≤ 2` − 1), each y ∈ Mx ∩X ′ of the form y = αj2ix for i ∈ I receives
color c if and only if 2ix receives the color c−j. Therefore, for a set A to have positive probability of forming
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a monochromatic clique, several independent events must occur, each saying that 2ix receives a certain color
for each i ∈ J ⊂ I, where the subsets J = J(A, x, I) have sizes that sum to |X ′|. The probability that
each i ∈ J receives the required color is the ratio of two multinomial coefficients, the denominator being the
number of equitable r-colorings of |I|, which is(

|I|
n1, n2, . . . , nr

)
with each nk = |I|/r, and the numerator being(

|I| − |J |
n1 −m1, n2 −m2, . . . , nr −mr

)
,

where mk is the number of elements of the form 2ix with i ∈ J that are to receive color k, so m1 + · · ·+mr =
|J |. The ratio of these two multinomial coefficients is then

QI :=

∏r
k=1(|I|/r)mk

(|I|)|J|
,

where (a)b =
∏b
j=1(a − j + 1). For any A that has positive probability of being monochromatic, the

probability that X ′ is monochromatic is
∏
I QI . We wish to compare this with r−|X

′|. To this end, we will
give an upper bound on Q1/|J|

I . By the simple observation that, for any integers Y ≥ a > b ≥ 0, we have
(Y )a(Y )b ≤ (Y )a−1(Y )b+1, given |J |, the ratio QI is maximized when (m1, . . . ,mr) is an equipartition of
|J |. Furthermore, the maximum of Q1/|J|

I occurs when |J | = |I| = `, so

Q
1/|J|
I ≤

(
`

m1, m2, . . . , mr

)−1/`

,

with each mk = `/r. This multinomial coefficient is the largest of the
(
`+r−1
r−1

)
≤ `r multinomial coefficients

in the multinomial expansion of r`, so, since ` → ∞, we have QI ≤ r−(1−o(1))|J|. Taking the product over
all I, we get that the probability a set A (with |A| → ∞ as N → ∞) forms a monochromatic clique is, as
required, at most r−(1−o(1))|A−A|/2.

Moreover, as ` is tending to ∞ slowly with N , in both cases any A of size (2 + o(1) logr n which has a
positive probability of being a monochromatic clique satisfies

|A−A| ≥ |A|(log |A|)2.

Proofs of Theorems 4.7 and 4.8. The proofs of Theorems 4.7 and 4.8 use the colorings described above
together with the following upper bound on the number of sets of a given size with small difference set. The
crucial point for us here is that the constant factor in front of K in the exponent of N is exactly 1.

Lemma 4.9. For K ≥ 1, the number of subsets A of Fnp of size t with |A−A| ≤ Kt is at most t4tNK+logp t+1,
where N = pn.

This bound is close to optimal. More precisely, for K a positive integer and t/K a power of p, the
number of subsets A of Fnp of size t with |A − A| ≤ Kt is at least (N/t)K+logp(t/K). Indeed, consider those
sets A = H + {x1, . . . , xK} which are the union of K distinct cosets of a subspace H of size t/K. Any such
set A satisfies |A − A| ≤ (K2 − K + 1)|H| ≤ K|A|. As we assumed t/K is a power of p, the number of
distinct subspaces of size t/K is

logp(t/K)−1∏
j=0

N − pj

t/K − pj
≥
(
N

t/K

)logp(t/K)

.

Thus, the number of such A = H + {x1, . . . , xK} is at least(
N/(t/K)

K

)(
N

t/K

)logp(t/K)

≥ (N/t)K+logp(t/K),

27



where we note that there are
(
N/(t/K)

K

)
ways to choose K distinct H-cosets. We defer the proof of Lemma 4.9

to the next subsection, first showing how to complete the proofs of Theorems 4.7 and 4.8.

Proof of Theorem 4.7. Fix for now a nonempty proper subset R of the set of colors with |R| = s. As discussed
earlier, the probability that a set A ⊂ Fnp forms a clique with all colors in R is at most (s/r)(|A−A|−1)/2.
Moreover, by Lemma 4.9, the number of sets A with |A| = t and |A − A| ≤ m is at most t4tNm/t+logp t+1

and, by (3), any clique A with all colors in R has |A−A| ≥ |A|1+c for some c > 0 depending only on r.
Summing over all possible sizes m of |A − A| with m ≥ |A|1+c, the probability that there exists a set

A ⊂ Fnp with |A| = t which forms a clique with all colors in R is at most∑
t1+c≤m≤t2

t4tNm/t+logp t+1(s/r)(m−1)/2.

Let δ = t−c/2 and t = 2(1 + δ) logr/s(N). Then,∑
t1+c≤m≤t2

t4tNm/t+logp t+1(s/r)(m−1)/2 ≤
∑

t1+c≤m≤t2
t4tNm/t+logp t+1N−(1+δ)m/tr1/2

=
∑

t1+c≤m≤t2
t4tN logp t+1−δm/tr1/2

≤ N−t
c/2/2t4t+2r1/2

= (s/r)t
1+c/2/4(1+δ)t4t+2r1/2

= oN (1).

Taking a union bound over all 2r−2 possible nonempty proper subsets R of the set of colors, we get that, with
high probability, the clique number of the union of any s < r color classes is at most (2+oN (1)) logr/s(N).

Proof of Theorem 4.8. The proof goes through essentially the same as the proof of Theorem 4.7 with the
analogous estimates substituted.

4.5 Counting sets with small difference sets in vector spaces
We now prove Lemma 4.9, for which we will need a quantitative version of the Freiman–Ruzsa theorem. One
version of this theorem, due to Ruzsa [31], says that if G is a finite abelian group of exponent t, then any
subset A of G with |A+A| ≤ K|A| is contained in a coset of a subgroup of G of size at most K2tK

4 |A|. In the
same paper, Ruzsa conjectured that the subgroup size can be reduced to tCK |A| for some absolute constant
C and this conjecture was subsequently proved by Even-Zohar and Lovett [20, 21] for prime exponents.

Let 〈A〉 denote the affine span of A, that is, the smallest coset of a subgroup containing A. If we write

F (p,K) = sup
A

{
|〈A〉|
|A|
|A ⊆ Fnp for some n, |A+A| ≤ K|A|

}
,

then the result of Even-Zohar and Lovett [21] says that F (p,K) ≤ p2K−2

2K−1 for p > 2 prime and K sufficiently
large. Here we adapt their proof to the setting where we replace sumsets by difference sets. If we write

F−(p,K) = sup
A

{
|〈A〉|
|A|
|A ⊆ Fnp for some n, |A−A| ≤ K|A|

}
,

then the following is the result we need.

Theorem 4.10. For K ≥ 1 and any prime p ≥ 3,

F−(p,K) ≤ pK

K + 2
.
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By considering A = 〈e1, . . . , e`〉+ {0, e`+1, . . . , e`+K}, we have that |A−A| = (1 + 2K +K(K − 1))p` =

(K + 1/(K + 1))|A|, while |〈A〉| = pK

K+1 |A|. Thus, Theorem 4.10 is tight up to a pO(1/K) factor.
Our proof of Theorem 4.10 follows [21] quite closely. Without loss of generality, in the definition of

F−(p,K), by passing to a subspace if necessary, we may restrict the supremum to subsets A of Fnp which
affinely span Fnp . By changing basis if necessary, we may also assume that A contains the standard basis
e1, . . . , en of Fnp .

We consider the lexicographic order on the elements of Fnp . Recall that, for two vectors u, v ∈ Fnp , we
write u ≺ v in this ordering if ui < vi for the largest coordinate i for which ui 6= vi, where the coordinates
are viewed as integers in {0, 1, . . . , p− 1}. For L ⊆ Fnp and k ≤ |L|, let IS(k, L) denote the initial segment of
size k of L, which is the set of the k smallest elements of L in the lexicographic order.

For a given v ∈ Fnp , let Lv be the set of all lines in the direction v, that is, Lv =
⋃
u∈Fn

p
Luv , where

Luv = {u+ tv|t ∈ Fp}. Given a set A, we define its compression in the direction v, denoted by Cv(A), to be
the set obtained from A by replacing each set L ∩A, for all L = Luv , u ∈ Fnp , with the initial segment of Luv
of the same cardinality, that is,

Cv(A) =
⋃
u∈Fn

p

IS(|Luv ∩A|, Luv ).

For a vector v ∈ Fnp , we denote by `(v) the largest index i for which vi 6= 0. The following key lemma is
the analogue of a similar result in [21].

Lemma 4.11. If A,B ⊆ Fnp and v ∈ Fnp is a vector with v`(v) = 1, then |Cv(A)− Cv(B)| ≤ |Cv(A−B)|.

Proof. Let i = `(v). For u, x ∈ Fnp , let u0, x0 be the translates of u, x by scalar multiples of v such that their
i-th coordinates are 0. Note that IS(|A ∩ Luv |, Luv ) = {u0, . . . , u0 + (|A ∩ Luv | − 1)v} as vi = 1. Hence,

|(Cv(A)−Cv(B))∩{x0 + tv|t ∈ Fp}| = min(p,max
u0

(|A∩{u0 + tv|t ∈ Fp}|+ |B ∩{x0−u0 + tv|t ∈ Fp}|)− 1).

On the other hand,

|Cv(A−B) ∩ {x0 + tv|t ∈ Fp}| = |(A−B) ∩ {x0 + tv|t ∈ Fp}|
≥ min(p,max

u0

(|A ∩ {u0 + tv|t ∈ Fp}|+ |B ∩ {x0 − u0 + tv|t ∈ Fp}|)− 1).

Thus, |Cv(A)− Cv(B)| ≤ |Cv(A−B)|, as required.

In [21], the authors use compressions along directions v with v`(v) = 1 to deduce the structure of com-
pressed sets. We say that A is *-compressed if A = Cv(A) for any v with v`(v) = 1 and e`(v) − v ∈ A. The
following lemma follows identically to Lemma 7 of [21]. Recall that e1, . . . , en denotes the standard basis
vectors of Fnp , which we assume are contained in A. We also observe that given any set A containing the
standard basis, any compression in the direction of v where v`(v) = 1 and e`(v)−v ∈ A would fix the standard
basis in A, so A remains affinely spanning.

Lemma 4.12. Let A be a subset of Fnp with {e1, . . . , en} ⊆ A which is *-compressed. Let h be maximal such
that H = 〈e1, . . . , eh〉 is a subset of A. Then A can be written as the disjoint union

H ∪ (eh+1 +H) ∪ · · · ∪ ((s− 1)eh+1 +H) ∪ (A ∩ (seh+1 +H)) ∪ (A ∩ (eh+2 +H)) ∪ · · · ∪ (A ∩ (en +H)),

where 1 ≤ s ≤ p− 1 and s is maximum with the property that (A ∩ (seh+1 +H)) 6= ∅.

We are now ready to prove Theorem 4.10.

Proof of Theorem 4.10. Let A ⊆ Fnp be such that {e1, . . . , en} ⊆ A, so 〈A〉 = Fnp . We repeatedly apply
compressions along directions v satisfying v`(v) = 1 and e`(v) − v ∈ A. For each such compression, the
difference set |A−A| does not increase and the standard basis e1, . . . , en remains in A. By applying finitely
many such compressions, we arrive at a set A ⊆ Fnp with |A − A| ≤ K|A| and {e1, . . . , en} ⊆ A which is
*-compressed. A must then have the form given in Lemma 4.12, so that

A−A = [H + ([−s, s]eh+1 ∪ ({eh+2, . . . , en} − [0, s− 1]eh+1) ∪ (−{eh+2, . . . , en}+ [0, s− 1]eh+1))] ∪ [X −X],
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where X = (A ∩ (seh+1 +H)) ∪ (A ∩ (eh+2 +H)) ∪ · · · ∪ (A ∩ (en +H)).
We have

|H+([−s, s]eh+1∪({eh+2, . . . , en}−[0, s−1]eh+1)∪(−{eh+2, . . . , en}+[0, s−1]eh+1))| = |H|(2s+1+2s(n−h−1)).

Furthermore, if we set Aj = A∩(ej+H) for j ≥ h+2 and Ah+1 = A∩(seh+1+H), then, for j 6= j′ ∈ [h+1, n],
the sets Aj′ −Aj are disjoint from each other and from the set

H + ([−s, s]eh+1 ∪ ({eh+2, . . . , en} − [0, s− 1]eh+1) ∪ (−{eh+2, . . . , en}+ [0, s− 1]eh+1)).

Thus,

|A−A| ≥ (2s(n− h) + 1)|H|+
∑

j 6=j′, j,j′≥h+1

|Aj −Aj′ | ≥ (2s(n− h) + 1)|H|+
∑
j≥h+1

(n− h− 1)|Aj |,

where, in the last inequality, we used that
∑
j′ 6=j |Aj −Aj′ | ≥ (n− h− 1)|Aj |.

On the other hand,
|A| = s|H|+

∑
j≥h+1

|Aj |.

Hence,

|A−A| ≥ (2s(n− h) + 1)|H|+ (n− h− 1)(|A| − s|H|) = (n− h− 1)|A|+ (1 + s(n− h+ 1))|H|.

Thus,
K ≥ |A−A|/|A| ≥ n− h− 1 + (1 + s(n− h+ 1))ph/|A|, (4)

so

|A| ≥ (1 + s(n− h+ 1))ph

K − n+ h+ 1
. (5)

From (5), recalling that 〈A〉 = Fnp and noting that 1 + s(n− h+ 1) ≥ n− h+ 2, we have

|〈A〉|
|A|

=
pn

|A|
≤ (K − n+ h+ 1)pn−h

1 + s(n− h+ 1)
≤ (K − n+ h+ 1)pn−h

n− h+ 2
= pK · K − n+ h+ 1

pK−n+h(K − (K − n+ h− 2))
.

Since A ⊆ H ∪ (eh+1 +H) ∪ · · · ∪ (seh+1 +H) ∪ (eh+2 +H) ∪ · · · ∪ (en +H), we have |A| ≤ (n− h+ s)ph.
Thus, from (4),

K ≥ n− h− 1 +
(1 + s(n− h+ 1))ph

|A|
≥ n− h− 1 +

1 + s(n− h+ 1)

n− h+ s
≥ n− h.

Let z = K − n+ h ≥ 0. Recalling that p ≥ 3, we then have that

z + 1

pz(K − z + 2)
≤ 1

K + 2
,

so that
|〈A〉|
|A|

≤ pK

K + 2
,

as required.

We now recall some basic definitions from additive combinatorics. For subsets A ⊆ G and B ⊆ H of
abelian groups G,H, a mapping ϕ : A→ B is a Freiman (2−)homomorphism if ϕ(a1)+ϕ(a2) = ϕ(a′1)+ϕ(a′2)
for any a1, a2, a

′
1, a
′
2 ∈ A with a1 +a2 = a′1 +a′2. If, in addition, ϕ is bijective and its inverse is also a Freiman

homomorphism, then ϕ is called a Freiman isomorphism. The Freiman dimension of a subset A of Fnp is the
largest d such that there exists a subset of Fdp with full affine span that is Freiman isomorphic to A. As a
corollary of Theorem 4.10, we obtain that the Freiman dimension over Fp of a set A ⊆ Fnp with |A−A| ≤ K|A|
is at most K+logp |A|. We now use this corollary to prove Lemma 4.9, which says that the number of subsets
A of Fnp of size t with |A−A| ≤ Kt is at most t4tNK+logp t+1, where N = pn.
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Proof of Lemma 4.9. The proof follows the proof of Proposition 26 of [23]. Lemma 11 of [23] implies that
the number of Freiman isomorphism classes of sets in Fnp of size t is at most t4t. Lemma 13(i) of [23] says
that if A has Freiman dimension d, then there is a subset A of A of size d + 1 such that any Freiman
isomorphism between A and a subset B of Fnp is uniquely determined by the image of A. Thus, for each
Freiman isomorphism class consisting of sets with Freiman dimension d, the number of subsets of Fnp in that
isomorphism class is at most Nd+1. Therefore, using our bound on the Freiman dimension of A, the number
of A ⊆ Fnp of size t with doubling at most K is at most t4tNK+logp t+1, as required.

5 Concluding remarks
Other random graph models. A different model of random graphs extending random Cayley graphs was
proposed and studied by Christofides and Markström [14]. Recall that a Latin square is an N × N square
filled with symbols from [N ] in such a way that each symbol appears exactly once in each row and column.
Given an N ×N Latin square L and a subset S of [N ], the Latin square graph G(L, S) is the graph on vertex
set [N ] where ij is an edge if and only if either Lij or Lji is in S. Christofides and Markström initiated the
study of the random Latin square graph G(L, p), which, for a given N×N Latin square L, is the Latin square
graph G(L, S) where each element of [N ] is included in the generating set S independently with probability
p. This clearly generalizes random Cayley graphs, since one can just start with the multiplication table of a
given finite group G as the relevant Latin square.

Among other results, Christofides and Markström [14] proved that both the clique and independence
numbers of random Latin square graphs are O(log2N) with high probability. They also suggested that
both of these bounds might be improvable to O(logN log logN), which would be best possible for the
same reason as for random Cayley graphs. Since a random Latin square graph can be viewed as the edge
union of two random entangled graphs, it easily follows from our results that random Latin square graphs
have independence number O(logN log logN) with high probability, verifying one part of their suggestion.
However, for the clique number, the corresponding bound does not directly follow.

Nevertheless, all of the random graph models we have discussed, including binomial random graphs,
random Cayley graphs, random entangled graphs coming from locally-bounded colorings and random Latin
square graphs, fall into a more general framework where each edge e in a complete graph appears with a
fixed probability 0 < p < 1 independently of all edges except for those in a bounded-degree subgraph Ge. In
a forthcoming paper [15], we will study such random graphs and, among other results, extend Theorem 1.3,
our result estimating the clique number of random entangled graphs, to this setting. In particular, this
confirms that the clique number of random Latin square graphs is O(logN log logN) with high probability,
confirming the second part of Christofides and Markström’s suggestion.

Uniform edge distribution and extractors. Building on the techniques in this paper, it is possible to
show that the edges of the random Cayley graph over any finite group G are uniformly distributed with high
probability in the sense that there is an absolute constant c > 0 such that the density of edges between any
two sets of order at least log |G|(log log |G|)c is 1

2 + o(1) as |G| tends to infinity. This improves upon a result
of Konyagin and Shkredov [25], who proved a similar result for abelian groups.

These results also connect to the study of randomness extractors in theoretical computer science. Fol-
lowing Chattopadhyay and Liao [13], who studied the abelian case under the name of sumset extractors,
we say that f : G → {0, 1} is a (G, k, ε)-extractor if, for all distributions P1, P2 on a finite group G with
maxg∈G Pi(g) ≤ 2−k and independent samples Ui ∼ Pi, we have that dTV(f(U1U

−1
2 ),Ber(1/2)) ≤ ε, where

dTV is the total variation distance. A standard reduction shows that it suffices to verify this property when
each Ui is the uniform distribution on a subset of G of order at least 2k. That is, we only need to show that
the edges of the Cayley graph defined by f are close to uniformly distributed between all pairs of sets each
of order at least 2k, which is exactly the problem we have discussed above.

In their paper [13], Chattopadhyay and Liao constructed explicit sumset extractors over Fn2 for k =
log n(log log n)1+o(1) and asked whether random functions f give good extractors. The results of Konyagin
and Shkredov [25] address this question, showing that in any finite abelian group uniformly random functions
are good extractors for 2k = log |G|(log log |G|)c and |G| sufficiently large. Our results show that this remains
true for arbitrary finite groups.
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Abelian Ramsey Cayley graphs in small characteristic. Alon’s conjecture remains wide open for Fn2
and Fn3 . The main challenge in these cases is that it is no longer possible to directly construct a 2-coloring
of the nonzero elements of these groups so that there is no monochromatic subspace. In fact, a classical
result in Ramsey theory, the finite unions theorem, shows that this is not possible over Fn2 for n sufficiently
large. As such, to make progress on Alon’s conjecture for Fn2 , we need to better understand the quantitative
bounds for Ramsey numbers of subspaces in Fn2 . In particular, we propose the following conjecture, which
would be an automatic corollary of Alon’s conjecture in Fn2 if it were true, as an intermediate step.

Conjecture 5.1. There exists C > 0 and a two-coloring of Fn2 \{0} such that there is no subspace H of size
Cn for which all nonzero elements of the subspace are monochromatic.

While this would be an important step towards proving Alon’s conjecture for Fn2 , it may be that the true
bound is considerably smaller. The best lower bound we know of follows from an appropriate adaptation
of Sanders’ quantitative bounds for Rado’s theorem [33] to the finite field setting and gives that every two-
coloring of Fn2 \ {0} contains a monochromatic subspace of size at least log log · · · log n for some bounded
number of iterated logs.
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