
QUASIRANDOM CAYLEY GRAPHS

DAVID CONLON AND YUFEI ZHAO

Abstract. We prove that the properties of having small discrepancy and having small second
eigenvalue are equivalent in Cayley graphs, extending a result of Kohayakawa, Rödl, and Schacht,
who treated the abelian case. The proof relies on Grothendieck’s inequality. As a corollary, we also
prove that a similar result holds in all vertex-transitive graphs.

1. Introduction

A fundamental result of Chung, Graham, and Wilson [6], building on earlier work of Thoma-
son [19, 20], states that for a sequence of graphs of density p, where p is a fixed positive constant,
a number of seemingly distinct notions of quasirandomness are equivalent. The following theorem
details some of these equivalences.

Theorem 1.1 (Chung–Graham–Wilson). For any fixed 0 < p < 1 and any sequence of graphs
(Γn)n∈N with |V (Γn)| = n, the following properties are equivalent:

P1: for all subsets S, T ⊆ V (Γn), e(S, T ) = p|S||T |+ o(pn2);
P2: e(Γn) ≥ (1 + o(1))p

(
n
2

)
, λ1(Γn) = (1 + o(1))pn and |λ2(Γn)| = o(pn), where λi(Γn) is the

ith largest eigenvalue, in absolute value, of the adjacency matrix of Γn;
P3: for all graphs H, the number of labeled copies of H in Γn is (1 + o(1))pe(H)nv(H).

Here, the adjacency matrix A(Γ) of an n-vertex graph Γ is the n×n matrix (ast)s,t∈[n] where ast = 1
if s and t are adjacent in Γ and 0 otherwise.

In this paper, we will be concerned with studying the extent to which this theorem, and partic-
ularly the equivalence between the first two properties, extends to sparse graphs, that is, graphs
where the density p tends to zero. We will focus our attention on regular graphs. We then say that
an n-vertex d-regular graph Γ = (V,E) is ε-uniform if, for all S, T ⊆ V ,∣∣∣∣e(S, T )− d

n
|S||T |

∣∣∣∣ ≤ εdn.
The equivalence between properties P1 and P2 of Theorem 1.1 now implies that if p is fixed and Γn
is a sequence of graphs with |V (Γn)| = n and Γn regular of degree dn = pn, then the sequence Γn
is o(1)-uniform if and only if |λ2(Γn)| = o(dn).

One direction of this equivalence follows from the famous expander mixing lemma. This says
that if Γ = (V,E) is an (n, d, λ)-graph, that is, an n-vertex d-regular graph such that all eigenvalues
of the adjacency matrix A(Γ), except the largest, are bounded above in absolute value by λ, then∣∣∣∣e(S, T )− d

n
|S||T |

∣∣∣∣ ≤ λ√|S||T |
for all S, T ⊆ V . Thus, if |λ2(Γ)| ≤ εd, Γ is ε-uniform. Note that this statement does not rely on
knowing that d is large, applying just as well when it is constant as when it is on the order of n.
This observation is of fundamental importance in the study of expander graphs (see [10]).
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Answering a question of Chung and Graham [5], Krivelevich and Sudakov [13] showed that the
converse does not hold. That is, there are sequences of sparse graphs for which the discrepancy
condition P1 of Theorem 1.1 does not imply the eigenvalue condition P2. However, their example
is not regular (and a later example due to Bollobás and Nikiforov [3] is not connected), so we give
an alternative example below.

Example 1.2. Take three disjoint vertex sets U , V , and W , with |U | = |V | = t and |W | = n− 2t.
Choose a d-regular graph Γ on vertex set U ∪V ∪W such that every vertex in U has no neighbours
in U and exactly λ neighbours in V , and vice versa for V , while each vertex in W has the same
number of neighbours in U and in V . By taking the vector y = (y1, . . . , yn) with yj = 1 if j ∈ U ,
−1 if j ∈ V , and 0 otherwise, we see that −λ is an eigenvalue of the adjacency matrix A(Γ). More
concretely, suppose d is even, let t = λ = d/2, and let the bipartite graph between U and V be
complete. We split the remaining set of vertices W into two subsets W0 and W1, where |W1| = d2/4
and each vertex in W1 is joined to both endpoints of a unique associated edge in Γ[U, V ], while no
vertex in W0 is joined to U ∪ V . In W , we place a random graph such that every vertex in W0

has degree d and every vertex in W1 has degree d− 2. The resulting graph is d-regular. Moreover,
provided d → ∞ and d = o(n), a simple calculation (similar to the proof of Proposition 12 in [3])
implies that G is o(1)-uniform, despite having −d/2 as an eigenvalue.

Given such examples, a recent result of Kohayakawa, Rödl, and Schacht [12] comes as something
of a surprise. Suppose that G is a finite group and S is a subset of G. The (directed) Cayley graph
Cay(G,S) is formed by taking the elements of G as the vertex set and {(sg, g) : g ∈ G, s ∈ S}
as the set of (directed) edges. If S is symmetric, that is, S = S−1, the graph can be viewed as
undirected. Unless stated otherwise, we will always use the term Cayley graph to refer to such an
undirected graph with a symmetric generating set. We note that many of the standard examples
of quasirandom graphs, including Paley graphs and the Ramanujan graphs of Lubotzky, Phillips,
and Sarnak [15] and Margulis [16], are Cayley graphs.

Theorem 1.3 (Kohayakawa–Rödl–Schacht). Let G be an abelian group. Then every ε-uniform
Cayley graph Cay(G,S) is an (n, d, λ)-graph with n = |G|, d = |S|, and λ ≤ Cεd for some absolute
constant C.

The main result of this paper generalizes Theorem 1.3 to any finite group.

Theorem 1.4. Every ε-uniform Cayley graph Cay(G,S) is an (n, d, λ)-graph with n = |G|, d = |S|,
and λ ≤ 8εd.

It is not hard to lift this result to all vertex-transitive graphs, where a graph is said to be vertex
transitive if the automorphism group of the graph acts transitively on the vertices. Note that
Cayley graphs are always vertex transitive, while the example of the Petersen graph shows that the
converse is not true.

Corollary 1.5. Every n-vertex d-regular ε-uniform vertex-transitive graph is an (n, d, λ)-graph with
λ ≤ 8εd.

Suppose now that Γ is an n-vertex d-regular vertex-transitive graph. If Γ is ε-uniform, this means
that ∣∣∣∣e(S, T )− d

n
|S||T |

∣∣∣∣ ≤ εdn (1)

for all S, T ⊆ V (Γ). Corollary 1.5 then says that Γ is an (n, d, λ)-graph with λ ≤ 8εd. In turn, the
expander mixing lemma shows that∣∣∣∣e(S, T )− d

n
|S||T |

∣∣∣∣ ≤ 8εd
√
|S||T | (2)
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for all S, T ⊆ V (Γ). Thus, Corollary 1.5 may be seen as saying that in vertex-transitive graphs the
discrepancy condition (1) bootstraps itself to the stronger condition (2).

For comparison, we note also a result of Bilu and Linial [2] which says that if Γ is an n-vertex
d-regular graph satisfying the stronger discrepancy condition (2), then it is an (n, d, λ)-graph with
λ = O(εd log(2/ε)). Our result shows that in Cayley graphs, one can derive the stronger conclusion
λ = O(εd) from the weaker condition (1).

We begin the process of proving Theorem 1.4 and Corollary 1.5 in the next section by introducing
two matrix norms, the cut norm and the spectral norm, which capture the properties of having
small discrepancy and having small second eigenvalue. The rough idea then will be to show that
if A is the adjacency matrix of a vertex-transitive graph Γ, the spectral norm of A agrees with a
semidefinite relaxation of the cut norm.

We note that some similar ideas have been used in this context before. In particular, a semidef-
inite relaxation was used by Alon et al. [1] to prove the related result that if a graph G has small
discrepancy, then one can remove a small fraction of the vertices so that in the remaining graph all
eigenvalues, except the largest, are small.

2. Norms and relaxations

For any vector x = (x1, . . . , xn) ∈ Rn, we define its p-norm, 1 ≤ p ≤ ∞, by

|x|p := (|x1|p + · · ·+ |xn|p)1/p

and
|x|∞ := max{|x1|, . . . , |xn|}.

In particular, we write |x| := |x|2 for the Euclidean norm. The inner product on Rn is

〈x, y〉 := x∗y = x1y1 + · · ·+ xnyn.

Let A = (ast)s∈[m],t∈[n] ∈ Rm×n be a matrix (we write [n] := {1, . . . , n}). We define a number of
matrix norms. The most familiar one is the spectral norm:

‖A‖ := sup
x∈Rn
|x|≤1

|Ax| = sup
x∈Rm,y∈Rn
|x|,|y|≤1

|x∗Ay|, (3)

where the second equality above follows from an application of the Cauchy–Schwarz inequality.
Equivalently, ‖A‖ equals the largest singular value of A. If A is symmetric, then ‖A‖ is also the
maximum of the absolute values of the eigenvalues of A.

The notion of ε-uniformity is captured by the cut norm:

‖A‖cut := sup
S⊆[m],T⊆[n]

∣∣∣∣∣∣
∑

s∈S,t∈T
ast

∣∣∣∣∣∣ .
It is not hard to see that the cut norm can be expressed as a linear relaxation:

‖A‖cut = sup
x1,...,xm,y1,...,yn∈[0,1]

∣∣∣∣∣∣
∑

s∈[m],t∈[n]

astxsyt

∣∣∣∣∣∣ = sup
x∈[0,1]m,y∈[0,1]n

|xtAy|. (4)

To see the validity of this reformulation, note that the expression inside the absolute value is linear
individually in each of x1, . . . , xm, y1, . . . , yn, and hence its extremum is attained when all these
variables are {0, 1}-valued, which is equivalent to the earlier formulation with subsets S and T .

We digress for a moment to relate these norms to graphs. Let Γ be an n-vertex d-regular graph
and let A(Γ) be its adjacency matrix (recall that this is the n× n matrix (ast)s,t∈[n] where ast = 1
if s and t are adjacent in Γ and 0 otherwise). Then Γ is an (n, d, λ)-graph if and only if

‖A(Γ)− d
nJ‖ ≤ λ,
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where J is the n× n all-1’s matrix, and Γ is ε-uniform if and only if

‖A(Γ)− d
nJ‖cut ≤ εdn.

Returning to the discussion of matrix norms, we further relax the cut norm by allowing each xs
and yt to be numbers in [−1, 1]:

‖A‖∞→1 := sup
x∈Rn
|x|∞≤1

|Ax|1 = sup
x∈Rm,y∈Rn
|x|∞,|y|∞≤1

|x∗Ay|

= sup
x1,...,xm,y1,...,yn∈[−1,1]

∣∣∣∣∣∣
∑

s∈[m],t∈[n]

astxsyt

∣∣∣∣∣∣ .
This norm is equivalent to the cut norm:

‖A‖cut ≤ ‖A‖∞→1 ≤ 4‖A‖cut. (5)

Indeed, write x = x+ − x− and y = y+ − y−, where x+, x− ∈ [0, 1]m and y+, y− ∈ [0, 1]n, and then
apply the triangle inequality and (4).

Finally, we consider a semidefinite relaxation, which we shall refer to as the Grothendieck norm:

‖A‖G := sup
x1,...,xm,y1,...,yn∈B(H)

∣∣∣∣∣∣
∑

s∈[m],t∈[n]

ast 〈xs, yt〉

∣∣∣∣∣∣ ,
where (H, 〈·, ·〉) is any Hilbert space1 and B(H) is the unit ball in H, containing all points in H of
norm at most 1. In fact, since we are working with m+ n vectors, one can assume that H = Rm+n

in the definition above.
A key fact about the Grothendieck norm is that it is equivalent to the ∞ → 1 norm. Though

this result was proved by Grothendieck [8], it was first stated in this form by Lindenstrauss and
Pe lczyński [14]. We refer the interested reader to the surveys [11, 17] for further information.

Theorem 2.1 (Grothendieck’s inequality). There exists a constant KG such that for all real-valued
matrices A,

‖A‖∞→1 ≤ ‖A‖G ≤ KG‖A‖∞→1.

We use the symbol KG (the real Grothendieck constant) to denote the optimal constant in the above
inequality.

The best current upper bound on the real Grothendieck constant is KG <
π

2 log(1+
√
2)

= 1.78 . . . ,

due to Braverman, Makarychev, Makarychev, and Naor [4] (see Haagerup [9] for the best constant
in the complex case). Combining (5) with Grothendieck’s inequality (and using 4KG ≤ 8), we have

‖A‖cut ≤ ‖A‖G ≤ 8‖A‖cut, (6)

that is, the cut norm and the Grothendieck norm are equivalent.

The spectral norm provides an upper bound on the Grothendieck norm: for any A ∈ Rm×n,

‖A‖G ≤
√
mn‖A‖. (7)

The proof is by a straightforward application of the Cauchy–Schwarz inequality.2

1In general, one should take a complex Hilbert space, but since we only consider real-valued matrices A, it is
equivalent to use real Hilbert spaces.

2We may assume that H = Rk for some k ≤ m + n and we have x1, . . . , xm, y1, . . . , yn ∈ B(H) such that

‖A‖G =
∣∣∑

s∈[m],t∈[n] ast 〈xs, yt〉
∣∣ ≤ ∑k

j=1

∣∣∑
s∈[m],t∈[n] astxsjytj

∣∣ ≤ ∑k
j=1 ‖A‖

√∑
s∈[m] |xsj |2

√∑
t∈[n] |ytj |2 ≤

‖A‖
√∑

s∈[m] |xs|2
√∑

t∈[n] |yt|2 ≤
√
mn‖A‖ by the triangle inequality, the definition of the spectral norm, and

the Cauchy–Schwarz inequality.
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In general, the spectral norm and the Grothendieck norm are inequivalent, i.e.,
√
mn‖A‖/‖A‖G

can be arbitrarily large, as shown by Example 1.2. Our main theorem below shows, somewhat
surprisingly, that the two norms agree for matrices associated to vertex-transitive graphs.

From now on we consider only square matrices. Let A = (as,t)1≤s,t≤n. We say that a permutation
σ of [n] is an automorphism if Aσ(s),σ(t) = As,t for all s, t ∈ [n]. We call a subgroup G of the
permutations of [n] transitive if for every s, t ∈ [n] there is some σ ∈ G such that σ(s) = t. We say
that A is vertex-transitive if its group of automorphisms is transitive on [n].

Theorem 2.2. ‖A‖G = n‖A‖ for all n× n vertex-transitive real-valued matrices A.

Using (6), we obtain the following corollary relating the cut norm and the spectral norm, from
which Corollary 1.5 clearly follows.

Corollary 2.3. ‖A‖cut ≤ n‖A‖ ≤ 8‖A‖cut for all n× n vertex-transitive real-valued matrices A.

As discussed in the introduction, the proof will proceed through an analysis of Cayley graphs,
which form the subject of the next section.

3. Cayley graphs

We consider a weighted version of Cayley graphs. Let f : G → R. Define a weighted directed
graph Γ = Cay(G, f) with vertex set G and edge weights Γ: G×G→ R given by Γ(g, h) := f(gh−1)
for all g, h ∈ G. Let A(f) denote the associated matrix, whose rows and columns are indexed by
G, with ag,h = Γ(g, h) = f(gh−1) for all g, h ∈ G. The natural analogue of the assumption that
S is symmetric (giving undirected Cayley graphs) would be f(g) = f(g−1), implying that A(f) is
symmetric, though we will not need to make such an assumption here.

We define various norms for functions f : G → R corresponding to the matrix norms defined in
Section 2. We use the averaging measure on G. Define the p-norms for functions on G by

‖f‖p = (Eg∈G|f(g)|p)1/p

and ‖f‖∞ = supg∈G |f(g)|. Define the convolution f1 ∗ f2 of two functions f1, f2 : G→ R by

(f1 ∗ f2)(g) = Eh∈Gf1(gh−1)f2(h).

The spectral norm is defined as follows, agreeing with the matrix version (up to normalization):

‖f‖ = sup
x : G→R
‖x‖2≤1

‖f ∗ x‖2 = sup
x,y : G→R
‖x‖2,‖y‖2≤1

∣∣Eg,h∈Gf(gh−1)x(g)y(h)
∣∣ = |G|−1‖A(f)‖. (8)

The Grothendieck norm is defined by

‖f‖G := sup
x,y : G→B(H)

∣∣Eg,h∈Gf(gh−1) 〈x(g), y(h)〉
∣∣ = |G|−2‖A(f)‖G.

Our main result now is that the spectral norm agrees with the Grothendieck norm for functions on
a group.

Theorem 3.1. ‖f‖ = ‖f‖G for every function f : G→ R on a finite group G.

We thank Assaf Naor and Prasad Raghavendra for independently suggesting the following short
proof of Theorem 3.1 after Y. Z. presented an initial version of this work at the Simons Symposium
on Analysis of Boolean Functions in April 2016. We include their proof here with permission. Our
original proof using representation theory can be found in the appendix.

Proof. Let f : G→ R. Let x, y : G→ R with ‖x‖2 ≤ 1 and ‖y‖2 ≤ 1 be such that

‖f‖ = |Eg,h∈Gf(gh−1)x(g)y(h)|.
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Define xg(h) = x(gh) and yg(h) = y(gh) for all g, h ∈ G. We view xg and yh as vectors in the unit
ball in L2(G) equipped with inner product 〈x, y〉 = Eg∈Gx(g)y(g) for all x, y ∈ L2(G). We have

‖f‖G ≥ |Eg,h∈Gf(gh−1) 〈xg, yh〉 | = |Eg,h,a∈Gf(gh−1)x(ga)y(ha)|
= |Eg,h,a∈Gf((ga)(ha)−1)x(ga)y(ha)| = |Eg,h∈Gf(gh−1)x(g)y(h)| = ‖f‖.

Combining with ‖f‖G ≤ ‖f‖ from (7), we obtain ‖f‖G = ‖f‖. �

4. Transitive graphs

Now we show that Theorem 3.1 on functions f : G→ R implies Theorem 2.2 on vertex-transitive
matrices. The idea is that we can lift the edges of a transitive graph to a Cayley graph over its
automorphism group and this operation preserves all the norms that we are interested in.

Recall that A = (as,t)s,t∈[n] is an n × n vertex-transitive matrix if the group of automorphisms
of A is transitive on [n]. Let G be any transitive subgroup of automorphisms (it could be the
whole automorphism group or any transitive subgroup). Here every element g ∈ G ≤ Sn is some
permutation of [n], i.e., g : [n] → [n], and the product of two elements g, h ∈ Sn is defined by
(gh)(s) = h(g(s)) for all s ∈ [n]. We have ag(s),g(t) = as,t for all s, t ∈ [n] and g ∈ G.

Lemma 4.1. Let A = (as,t)s,t∈[n] be an n× n vertex-transitive real-valued matrix and let G be any
transitive subgroup of automorphisms of A. Define f : G→ R by f(g) = ag(1),1. Then

n‖f‖ = ‖A‖ and n2‖f‖G = ‖A‖G.

Proof. The proofs of these two identities are essentially the same. Let H denote either an arbi-
trary Hilbert space (for the Grothendieck norm) or simply R (for the spectral norm). For any
x1, . . . , xn, y1, . . . , yn ∈ H, define x, y : G→ H by x(g) = xg(1) and y(g) = yg(1) for all g ∈ G. Then

Eg,h∈G[f(gh−1)〈x(g), y(h)〉] = Eg,h∈G[a(gh−1)(1),1〈x(g), y(h)〉]

= Eg,h∈G[ag(1),h(1)〈xg(1), yh(1)〉] =
1

n2

∑
s,t∈[n]

as,t〈xs, yt〉. (9)

Furthermore, we have n−1
∑

s∈[n] |xs|2 = Eg∈G|x(g)|2, and similarly with y. This shows n‖f‖ ≥ ‖A‖
and n2‖f‖G ≥ ‖A‖G.

Conversely, given x, y : G → H, we can set x1, . . . , xn, y1, . . . , yn ∈ H to be xs = Eg∈G:g(1)=sx(g)

and ys = Eg∈G:g(1)=sy(g) for all s ∈ [n]. Then (9) still holds. We also have n−1
∑

s∈[n] |xs|2 ≤
Eg∈G|x(g)|2 by convexity, and similarly with y. This shows that n‖f‖ ≤ ‖A‖ and n2‖f‖G ≤
‖A‖G. �

5. Bipartite analogues

There are also variants of our results in the bipartite setting. Given a group G of order n and a
function f : G → R, the bipartite Cayley graph Γ = Bip(G, f) is the bipartite graph between two
copies of G with edge weights f : G × G → R given by Γ(g, h) = f(gh−1). We write B(f) for the
associated matrix, whose rows and columns are both indexed by G, with bg,h = Γ(g, h) = f(gh−1).
Since we did not require that f be symmetric in Theorem 3.1, we can apply it directly to prove
that ‖B(f)‖G = n‖B(f)‖ for any f : G → R. An analogue of Theorem 1.4 then follows provided
we replace the second largest eigenvalue with the largest singular value of B(Γ) − d

nJ , where J is
the all-1’s matrix.

We also have an analogue of Theorem 1.5. We say that a bipartite graph Γ between sets U and
V of orders m and n, respectively, is bitransitive if the group of automorphisms of Γ is transitive
on each part. For example, the graph between any two consecutive layers of the Boolean cube
satisfies this condition. A slight amendment to the proof of Lemma 4.1 then allows us to show that
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if B is an m × n bitransitive real-valued matrix, then ‖B‖G =
√
mn‖B‖. The claimed analogue

of Theorem 1.5 then follows easily, with the second largest eigenvalue now replaced by the largest
singular value of B(Γ)− pJ , where p is the density of Γ.
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[8] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo

8 (1953), 1–79.
[9] U. Haagerup, A new upper bound for the complex Grothendieck constant, Israel J. Math. 60 (1987), 199–224.

[10] S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc. 43
(2006), 439–561.

[11] S. Khot and A. Naor, Grothendieck-type inequalities in combinatorial optimization, Comm. Pure Appl. Math.
65 (2012), 992–1035.
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[14] J. Lindenstrauss and A. Pe lczyński, Absolutely summing operators in Lp-spaces and their applications, Studia
Math. 29 (1968), 275–326.

[15] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988), 261–277.
[16] G. A. Margulis, Explicit group-theoretic constructions of combinatorial schemes and their applications in the

construction of expanders and concentrators (in Russian), Problemy Peredachi Informatsii 24 (1988), 51–60;
translation in Problems Inform. Transmission 24 (1988), 39–46.

[17] G. Pisier, Grothendieck’s theorem, past and present, Bull. Amer. Math. Soc. 49 (2012), 237–323.
[18] J.-P. Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag,

New York-Heidelberg, 1977.
[19] A. G. Thomason, Pseudorandom graphs, in Random graphs ’85 (Poznań, 1985), North-Holland Math. Stud.,
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Appendix A. Representation-theoretic proof

We include in this appendix our original proof of Theorem 3.1, that ‖f‖ = ‖f‖G for f : G→ R,
using representation theory. The proof follows the spirit of Gowers’ work on quasirandom groups [7]
and is a natural generalization of the proof for the abelian case [12].
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A.1. Abelian groups. As a warm up, we give a short proof in the abelian setting, which is
significantly easier. This proof is instructive, though not strictly required for the general setting.

Here and throughout the appendix, we will work with functions f : G → C and with complex
analogues of our various norms. For the most part, the definitions of these norms are the same as in
the real case or the same after some minor modification. For example, letting D := {z ∈ C : |z| ≤ 1}
denote the unit disk in the complex plane, the complex ∞ → 1 norm for functions f : G → C is
defined by

‖f‖C∞→1 := sup
x,y : G→D

∣∣∣Eg,h∈Gf(gh−1)x(g)y(h)
∣∣∣ .

The essence of the proof below can be found in Kohayakawa–Rödl–Schacht [12] (where the proof
is attributed to Gowers). Here we give a more streamlined presentation.

Theorem A.1. ‖f‖ = ‖f‖C∞→1 for every function f : G→ C on a finite abelian group G.

Proof. It is easy to see that ‖f‖C∞→1 ≤ ‖f‖ from the definitions, as ‖x‖2 ≤ 1 for all x : G → D.

It is well known that ‖f‖ = |Eg∈Gf(g)χ(g)| for some multiplicative character χ : G → C. On the
other hand, since ‖χ‖∞ = 1, we have

‖f‖C∞→1 ≥ |Eg,h∈Gf(gh−1)χ(g)χ(h)| = |Eg∈Gf(g)χ(g)| = ‖f‖.

Therefore, ‖f‖ = ‖f‖C∞→1. �

Similarly to (5), it can be shown that the cut norm is equivalent to the complex ∞ → 1 norm
for complex-valued matrices. Together with Theorem A.1, this implies that the cut norm and the
spectral norm are equivalent for abelian Cayley graphs.

Remark. For non-abelian groups G, it is possible to have ‖f‖ > ‖f‖C∞→1. If an undirected weighted
Cayley graph on G admits a coordinate-wise uniformly bounded eigenbasis, then one has ‖f‖ =
O(‖f‖C∞→1) by the above argument.3 However, as will be addressed in future work, not all Cayley
graphs admit such eigenbases. Consequently, the above proof does not extend immediately to
the non-abelian case. The proof given below instead generalizes the above proof by replacing the
multiplicative characters with group representations.

In the next three subsections, we recall some standard mathematical tools used in our proof.
The reader familiar with these tools should feel free to skip ahead to Section A.5.

A.2. Group representation theory. We recall some basic facts from group representation the-
ory. They can be found in any standard textbook on the subject, e.g., [18].

Let G be a finite group, not necessarily abelian. We write Ĝ for the set of distinct irreducible

representations of G. An irreducible representation ρ ∈ Ĝ of dimension dρ is a homomorphism
ρ : G → U(dρ), where U(n) is the group of unitary n× n matrices (so that ρ(g−1) = ρ(g)∗). Note
that by a standard averaging trick, we need to only consider unitary representations.

We will need the following orthogonality result known as Schur’s lemma.

Theorem A.2 (Schur’s lemma). Let G be a finite group and let ρ, σ ∈ Ĝ. Let M be any dρ × dσ
matrix with complex entries. Then

Eg∈G[ρ(g)Mσ(g−1)] =

{
TrM
dρ

I if ρ = σ,

0 otherwise.

3We thank Assaf Naor for this remark.
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A.3. Non-abelian Fourier analysis. Let us first recall the Fourier transform for abelian groups.

Let G be a finite abelian group and Ĝ the group of multiplicative characters χ : G → C. For any

function f : G → C, we can define its Fourier transform f̂ : Ĝ → C by f̂(χ) = Eg∈Gf(g)χ(g). We

then have the inversion formula f(g) =
∑

χ∈Ĝ f̂(χ)χ(g).

From now on, let G be any finite group, not necessarily abelian, and Ĝ the set of distinct
irreducible unitary representations ρ : G → U(dρ) of G. For any f : G → C and any irreducible

representation ρ ∈ Ĝ, define the Fourier transform of f at ρ by

f̂(ρ) = Eg∈Gf(g)ρ(g).

Note that f̂(ρ) is a dρ × dρ matrix, so its dimension varies with ρ.
For any two complex-valued matrices A = (ast)s∈[m],t∈[n] and B = (bst)s∈[m],t∈[n] with the same

dimensions, define the Hilbert–Schmidt inner product

〈A,B〉HS = Tr(AB∗) =
∑

s∈[m],t∈[n]

astbst

and the Hilbert–Schmidt norm

‖A‖HS =
√
〈A,A〉HS =

√ ∑
s∈[m],t∈[n]

|ast|2.

We have a Fourier inversion formula:

f(g) =
∑
ρ∈Ĝ

dρ〈f̂(ρ), ρ(g)〉HS =
∑
ρ∈Ĝ

dρ Tr(f̂(ρ)ρ(g)∗). (10)

A proof of this formula can be found in [21, Section 2.10]. We also have Plancherel’s identity: for
all f1, f2 : G→ C,

Eg∈Gf1(g)f2(g) =
∑
ρ∈Ĝ

dρ〈f̂1(ρ), f̂2(ρ)〉HS.

In particular, setting f1 = f2 = f , we have that for all f : G→ C,

‖f‖22 = Eg∈G
[
|f(g)|2

]
=
∑
ρ∈Ĝ

dρ‖f̂(ρ)‖2HS. (11)

The Fourier transform converts convolution into multiplication. For all f1, f2 : G→ C, writing

f1 ∗ f2(g) := Eh∈Gf1(gh−1)f2(h)

for convolution, we have, for all ρ ∈ Ĝ,

f̂1 ∗ f2(ρ) = Eg,h∈Gf1(g)f2(h)ρ(gh) = (Eg∈Gf1(g)ρ(g)) (Eh∈Gf2(h)ρ(h)) = f̂1(ρ)f̂2(ρ). (12)

Or, more succinctly, f̂1 ∗ f2 = f̂1f̂2.
Conceptually, the Fourier transform is a simultaneous block diagonalization of all f : G → C

(viewed as linear maps on the space of functions x : G → C via the convolution x 7→ f ∗ x).

For each ρ ∈ Ĝ, the dρ × dρ matrix f̂(ρ) appears exactly dρ times in the block diagonalization
(the multiplicity dρ is the multiplicity of ρ in the regular representation of G). As a result, the
spectral norm of f must be the maximum of the spectral norms of the components of the block
diagonalization:

‖f‖ = max
ρ∈Ĝ
‖f̂(ρ)‖, (13)
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where on the left-hand side ‖f‖ is the spectral norm (8) of a function f : G→ C and on the right-

hand side ‖f̂(ρ)‖ is the spectral norm (3) of a matrix. Let us also give a direct proof of (13) for
the convenience of the reader. Using (12) and Plancherel’s identity (11), we have

‖f‖2 = sup
x : G→C
‖x‖2≤1

‖f ∗ x‖22 = sup
x : G→C
‖x‖2≤1

∑
ρ∈Ĝ

dρ‖f̂(ρ)x̂(ρ)‖2HS. (14)

If A and B are d× d matrices and b1, . . . , bd are the columns of B, then ‖AB‖2HS = |Ab1|2 + · · ·+
|Abd|2 ≤ ‖A‖2(|b1|2 + · · · |bd|2) = ‖A‖2‖B‖2HS. Therefore, for any x : G→ C, we have∑

ρ∈Ĝ

dρ‖f̂(ρ)x̂(ρ)‖2HS ≤
∑
ρ∈Ĝ

dρ‖f̂(ρ)‖2‖x̂(ρ)‖2HS

≤
(
max
ρ∈Ĝ
‖f̂(ρ)‖

)2∑
ρ∈Ĝ

dρ‖x̂(ρ)‖2HS =
(
max
ρ∈Ĝ
‖f̂(ρ)‖

)2‖x‖22,
where the final step uses Plancherel (11) again. Combining with (14), this shows that ‖f‖ ≤
max

ρ∈Ĝ ‖f̂(ρ)‖. Conversely, for a fixed ρ, by setting the columns of x̂(ρ) to be the top right

singular vector of f̂(ρ) so that ‖f̂(ρ)x̂(ρ)‖HS = ‖f̂(ρ)‖‖x̂(ρ)‖HS, and setting x̂(σ) = 0 for all σ 6= ρ,

we obtain ‖f‖ ≥ ‖f̂(ρ)‖ for each ρ ∈ Ĝ. This proves (13).

A.4. Singular value decompositions. Every m× n complex matrix M of rank r has a singular
value decomposition (SVD):

M = λ1u1v
∗
1 + · · ·+ λrurv

∗
r ,

where λ1 ≥ · · · ≥ λr > 0 (known as the singular values), u1, . . . , ur are mutually orthogonal unit
vectors in Cm, and v1, . . . , vr are mutually orthogonal unit vectors in Cn.

Let f : G→ C. For each ρ ∈ Ĝ, take any singular value decomposition of f̂(ρ):

f̂(ρ) = λρ1u
ρ
1v
ρ∗
1 + · · ·+ λρdρu

ρ
dρ
vρ∗dρ ,

where λρ1 ≥ · · · ≥ λ
ρ
dρ
≥ 0 (we allow some of the λρj ’s to be zero), and {uρ1, . . . , u

ρ
dρ
} and {vρ1 , . . . , v

ρ
dρ
}

are both orthonormal bases of Cdρ . For any λ ≥ 0, u, v ∈ Cdρ , we have Tr(λuv∗ρ(g)∗) = λv∗ρ(g)∗u.
Therefore, by the Fourier inversion formula (10), we have the following SVD for any f : G→ C:

f(g) =
∑
ρ∈Ĝ

dρ

dρ∑
k=1

λρkv
ρ∗
k ρ(g)∗uρk. (15)

A.5. Proof of Theorem 3.1. Now we give the representation-theoretic proof that ‖f‖ = ‖f‖G
for any f : G→ C.

Consider the SVD (15) of f . From (13), we see that ‖f‖ is the maximum of the top singular

value λρ1 ranging over all ρ ∈ Ĝ. Let σ ∈ Ĝ be such that ‖f‖ = λσ1 .
We already know from (7) that ‖f‖G ≤ ‖f‖. To show ‖f‖G ≥ ‖f‖, it suffices to exhibit x, y : G→

B(H) so that Eg,hf(gh−1) 〈x(g), y(h)〉 = ‖f‖ (here 〈x, y〉 := x1y1 + · · · + xnyn for x, y ∈ Cn). Set

H = Cdσ and, for all g, h ∈ G,

x(g) = σ(g−1)vσ1 and y(h) = σ(h−1)uσ1 ,
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where uσ1 and vσ1 are singular vectors from the SVD (15). Let ρ ∈ Ĝ and 1 ≤ k ≤ dρ. Writing
u = uρk and v = vρk to reduce clutter in notation, we have

Eg,hdρv∗ρ(gh−1)u 〈x(g), y(h)〉 = Eg,hdρv∗ρ(gh−1)u〈y(h), x(g)〉
= Eg,hdρv∗ρ(gh−1)u

〈
σ(h−1)uσ1 , σ(g−1)vσ1

〉
= Eg,hdρv∗ρ(gh−1)uuσ∗1 σ(hg−1)vσ1

= Egdρv∗ρ(g)uuσ∗1 σ(g−1)vσ1 .

By Schur’s lemma (Theorem A.2), if ρ 6= σ, then this is zero. If ρ = σ, then it equals

v∗Tr(uuσ∗1 )vσ1 = 〈uσ1 , u〉 〈v, vσ1 〉 ,
which is 1 if k = 1, i.e., u = uσ1 and v = vσ1 , and zero otherwise due to the orthogonality of the
singular vectors. It follows, by the SVD (15) and the above calculation, that

Eg,hf(gh−1) 〈x(g), y(h)〉 = λσ1 = ‖f‖.
This shows that ‖f‖G ≥ ‖f‖, completing the proof. �

Remark. The above proof shows that in defining ‖f‖G for f : G → C, one only needs to take H
(in the definition of the Grothendieck norm) to have dimension at most max

ρ∈Ĝ dρ, the maxi-

mum dimension of an irreducible representation of G. In other words, if we define intermediate
Grothendieck-type norms

‖f‖G,k := sup
x,y : G→B(Ck)

∣∣Eg,h∈Gf(gh−1) 〈x(g), y(h)〉
∣∣

for every positive integer k, so that

‖f‖∞→1 = ‖f‖G,1 ≤ ‖f‖G,2 ≤ · · · ≤ ‖f‖G,m+n = ‖f‖G,
then ‖f‖G = ‖f‖G,k whenever all irreducible representations of G have dimension at most k. In
particular, if G is abelian, then all irreducible representations have dimension 1, so ‖f‖ = ‖f‖G,1 =

‖f‖C∞→1, as shown earlier in Theorem A.1.
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