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Abstract

A system of linear equations L is said to be norming if a natural functional tL(·) giving a
weighted count for the set of solutions to the system can be used to define a norm on the space
of real-valued functions on Fn

q for every n > 0. For example, Gowers uniformity norms arise in
this way. In this paper, we initiate the systematic study of norming linear systems by proving a
range of necessary and sufficient conditions for a system to be norming. Some highlights include
an isomorphism theorem for the functional tL(·), a proof that any norming system must be
variable-transitive and the classification of all norming systems of rank at most two.

1 Introduction

One of the key tools in modern additive combinatorics, introduced by Gowers [11] in his seminal
work on Szemerédi’s theorem, are the Gowers uniformity norms ‖ ·‖Uk

. For example, for an abelian
group G and a function f : G→ R, the U2-norm of f is given by

‖f‖4U2
= E [f(x1)f(x2)f(x3)f(x4)] ,

where the expectation is taken over all solutions to the linear equation x1 − x2 + x3 − x4 = 0.
That this functional and its generalisations are indeed norms follows from first proving a certain
Hölder-type inequality using iterated applications of the Cauchy–Schwarz inequality and this in
turn implies the required triangle inequality.

Our concern in this paper will be with the question of deciding which other systems of linear
equations give rise to norms. Although many of our results do extend to other abelian groups, we
will work throughout with groups G of the form Fnq where q is a prime power and n is a parameter
that we often regard as tending to infinity. In this context, an m×k linear system on G is a matrix
L ∈ Fm×kq with linearly independent rows, though we use the term also for the corresponding system
of linear equations. In line with this correspondence, by an equation in L, we mean a vector in the
row space of L, with, for instance, the ith row (Li1, . . . , Lik) of L corresponding to the equation
Li1x1 + · · ·+ Likxk = 0.

Given a linear system L, we write Sol(L) = {x ∈ Gk : Lx = 0} for the solution set of L in
Gk, i.e., those (x1, . . . , xk) ∈ Gk which satisfy Li1x1 + · · · + Likxk = 0 for all i ∈ [m]. Then, for
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real-valued functions f1, . . . , fk on G, we set

tL(f1, . . . , fk) := E(x1,...,xk)∈Sol(L)f1(x1) · · · fk(xk),

where, here and throughout, E(x1,...,xk)∈Sol(L) is a shorthand for 1
|Sol(L)|

∑
(x1,...,xk)∈Sol(L).

If we now set tL(f) := tL(f, . . . , f) and ‖f‖L := |tL(f)|1/k, we can say that L is (semi-)norming
if ‖ · ‖L defines a (semi-)norm on the space of real-valued functions on Fnq for all n. As it is easy
to see that ‖cf‖L = |c|‖f‖L, a linear system L is semi-norming if and only if ‖ · ‖L satisfies the
triangle inequality. We also say that L is weakly (semi-)norming if ‖f‖r(L) := tL(|f |)1/k defines
a (semi-)norm. It will turn out that only certain degenerate systems are (weakly) semi-norming
rather than norming, so we will largely ignore the distinction. As such, our main question can be
stated in the following more concrete terms.

Question 1.1. Which linear systems L are norming or weakly norming?

There is now a considerable body of work studying the analogue of Question 1.1 for graphs. In
this setting, the question of classification was first raised by Lovász [17] and then studied in some
depth by Hatami [12], who proved some necessary conditions, namely, that any weakly norming
graph must be bipartite, balanced and biregular. He also showed that several families of graphs,
including hypercubes, are weakly norming, a result which was greatly extended by Conlon and
Lee [5], who showed that every finite reflection group gives rise to a family of weakly norming
graphs. They also conjectured a converse saying that all weakly norming graphs should arise from
finite reflection groups in this way, though this remains wide open, with the best result towards it
being a result of Sidorenko [19] saying that weakly norming graphs must be edge-transitive.

Here we will prove a collection of necessary and sufficient conditions for a linear system to
be norming or weakly norming, many of which run parallel to those in the graph setting, but
often requiring significantly different techniques to prove. For instance, we prove an analogue
of Sidorenko’s edge-transitivity result saying that any weakly norming linear system is variable-
transitive, in the sense that deleting any given variable yields an isomorphic subsystem. The proof
of this requires an isomorphism theorem for the functional tL(·), saying that if tL(f) = tM (f) for
all non-negative real-valued functions f , then the systems L and M are isomorphic. For graphs,
the analogous statement, due to Lovász [16], is reasonably straightforward, while the arithmetic
version requires significantly more work. On the other hand, the additional power given to us by
the ability to apply Fourier methods means that classification, at least for low rank systems, comes
within reach. In particular, we are able to classify all weakly norming systems of rank at most two.

Since we prove many results across several sections, we spell out the main contributions of each
section below:

• In Section 2, we set out some preliminaries, first showing how the condition that L be (weakly)
semi-norming can be rephrased in terms of satisfying a Hölder-type inequality. We then
introduce some basic discrete Fourier analysis and rephrase this Hölder-type inequality in
Fourier terms. We also define and note some basic properties of subsystems of linear systems.

• In Section 3, we establish some basic necessary conditions for a linear system to be weakly
norming. For instance, we show that any weakly norming system must be translation invari-
ant, so, in particular, each equation must have all coefficients summing to zero. We also show
that any weakly norming system satisfies the arithmetic analogue of Sidorenko’s conjecture,
an important conjecture in graph theory (see, for example, [2, 4, 6, 21] on the graph case
and [1, 9, 14] on the arithmetic case). It is also here that we say more about the distinction
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between (weakly) norming and semi-norming systems and why we can, for the most part,
ignore the distinction.

• In Section 4, we prove the aforementioned arithmetic analogue of the isomorphism theorem
from graph theory and use it to prove that any weakly norming system must be variable-
transitive. The main idea of the proof of the isomorphism theorem is to show that the
condition that tL(f) = tM (f) for all non-negative real-valued functions f lifts to a similar
conclusion where f ranges over all complex-valued functions and then an appropriate choice of
f allows us to derive the required conclusion. Once this is in place, we may follow Sidorenko’s
technique to establish variable-transitivity.

• In Section 5, we classify all weakly norming linear systems of rank at most two. For single
equations, any such equation must be Schatten, meaning that it is an equation of the form
a1x1 + · · · + akxk = 0 with all ai ∈ {a,−a} and |{i ∈ [k] : ai = a}| = |{i ∈ [k] : ai = −a}|.
For rank two systems, we need an additional operation, called subdivision, which takes a
(weakly) norming system of linear equations and produces another (weakly) norming system
with twice as many variables. The main result of this section then says that any rank two
weakly norming linear system arises through subdividing some basic examples.

• In Section 6, we show that weakly norming linear systems are forcing. The Sidorenko property,
established for weakly norming linear systems in Section 3, says that, of all functions f with
a given density, the constant function is the one which minimises tL(f). The stronger forcing
property, whose analogue for graphs is again well-studied, says that the constant function is
also the unique function which minimises tL(f).

• In Section 7, we show how each (weakly) norming hypergraph gives rise to a (weakly) norming
linear system. This is a key source of examples for us, though the examples are given through
a natural parametrisation of the solution set of a set of linear equations rather than in terms
of the linear equations themselves. For systems arising from graphs, we show that a simple
technique can be used to find the system of equations itself, though we also explain why this
technique does not straightforwardly extend to systems arising from hypergraphs.

• In Section 8, we prove the arithmetic analogue of an important result of Lee and Sidorenko
[15] saying that any norming graph is also norming for complex-valued functions. In order
for this to work, one must take the conjugate of some of the terms in the expression for tL(f)
and the key difficulty in the proof, which closely follows that in [15], is in showing that there
is some such assignment which works.

• Finally, in Section 9, we conclude with some brief further remarks on open problems.

2 Preliminaries

In this section, we collect some results which will be needed throughout the paper. We first discuss
some reformulations of the norming property, beginning with the proposition below, an arithmetic
analogue of a result of Hatami [12] on graph norms, which was itself inspired by Gowers’ proof [11]
that the uniformity norms are indeed norming. It says that the triangle inequality condition needed
for a system to be norming is equivalent to a certain Hölder-type condition.
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For the proof, we will need some notation. Given functions f, g : Fnq → C, their tensor product
f ⊗ g is the function on Fnq × Fnq defined by

f ⊗ g(y, z) = f(y)g(z).

Using the natural isomorphism between (Fnq )2 and F2n
q , f ⊗ g can be seen as a function on F2n

q .
Moreover, for fi, gi : Fnq → C,

tL(f1 ⊗ g1, f2 ⊗ g2, . . . , fk ⊗ gk) = tL(f1, . . . , fk)tL(g1, . . . , gk).

To see this, let (x1, . . . , xk) ∈ (F2n
q )k and write each xi = (yi, zi) with yi, zi ∈ Fnq , so that f ⊗

g(xi) = f(yi)g(zi). Then, since (x1, . . . , xk) satisfies L(x1, . . . , xk) = 0 if and only if L(y1, . . . , yk) =
L(z1, . . . , zk) = 0, we have

tL(f1 ⊗ g1, f2 ⊗ g2, . . . , fk ⊗ gk) = E(x1,...,xk)∈Sol(L)f1 ⊗ g1(x1) · · · fk ⊗ gk(xk)
= E(y1,...,yk)∈Sol(L)E(z1,...,zk)∈Sol(L)f1(y1)g1(z1) · · · fk(yk)gk(zk)
= tL(f1, . . . , fk)tL(g1, . . . , gk).

For a positive integer m, the m-th tensor power f⊗m : (Fnq )m → C is the function given by

f⊗m = f ⊗ f ⊗ · · · ⊗ f︸ ︷︷ ︸
m times

.

In particular, by iterating the multiplicativity of tensor products, we obtain

tL(f⊗m1 , . . . , f⊗mk ) = tL(f1, f2, . . . , fk)
m.

Proposition 2.1. A linear system L in k variables is semi-norming if and only if the inequality

|tL(f1, . . . , fk)| ≤
k∏
i=1

‖fi‖L (1)

holds for all n ∈ N and all f1, . . . , fk : Fnq → R.

Proof. Suppose the functional ‖ · ‖L is a seminorm on the space of real-valued functions on Fnq
for all n ∈ N and the inequality (1) does not hold for some functions f1, . . . , fk on G = Fnq , i.e.,

|tL(f1, f2, . . . , fk)| >
∏k
i=1 ‖fi‖L. By renormalising, we may assume that |tL(f1, f2, . . . , fk)| = c > 1

and ‖fi‖L ≤ 1 for each i = 1, . . . , k. Then, for any even integer m,

‖f⊗m1 + · · ·+ f⊗mk ‖kL = |tL(f⊗m1 + · · ·+ f⊗mk )| =

∣∣∣∣∣∣
∑

1≤i1,...,ik≤k
tL(f⊗mi1 , . . . , f⊗mik )

∣∣∣∣∣∣
=

∑
1≤i1,...,ik≤k

tL(fi1 , . . . , fik)m ≥ tL(f1, . . . , fk)
m = cm.

On the other hand, ‖f⊗m1 ‖L + · · ·+ ‖f⊗mk ‖L = ‖f1‖mL + · · ·+ ‖fk‖mL ≤ k. Hence, if m is sufficiently
large, we have

‖f⊗m1 ‖L + · · ·+ ‖f⊗mk ‖L ≤ k < cm/k ≤ ‖f⊗m1 + · · ·+ f⊗mk ‖L,

which contradicts the triangle inequality for ‖ · ‖L on Fnmq .
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Conversely, suppose that the inequality (1) holds. Then, for each f1 and f2,

‖f1 + f2‖kL = |tL(f1 + f2)| ≤
∑

1≤i1,...,ik≤2

|tL(fi1 , . . . , fik)|

≤
∑

1≤i1,...,ik≤2

‖fi1‖L · · · ‖fik‖L = (‖f1‖L + ‖f2‖L)k.

Thus, ‖ · ‖L satisfies the triangle inequality.

A similar argument also works in the weakly norming case, yielding the following result, whose
proof we omit.

Proposition 2.2. A linear system L is weakly semi-norming if and only if the inequality

tL(f1, . . . , fk) ≤
k∏
i=1

‖fi‖L =
k∏
i=1

‖fi‖r(L)

holds for all n ∈ N and all non-negative f1, . . . , fk : Fnq → R≥0.

We will make considerable use of discrete Fourier analysis on the finite abelian groups Fnq . We

give a brief refresher. Setting G = Fnq , we write Ĝ for the dual group of G, i.e., the group of
homomorphisms from G to the multiplicative group C of complex numbers, which is easily seen to
be isomorphic to G itself.

Denoting the inner product of ξ, x ∈ G by ξTx, the Fourier transform f̂ : Ĝ→ C of a function
f : G→ C is defined by

f̂(ξ) := Ex∈Gf(x)e(−ξTx),

where e(y) := e2πiy/q, and we have the Fourier inversion formula

f(x) =
∑
ξ∈Ĝ

f̂(ξ)e(ξTx).

Using these formulas, it is easily checked that f is real-valued if and only if f̂(ξ) and f̂(−ξ) are
complex conjugates for every ξ ∈ Ĝ.

We write f1 ∗ · · · ∗ fk for the convolution f1 ∗ · · · ∗ fk(x) := Ey1+···+yk=xf1(y1) · · · fk(yk). In
particular, if both f1 and f2 are always non-negative, then so is f1 ∗ f2. The importance of
convolution lies in the fact that the Fourier transform (f1 ∗ · · · ∗ fk)∧ of f1 ∗ · · · ∗ fk satisfies
(f1 ∗ · · · ∗ fk)∧ = f̂1 · · · f̂k.

Let L be a 1× k linear system such that no entry of L is zero. For gj(y) := fj(L
−1
1j y), we have

tL(f1, . . . , fk) = ESol(L)f1(x1) · · · fk(xk) = g1 ∗ g2 ∗ · · · ∗ gk(0) =
∑
ξ∈Ĝ

k∏
j=1

ĝj(ξ) =
∑
ξ∈Ĝ

k∏
j=1

f̂j(L1jξ).

We will also make use of the analogous Fourier inversion formula for linear systems with more
than one equation.

Proposition 2.3. Let L ∈ Fm×kq be a linear system with coefficients (Lij)i∈[m],j∈[k]. Then

tL(f1, . . . , fk) =
∑

(ξ1,...,ξm)∈Ĝm

k∏
j=1

f̂j

(
m∑
i=1

Lijξi

)
(2)

for any f1, . . . , fk : Fnq → R.
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Proof. Expanding out the right-hand side of (2), we get∑
ξ∈Ĝm

k∏
j=1

f̂j

(
m∑
i=1

Lijξi

)
=
∑
ξ∈Ĝm

k∏
j=1

(
Exj∈Gfj(xj)e

(
−

m∑
i=1

Lijξ
T
i xj

))

= Ex∈Gk

∑
ξ∈Ĝm

e

− m∑
i=1

ξTi

k∑
j=1

Lijxj

 k∏
j=1

fj(xj)

=
1

|G|k
∑
x∈Gk

m∏
i=1

∑
ξi∈Ĝ

e

−ξTi k∑
j=1

Lijxj

 k∏
j=1

fj(xj). (3)

For fixed x ∈ Gk, we have

∑
ξi∈Ĝ

e

−ξTi k∑
j=1

Lijxj

 =

{
|G| if

∑k
j=1 Lijxj = 0,

0 otherwise.

Inserting this into (3), we obtain∑
ξ∈Ĝm

k∏
j=1

f̂j

(
m∑
i=1

Lijξi

)
=
|G|m

|G|k
∑

x∈Sol(L)

k∏
j=1

fj(xj) = tL(f1, . . . , fk),

as desired.

Thus, by Proposition 2.1, the linear system L is semi-norming if and only if∣∣∣∣∣∣
∑
~ξ∈Ĝm

f̂1

(
m∑
i=1

Li1ξi

)
· · · f̂k

(
m∑
i=1

Likξi

)∣∣∣∣∣∣
k

≤
k∏
j=1

∣∣∣∣∣∣
∑
~ξ∈Ĝm

f̂j

(
m∑
i=1

Li1ξi

)
· · · f̂j

(
m∑
i=1

Likξi

)∣∣∣∣∣∣
or, equivalently, writing Ltj for the jth column of L as a row vector,∣∣∣∣∣∣

∑
~ξ∈Ĝm

f̂1

(
Lt1
~ξ
)
· · · f̂k

(
Ltk
~ξ
)∣∣∣∣∣∣
k

≤
k∏
j=1

∣∣∣∣∣∣
∑
~ξ∈Ĝm

f̂j

(
Lt1
~ξ
)
· · · f̂j

(
Ltk
~ξ
)∣∣∣∣∣∣ (4)

for any f1, . . . , fk : Fnq → R.

Example 2.4. Let L be the 2× 6 system defined by the matrix(
1 −1 −1 1 0 0
0 0 1 −1 −1 1

)
.

In other words, Sol(L) consists of solutions to the system of linear equations x1 − x2 = x3 − x4 =
x5 − x6. Then, by (2),

tL(f1, . . . , f6) =
∑

(ξ1,ξ2)∈Ĝ2

f̂1(ξ1)f̂2(−ξ1)f̂3(−ξ1 + ξ2)f̂4(ξ1 − ξ2)f̂5(−ξ2)f̂6(ξ2).

In particular,

tL(f) =
∑

(ξ1,ξ2)∈Ĝ2

|f̂(ξ1)|2|f̂(ξ1 − ξ2)|2|f̂(ξ2)|2.

We will see that this system L is weakly norming in Example 5.7.
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We now define subsystems of linear systems, which bear some resemblance to subgraphs of
graphs. Let L be an m × k system, let i ∈ [k] and let a(1), . . . , a(r) be a basis for those vectors in
the row space of L for which the ith coordinate is zero. By deleting a variable xi, i ∈ [k], we mean
that we pass to the r× (k−1) system L′ with rows ã(1), . . . , ã(r) where ã(j) is equal to a(j) with the
ith coordinate removed. Note that by choosing a different basis a(1), . . . , a(r), we might obtain a
different system L′. However, the solution space Sol(L′) is always the projection of Sol(L) onto the
set of coordinates [k] \ {i}, independently of the choice of basis. By deleting an equation, we mean
removing the corresponding row vector from the basis for the row space of L, thereby reducing the
dimension of the row space. A subsystem L′ of an m × k linear system L is an m′ × k′ system
with k′ ≤ k and m′ ≤ m, obtained by deleting variables and equations from L. If a subsystem is
obtained by deleting all variables indexed by i /∈ I, then we say that it is induced on I ⊆ [k].

Example 2.5. Let L be the 4× 5 system defined by the matrix
1 −1 0 0 0
1 1 −2 0 0
0 0 −2 1 1
0 0 0 1 −1

 .

Then Sol(L) is 1-dimensional, spanned by (1, 1, 1, 1, 1). Deleting the variable x3 from L yields the
subsystem L′ induced on I = {1, 2, 4, 5} whose matrix can be written as1 −1 0 0

0 0 1 −1
1 1 −1 −1

 ,

where the last row is obtained by deleting the third entry from (1, 1, 0,−1,−1), a vector in the row
space of L. Thus, Sol(L) is again 1-dimensional, spanned by (1, 1, 1, 1).

If L′ is an induced subsystem of L, we may write tL′(f) as tL(f1, . . . , fk) for some appropriate
f1, . . . , fk. For graphs, this is obvious, but we have to be a little more careful in the arithmetic
setting, so we include a proof.

Proposition 2.6. Let L′ be an m′×k′ subsystem of an m×k linear system L, induced on I ⊆ [k].
Given f : G→ C, let fi = f for i ∈ I and fj = 1 for j /∈ I. Then tL′(f) = tL(f1, . . . , fk).

Proof. We claim that if L′ is induced on I = [k − 1], then, for any complex-valued functions
f1, . . . , fk−1 on G,

tL(f1, . . . , fk−1, 1) = tL′(f1, . . . , fk−1). (5)

The proof then follows from repeatedly applying this claim to reduce the index set while possibly
relabelling the variables.

Suppose first that there are no equations in Sol(L) that involve xk. Then xk is a ‘free’ variable,
so that tL(f1, . . . , g) = tL′(f1, . . . , fk−1)E[g] for every function g. For g ≡ 1, this yields (5). We
may therefore assume that there is at least one equation in Sol(L) that involves xk.

Let pk : Gk → Gk−1 be the projection map (x1, . . . , xk) 7→ (x1, . . . , xk−1). Then

tL(f1, . . . , fk−1, 1) =
1

|Sol(L)|
∑

(x1,...,xk)∈Sol(L)

f1(x1) · · · fk−1(xk−1)

=
1

|Sol(L)|
∑

(x1,...,xk−1)∈pk(Sol(L))

f1(x1) · · · fk−1(xk−1)|p−1
k (x1, . . . , xk−1)|, (6)
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where p−1
k (·) denotes the inverse image of pk.

Since at least one equation of L involves xk, pk is a bijection between Sol(L) and Sol(L′).
Indeed, under pk, each (x1, . . . , xk) projects to (x1, . . . , xk−1), which satisfies all equations in L′,
proving that pk(Sol(L)) ⊆ Sol(L′). Conversely, let (x1, . . . , xk−1) ∈ Sol(L′). It is enough to check
that this uniquely extends to (x1, . . . , xk) ∈ Sol(L). Given an equation a1x1 + · · ·+ akxk = 0 in L
with ak 6= 0, (x1, . . . , xk−1) uniquely determines

xk = −a1

ak
x1 − · · · −

ak−1

ak
xk−1.

Moreover, this choice of xk is consistent with the one obtained by using any other equation b1x1 +
· · ·+ bkxk = 0 with bk 6= 0 since L′ includes the equation

a1

ak
x1 + · · ·+ ak−1

ak
xk−1 =

b1
bk
x1 + · · ·+ bk−1

bk
xk−1.

Therefore, pk(Sol(L)) = Sol(L′) and pk is a bijection from Sol(L) to Sol(L′), which turns (6) into
the identity (5).

3 Basic necessary conditions

A k× k linear system L with non-zero determinant satisfies Sol(L) = {0}, which, for our purposes,
may be seen as a degenerate case. As such, we shall assume Sol(L) 6= {0} in what follows, unless we
are specifically speaking about degenerate systems. The following proposition asserts that all other
weakly semi-norming systems are translation invariant, in the sense that if (x1, . . . , xk) ∈ Sol(L)
and g ∈ G, then (x1 + g, . . . , xk + g) ∈ Sol(L) as well. In particular, this means that the coefficients
of each equation in a weakly norming system must add to 0.

Proposition 3.1. Every weakly semi-norming m× k system L is translation invariant. In partic-
ular, for all i ∈ [k] and v ∈ G,

|{(x1, . . . , xk) ∈ Sol(L) : xi = v}| = |Sol(L)|/|G|.

Proof. Let (y1, . . . , yk) ∈ Fkq be a non-zero element in Sol(L) with yj = v 6= 0. For fj = 1{v} and
fi = 1 for all i 6= j, we have

tL(f1, . . . , fk) =
|{(x1, . . . , xk) ∈ Sol(L) : xj = v}|

|Sol(L)|
,

which is strictly positive. By Proposition 2.2, it follows that tL(fj) > 0. That is, Sol(L) contains
(v, v, . . . , v) and, hence, it also contains (1, 1, . . . , 1). Thus, L must be translation invariant.

By this proposition, if L is a non-degenerate weakly norming system, then each (v, v, . . . , v) ∈
Sol(L), so we have that

‖f‖r(L) ≥
1

|Sol(L)|
∑
v

|f(v)|k > 0

for all f 6= 0, implying that the system is in fact weakly norming.
Another consequence of this proposition is that E[f ]k ≤ tL(f) whenever L is an m× k weakly

norming system and f is a non-negative function on G. Indeed, let f1 = f and f2 = · · · = fk = 1.
Then

tL(f1, . . . , fk) = E(x1,...,xk)∈Sol(L)f(x1) = Ex∈Gf(x)
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and, therefore, Proposition 2.2 implies that E[f ]k ≤ tL(f). As mentioned in the introduction, linear
systems which satisfy this inequality for all non-negative f are called Sidorenko.

Corollary 3.2. Every weakly norming system L is Sidorenko.

We note in passing that, since Sidorenko systems are necessarily translation invariant (see, for
instance, [14]), this corollary again implies that weakly norming systems are translation invariant.

By using Proposition 2.6, we can also generalise Corollary 3.2 to say that every weakly norming
system dominates all of its subsystems in the following sense (see [7] for more on the analogous
property for graphs).

Corollary 3.3. Let L′ be a subsystem of an m × k weakly norming system L induced on I ⊆ [k]
with |I| = k′. Then, for every non-negative function f : G→ R≥0,

tL(f)1/k ≥ tL′(f)1/k′ .

Furthermore, if L is norming, then |tL(f)|1/k ≥ |tL′(f)|1/k′ for all f : G→ R.

The girth of a linear system L is the minimum size of the support of a non-zero vector in the
row space of L. We will now show that the girth of any Sidorenko system, and hence any weakly
norming system, is even. This result was previously proved by Kamčev, Liebenau and Morrison [14],
though we give a somewhat shorter proof using Fourier methods.

Proposition 3.4. The girth of a Sidorenko system is even.

Proof. Let L be anm×k system whose girth ` is odd. Suppose, without loss of generality, that one of
the non-zero vectors in the row space of L with minimum support has the form (a1, . . . , a`, 0, . . . , 0)
for non-zero a1, . . . , a` ∈ Fq. Let α ∈ (0, 1) and γ be a non-zero element of Ĝ and consider the
function fα : G→ R with Fourier transform

f̂α(ξ) =


1 if ξ = 0,

−α if ξ = ±aiγ,
0 otherwise,

noting that if α ≤ 1/2`, then fα takes values in [0, 2]. By Proposition 2.3, we have

tL(fα) =
∑
ξ∈Ĝm

k∏
j=1

f̂α
(
Ltjξ
)
≤ 1 + (−α)` +O(α`+1).

If α is sufficiently small, then this is less than 1, but, because E[fα] = f̂α(0) = 1, this means that
L is not Sidorenko.

Recall that if L is an m × k norming system, then ‖f‖L equals |tL(f)|1/k. The following
proposition shows that we do not need the modulus.

Proposition 3.5. If L is a norming system, then tL(f) > 0 for all f 6= 0. In particular, L must
have an even number of variables.

Proof. Suppose, for the sake of contradiction, that there is some non-zero f for which tL(f) < 0.
Let v1 and v2 be two distinct elements of G. By the translation invariance of L, tL(1{v1}) and
tL(1{v2}) are both positive. Hence, by the continuity of tL and the intermediate value theorem,
there are c1, c2 ∈ R>0 such that tL(f+c11{v1}) = tL(f+c21{v2}) = 0. However, since L is norming,
this implies that f + c11{v1} = f + c21{v2} = 0, which cannot be the case as 1{v1} and 1{v2} are
clearly linearly independent.
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Finally, we show that the only systems which are semi-norming but not norming are the zero
matrices.

Proposition 3.6. If a system L is semi-norming but not norming, then it must be the zero matrix.

Proof. There must exist i ∈ [k] such that if x ∈ Sol(L) satisfies xj = 0 for all j 6= i, then xi = 0
too. Indeed, otherwise L is the zero matrix and we are done. By the translation invariance of
L, the same is true if we replace 0 by any other v ∈ G, i.e., if xj = v for all j 6= i, then xi = v
too. Without loss of generality, we may assume that i = 1. Suppose now that f is a function with
‖f‖L = 0. By Proposition 2.1, we have that

|tL(f,1{v}, . . . ,1{v})| ≤ ‖f‖L/|Sol(L)|k−1 = 0

for all v. On the other hand, we know that the only solution that contributes to tL(f,1{v}, . . . ,1{v})
is (v, . . . , v), meaning that |f(v)| = |tL(f,1{v}, . . . ,1{v})||Sol(L)| = 0. Since this holds for all v, we
have f = 0.

4 The isomorphism theorem

For graphs, it is a fundamental fact (see, for example, [18, Theorem 5.29]) that if |Hom(H1, F )| =
|Hom(H2, F )| for every graph F , then H1 and H2 must be isomorphic. In this section, we prove the
arithmetic analogue of this (left-)isomorphism theorem and apply it to give some further necessary
conditions for a linear system to be weakly norming.

To state the result, we should first define what isomorphism means for linear systems: two
m × k linear systems L and M are isomorphic if M can be obtained by applying row operations
and column permutations to L. That is, L and M are isomorphic if the vector space Sol(M) can
be obtained from Sol(L) by simply permuting the indices of the variables.

Theorem 4.1. Two m × k linear systems L and M are isomorphic if and only if tL(f) = tM (f)
for all positive integers n and all non-negative functions f : Fnq → R≥0.

There are two main steps in the proof. The first is encapsulated in the following lemma,
which gives us much more flexibility in substituting various functions f into tL(f). We define the
symmetrised functional τL(·) by

τL(f1, . . . , fk) :=
∑
π∈Sk

tL(fπ(1), . . . , fπ(k))

for any functions f1, . . . , fk : Fnq → C, where Sk denotes the set of all permutations of [k].

Lemma 4.2. Let L and M be two m× k linear systems. Then the following are equivalent:

(i) tL(f) = tM (f) for every non-negative function f : Fnq → R≥0;

(ii) tL(f) = tM (f) for every real-valued function f : Fnq → R;

(iii) τL(f1, . . . , fk) = τM (f1, . . . , fk) for any complex-valued functions f1, . . . , fk on Fnq .

Proof. Since the implication (iii)⇒(i) is trivial, it will suffice to show that (i)⇒(ii) and (ii)⇒(iii).
We first show that (i)⇒(ii). Let ε1, . . . , εk be i.i.d. uniform random variables taking values in {±1}
and set ~ε = (ε1, . . . , εk). For a real-valued function f on Fnq ,

E~ε

[
ε1ε2 · · · εktL

(
k∑
i=1

(|f |+ εif)

)]
= k!tL(f).
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Indeed, expanding tL

(∑k
i=1(|f |+ εif)

)
yields a sum of terms of the form tL(h1, h2, . . . , hk) where

each hi is either |f | or εjf for some j. Using E[εj ] = 0 and E[ε2
j ] = 1, we see that the only terms that

do not vanish after averaging over ~ε ∈ {±1}k are those tL(h1, h2, . . . , hk) such that each hi = εjf

for a unique j. This is exactly what the right-hand side represents. As
∑k

i=1(|f |+ εif) ≥ 0 for any
real-valued f , we have that (i)⇒(ii), as required.

To show that (ii)⇒(iii), let z1, . . . , zk be i.i.d. uniform random unit complex numbers and set
~z = (z1, . . . , zk). For complex-valued functions f1, . . . , fk on Fnq ,

E~z

[
z1z2 · · · zktL

(
k∑
i=1

(zifi + zifi)

)]
=
∑
π∈Sk

tL(fπ(1), . . . , fπ(k)).

Indeed, we can use that E[zi] = E[z2
i ] = 0 and E[zizi] = 1 to deduce that all terms except those of

the form tL(fπ(1), . . . , fπ(k)) vanish in the expansion of tL

(∑k
i=1(zifi + zifi)

)
after averaging over

~z ∈ (S1)k. As
∑k

i=1(zifi + zifi) is always real-valued, we have that (ii)⇒(iii), as required.

The second step involves substituting suitable functions ĝ1, ĝ2, . . . , ĝk into the inversion for-
mula (2) to distinguish tL(·) and tM (·) if L and M are not isomorphic. We first record a technical
lemma that will be needed in our computation.

Lemma 4.3. Let L and M be m × k linear systems and let γ ∈ Ĝm. For each j = 1, 2, . . . , k, let

f
(γ)
j be the function with Fourier transform f̂

(γ)
j (η) := 1

[
η = Ltjγ

]
. Then

tM (f
(γ)
1 , . . . , f

(γ)
k ) =

∑
ξ∈Ĝm

1
[
M tξ = Ltγ

]
.

Proof. By (2), it follows that

tM (f
(γ)
1 , . . . , f

(γ)
k ) =

∑
ξ∈Ĝm

k∏
j=1

f̂
(γ)
j

(
M t
jξ
)

=
∑
ξ∈Ĝm

k∏
j=1

1
[
M t
jξ = Ltjγ

]
,

which proves the desired identity.

Proposition 4.4. Let L and M be two non-isomorphic m × k linear systems. Then there exist
n ∈ N and complex-valued functions g1, . . . , gk on Fnq such that τL(g1, . . . , gk) 6= τM (g1, . . . , gk).

Proof. Suppose G = Ĝ = Fnq and, for each γ ∈ Ĝm, let f
(γ)
1 , . . . , f

(γ)
k be defined as in Lemma 4.3.

Then, for π ∈ Sk,

tM (f
(γ)
π(1), . . . , f

(γ)
π(k)) =

∑
ξ∈Ĝm

1
[
M tξ = π(L)tγ

]
,

where π(L) denotes the linear system obtained by permuting the k columns of L under π. For

Γ = (γ1, . . . , γ`) ∈ (Ĝm)`, let g
(Γ)
i = f

(γ1)
i ⊗ f (γ2)

i ⊗ · · · ⊗ f (γ`)
i , where ` will be chosen later. Then

tM (g
(Γ)
1 , g

(Γ)
2 , . . . , g

(Γ)
k ) = tM (f

(γ1)
1 , . . . , f

(γ1)
k )tM (f

(γ2)
1 , . . . , f

(γ2)
k ) · · · tM (f

(γ`)
1 , . . . , f

(γ`)
k )
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and, therefore,∑
Γ∈(Ĝm)`

tM (g
(Γ)
1 , g

(Γ)
2 , . . . , g

(Γ)
k ) =

∑
γ1,...,γ`∈Ĝm

tM (f
(γ1)
1 , . . . , f

(γ1)
k ) · · · tM (f

(γ`)
1 , . . . , f

(γ`)
k )

=

 ∑
γ∈Ĝm

tM (f
(γ)
1 , . . . , f

(γ)
k )

`

=

 ∑
γ∈Ĝm

∑
ξ∈Ĝm

1
[
M tξ = Ltγ)

]`

.

Since both M and L have linearly independent rows, M t and Lt are injective, so the double
sum above is | im(Lt) ∩ im(M t)|n, where im(Lt) and im(M t) are the images of Fmq under Lt and
M t, respectively. Likewise, we have

∑
Γ∈(Ĝm)`

tM (g
(Γ)
π(1), . . . , g

(Γ)
π(k)) = | im(π(L)t) ∩ im(M t)|n`,

∑
Γ∈(Ĝm)`

tL(g
(Γ)
π(1), . . . , g

(Γ)
π(k)) = | im(π(L)t) ∩ im(Lt)|n`.

If L and M are non-isomorphic, then, for all π, the rows of π(L) and M span different spaces,
so that im(π(L)t) ∩ im(M t) has dimension at most m− 1. Thus,∑

Γ∈(Ĝm)`

τM (g
(Γ)
1 , . . . , g

(Γ)
k ) =

∑
π∈Sk

∑
Γ∈(Ĝm)`

tM (g
(Γ)
π(1), . . . , g

(Γ)
π(k)) ≤ k!qn(m−1)`.

On the other hand, tL(g
(Γ)
1 , . . . , g

(Γ)
k ) = | imLt|n` = qnm`, so, as tL(g

(Γ)
π(1), . . . , g

(Γ)
π(k)) ≥ 0 for all π, we

have ∑
Γ∈(Ĝm)`

τL(g
(Γ)
1 , . . . , g

(Γ)
k ) ≥

∑
Γ∈(Ĝm)`

tL(g
(Γ)
1 , . . . , g

(Γ)
k ) ≥ qnm`.

Therefore, choosing ` such that qn` > k! gives∑
Γ∈(Ĝm)`

τM (g
(Γ)
1 , . . . , g

(Γ)
k ) <

∑
Γ∈(Ĝm)`

τL(g
(Γ)
1 , . . . , g

(Γ)
k ),

so there must exist Γ ∈ (Ĝm)` such that g
(Γ)
1 , . . . , g

(Γ)
k are as in the claim.

Theorem 4.1 now follows immediately. Indeed, if tL(f) = tM (f) for every non-negative f , then
Lemma 4.2 implies that τL(f1, . . . , fk) = τM (f1, . . . , fk) for any complex-valued functions f1, . . . , fk,
contradicting the conclusion of Proposition 4.4 if L and M are not isomorphic.

Theorem 4.1 has some interesting applications. First, we use it to prove that every weakly
norming system L is variable-transitive in the sense that deleting any variable always leaves an
isomorphic system. This is the arithmetic analogue, and closely follows the proof, of a result of
Sidorenko [19, Lemma 6] saying that if H is weakly norming, then all of the graphs formed by
deleting a single edge from H are isomorphic. We note that this is slightly weaker than Sidorenko’s
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full edge-transitivity result, which requires an additional argument that we do not currently see how
to transfer to the arithmetic setting. We do however expect that such a result should hold, that is,
that for any weakly norming system and any two variables xi and xj there is an automorphism of
the system that sends xi to xj .

Lemma 4.5. Let L be an m×k weakly norming system. For a non-negative function f : G→ R≥0,
let αi = tL(f1, . . . , fk), where fi = 1 and fj = f for all j 6= i. Then αi = αj for all i, j ∈ [k].

Proof. Since tL(·) and all αi depend continuously on f and strictly positive functions are a dense
subset of the non-negative functions, we may assume that f > 0. Furthermore, by rearranging edge
indices, it is enough to prove that α1 = α2. For ε ∈ R with |ε| ≤ minx∈G f(x),

tL(f − ε, f + ε, f, f, . . . , f) = tL(f) + (α2 − α1)ε− tL(1, 1, f, . . . , f)ε2

and, therefore,

tL(f − ε, f + ε, f, f, . . . , f)k = tL(f)k + k(α2 − α1)tL(f)k−1ε+O(ε2). (7)

At the same time, we know from Proposition 2.2 that

tL(f − ε, f + ε, f, f, . . . , f) ≤ ‖f‖k−2
L ‖f − ε‖L‖f + ε‖L.

Moreover, tL(f ± ε) = tL(f)± αε+O(ε2) for α := α1 + · · ·+ αk, so that

tL(f − ε, f + ε, f, f, . . . , f)k ≤ tL(f)k−2tL(f − ε)tL(f + ε)

= tL(f)k−2(tL(f)− αε+O(ε2))(tL(f) + αε+O(ε2))

= tL(f)k +O(ε2).

If α2 6= α1, then (7) contradicts this inequality for ε of the same sign as α2 − α1 and sufficiently
small in absolute value.

Given an m× k linear system L and i ∈ [k], we let L \ i be the induced subsystem obtained by
deleting the variable xi. Combining Lemma 4.5 with Proposition 2.6 implies that tL\i(f) = tL\j(f)
for all functions f : Fnq → R≥0, which, by Theorem 4.1, implies the promised analogue of Sidorenko’s
edge-transitivity theorem.

Corollary 4.6. If L is an m × k weakly norming linear system, then the linear subsystems L \ i
are isomorphic for all i ∈ [k].

As an immediate consequence of this corollary, we have the following result.

Corollary 4.7. If a non-zero system L is weakly norming, then no column of L is zero.

Another application of Theorem 4.1 is that it allows us to prove an analogue of [10, Theo-
rem 1.2], which says that, aside from isolated vertices, each component of a weakly norming graph
is isomorphic. Given an m×k linear system L, suppose that there exists a partition I1∪I2∪· · ·∪Ir
of [k] such that Sol(L) = Sol(L1)⊕ · · · ⊕ Sol(Lr), where Lj is the induced subsystem on Ij . Then
tL(f) = tL1(f) · · · tLr(f) for every f : G→ R. If there is no finer partition that decomposes Sol(L),
then each Li is said to be a component of L.

Theorem 4.8. Let L1 and L2 be two components of an m× k weakly norming system L. Then L1

and L2 are isomorphic weakly norming systems. Furthermore, each component is norming if L is.

We omit the proof, which uses the domination inequality in Corollary 3.3, but is otherwise
exactly the same as the simplified proof of [10, Theorem 1.2] given in [7, Lemma 2.4].
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5 Weakly norming systems of low rank

By Proposition 2.3, if L is a 1× k system, then

tL(f1, . . . , fk) =
∑
ξ∈Ĝ

f̂1(L11ξ) · · · f̂k(L1kξ).

In particular, if each L1i is either a or −a for some non-zero a ∈ Fq and |{i ∈ [k] : L1i = a}| =

|{i ∈ [k] : L1i = −a}|, then tL(f) = ‖f̂‖k
`k

. As this `k-norm of the spectrum is often called the
Schatten–von Neumann norm, we say that a vector (a1, . . . , ak) is Schatten if there exists a ∈ Fq
such that each ai ∈ {0, a,−a} and |{i ∈ [k] : ai = a}| = |{i ∈ [k] : ai = −a}|. In particular, as we
have seen above, if a Schatten vector (a1, . . . , ak) has no zero entries, then (a1, . . . , ak) is norming
as a linear system. One of the main results of this section is that all weakly norming linear systems
must have at least one Schatten vector in their row space.

To state this result, recall that the girth of a linear system L is the minimum size of the support
of a non-zero vector in the row space of L. Furthermore, we write µ(L) for the set of non-zero
vectors in the row space of L with minimum support and s(L) for the number of normalised Schatten
vectors in µ(L), i.e., Schatten vectors whose first non-zero coefficient is 1.

Theorem 5.1. Let L be an m× k weakly norming system and let ` be the girth of L. Then either
all vectors in µ(L) are Schatten or s(L) ≥ k/`.

Proof. Since L is weakly norming, L is Sidorenko by Corollary 3.2 and, therefore, ` is even by
Proposition 3.4. Suppose that µ(L) contains a vector v that is not Schatten. Without loss of
generality, we may assume that v is of the form (a1, . . . , a`, 0 . . . , 0) for some non-zero a1, . . . , a`.

Suppose first that the characteristic of Fq is not 2. Let ε > 0, let γ be a non-zero element of

Ĝ and let z be a complex number with |z| = 1. For each i ∈ [`], take fi to be the function whose
Fourier transform is given by

f̂i(η) =


1 if η = 0,

εz if η = (−1)iaiγ,

εz if η = (−1)i+1aiγ,

0 otherwise.

Observe that since f̂i(η) = f̂i(−η) for all η, fi is real. Furthermore, if ε is sufficiently small, fi is
positive.

By Proposition 2.3, we have

tL(f1, . . . , f`, 1, . . . , 1) =
∑
ξ∈Ĝm

∏̀
j=1

f̂j
(
Ltjξ
) k∏
j=`+1

1[Ltjξ = 0].

Since ` is the girth of L, if ξ 6= 0 and Ltjξ = 0 for each j > `, then we must have Ltjξ 6= 0 for all
j ≤ `. Thus, the only non-zero ξ that make a non-zero contribution to the sum above are those for
which Ltjξ ∈ {±ajγ} for each j ≤ `. Since v is in the row space of L, there must be ξ ∈ Ĝm such
that (Ltξ)j = vjγ for all i ∈ [k]. Furthermore, the only other vectors in the row space of L whose
support is in [`] are the multiples of v. Indeed, if there were a vector w ∈ µ(L) with support [`]
that is not a multiple of v, there would be a non-zero linear combination of v and w whose support

is a proper subset of [`]. Thus, if
∏`
j=1 f̂j

(
Ltjξ
)
6= 0, then Ltξ = ±(a1γ, . . . , a`γ, 0, . . . , 0), so that

tL(f1, . . . , f`, 1, . . . , 1) = 1 + 2ε`.

14



Taking the kth power, we obtain

tL(f1, . . . , f`, 1, . . . , 1)k ≥ 1 + 2kε`. (8)

On the other hand, by Proposition 2.1, we have tL(f1, . . . , f`, 1, . . . , 1)k ≤ ‖f1‖kL · · · ‖f`‖kL, where
each ‖fi‖kL is equal to

tL(fi, . . . , fi) =
∑
ξ∈Ĝm

k∏
j=1

f̂i
(
Ltjξ
)

= 1 +
∑
ξ∈Xi

k∏
j=1

f̂i
(
Ltjξ
)

+O(ε`+1) (9)

with
Xi = {ξ ∈ Ĝm : Ltjξ ∈ {0,±aiγ} for all j ∈ [k] and |{j ∈ [k] : Ltjξ 6= 0}| = `}.

For ψ ∈ Ĝk, let

∆i(ψ) = |{j ∈ [k] : ψj = (−1)iaiγ}| − |{j ∈ [k] : ψj = (−1)i+1aiγ}|

and observe, by the definition of fi, that

∑
ξ∈Xi

k∏
j=1

f̂i
(
Ltjξ
)

=
∑
ξ∈Xi

ε`z∆i(L
tξ) =

∑
ξ∈X1

ε`z∆1(Ltξ),

where the last inequality holds because Xi1 = ai1a
−1
i2
Xi2 for all i1, i2 ∈ [`]. Let

S1 = {ξ ∈ X1 : ∆1(Ltξ) = 0}

and note that each normalised Schatten vector v ∈ µ(L) gives rise to exactly two elements of S1.
Indeed, if u ∈ Fmq is such that Ltu = v, then ±(aiu1γ, . . . , aiumγ) ∈ S1.

On the other hand, since∫
|z|=1

∑
ξ∈X1\S1

z∆1(Ltξ)dz =
∑

ξ∈X1\S1

∫
|z|=1

z∆1(Ltξ)dz = 0,

we may choose z such that the real part of
∑

ξ∈X1\S1
z∆1(Ltξ) is zero. Inserting this into (9) yields

tL(fi, . . . , fi) = 1 +
∑
ξ∈S1

k∏
j=1

f̂i
(
Ltjξ
)

+O(ε`+1) = 1 + 2s(L)ε` +O(ε`+1).

Noting that the right-hand side does not depend on i, we can combine this with (8) to obtain

1 + 2kε` ≤ tL(f1, . . . , f`, 1, . . . , 1)k ≤ ‖f1‖kL · · · ‖f`‖kL ≤ 1 + 2`s(L)ε` +O(ε`+1).

By taking ε sufficiently small, we see that s(L) ≥ k/`, as desired.
If Fq has characteristic 2, the proof is essentially the same, except that we choose z = 1, noting

that S1 = X1 trivially, as ai = −ai for all i ∈ [`].

As a corollary of Theorem 5.1, we obtain a classification of all weakly norming systems consisting
of a single equation.

Theorem 5.2. A 1 × k system L is weakly norming if and only if it is Schatten with no zero
entries.
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Proof. We have already seen that such a system is norming. The opposite direction follows from
first applying Corollary 4.7, which tells us that all entries are non-zero, and then Theorem 5.1.

Another corollary of Theorem 5.1 is that there are at least two distinct Schatten vectors in µ(L)
unless L consists of a single equation.

Corollary 5.3. Let L be an m × k weakly norming system with m ≥ 2. Then there are at least
two independent Schatten vectors in µ(L).

Proof. By Theorem 5.1, it is enough to show that ` < k, where ` is the girth of L. Assume instead
that k = `. Then every vector in the row space of L has support of size k = `. However, if m ≥ 2,
by using row operations, one can clearly make a vector with smaller support, contradicting that
the system has girth k.

Given an m × k system L, consider the m × 2k system obtained by replacing each column v
of the matrix L with two columns v and −v. We call this new linear system the subdivision of
L and denote it by sub(L). For instance, subdividing the equation x1 = x2 that defines the L2-
norm (Ex∈Gf(x)2)1/2 gives the equation x1 − x2 + x3 − x4 = 0 that defines the Gowers U2-norm.
More generally, as we now show, subdivision preserves the (weakly) norming property (though it
is perhaps worth stressing that this is not the case for graphs).

Proposition 5.4. Let L be a weakly norming (resp. norming) system. Then the subdivision sub(L)
of L is also weakly norming (resp. norming).

Proof. Let L be an m × k norming system. For brevity, write M = sub(L). Our goal is to show
that ∣∣∣∣∣∣

∑
ξ∈Ĝm

f̂1

(
M t

1ξ
)
· · · f̂2k

(
M t

2kξ
)∣∣∣∣∣∣

2k

≤
2k∏
j=1

∣∣∣∣∣∣
∑
ξ∈Ĝm

f̂j
(
M t

1ξ
)
· · · f̂j

(
M t

2kξ
)∣∣∣∣∣∣ (10)

for the m × 2k system M and any real-valued functions f1, . . . , f2k. For each j ∈ [k], let gj

be the function on G that satisfies ĝj(ξ) = f̂2j−1(ξ)f̂2j(ξ). Then each gj is real-valued, since

ĝj(−ξ) = f̂2j−1(−ξ)f̂2j(−ξ) = ĝj(ξ). Furthermore, for all i, j ∈ [k],

ĝj(L
t
iξ) = f̂2j−1(Ltiξ)f̂2j(Ltiξ) = f̂2j−1(M t

2i−1ξ)f̂2j(M
t
2iξ),

where the second equality follows from the definition of sub(L).
Rewriting the left-hand side of (10) in terms of the gj and applying (4) gives∣∣∣∣∣∣

∑
ξ∈Ĝm

f̂1

(
M t

1ξ
)
· · · f̂2k

(
M t

2kξ
)∣∣∣∣∣∣

2k

=

∣∣∣∣∣∣
∑
ξ∈Ĝm

ĝ1(Lt1ξ) · · · ĝk(Ltkξ)

∣∣∣∣∣∣
2k

≤
k∏
j=1

∣∣∣∣∣∣
∑
ξ∈Ĝm

ĝj
(
Lt1ξ

)
· · · ĝj

(
Ltkξ

)∣∣∣∣∣∣
2

. (11)
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By the Cauchy–Schwarz inequality,∣∣∣∣∣∣
∑
ξ∈Ĝm

ĝj
(
Lt1ξ

)
· · · ĝj

(
Ltkξ

)∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
ξ∈Ĝm

k∏
i=1

f̂2j−1

(
Ltiξ
)
f̂2j

(
−Ltiξ

)∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
ξ∈Ĝm

k∏
i=1

f̂2j−1

(
M t

2i−1ξ
)
f̂2j

(
M t

2iξ
)∣∣∣∣∣∣

2

≤

∑
ξ∈Ĝm

k∏
i=1

∣∣∣f̂2j−1

(
M t

2i−1ξ
)∣∣∣2
∑

ξ∈Ĝm

k∏
i=1

∣∣∣f̂2j

(
M t

2iξ
)∣∣∣2


=

∑
ξ∈Ĝm

k∏
i=1

f̂2j−1

(
M t

2i−1ξ
)
f̂2j−1

(
M t

2iξ
) ∑

ξ∈Ĝm

k∏
i=1

f̂2j

(
M t

2i−1ξ
)
f̂2j

(
M t

2iξ
)

=

∑
ξ∈Ĝm

2k∏
i=1

f̂2j−1

(
M t
i ξ
) ∑

ξ∈Ĝm

2k∏
i=1

f̂2j

(
M t
i ξ
) .

Substituting this into (11) proves (10). For weakly norming systems L, the only difference is that
we need to verify that gj is non-negative whenever both f2j−1 and f2j are. But gj = f2j−1 ∗ f−2j ,
where f−2j(x) = f2j(−x), so gj is always non-negative.

This proposition easily generalises to the r-subdivision subr(L) of L, where each column v of
L is replaced by r copies of v and −v, respectively. To see this, we only need to replace the use of
the Cauchy–Schwarz inequality in the proof of Proposition 5.4 above by Hölder’s inequality.

Proposition 5.5. Let L be a weakly norming (resp. norming) system. Then the r-subdivision
subr(L) of L is also weakly norming (resp. norming).

In the light of this proposition, one may easily construct m × 2rm norming systems for any
positive integers r and m.

Example 5.6. Let L be the m×m system given by the identity matrix. This is a degenerate case
where tL(f) = E[f ]m, but subdividing L gives more interesting examples. For instance, sub(L) is
the m× 2m system given by the m× 2m matrix

1 −1 · · ·
1 −1 · · ·

. . .

· · · 1 −1
· · · 1 −1

 .

As L is semi-norming, it immediately follows that sub(L) is as well. Concretely, since Sol(L)
consists of the set of solutions to x1 = x2, x3 = x4, . . . , x2m−1 = x2m, tsub(L)(f) = E[f(x)2]m.
That is, the sub(L)-norm is just the L2-norm. More generally, the r-subdivision of L yields the
L2r-norm.

We can also construct (m − 1) × 2rm (weakly) norming systems for any positive integers r
and m.
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Example 5.7. Let L be the (m− 1)×m system given by the matrix
1 −1 · · ·

1 −1 · · ·
. . .

· · · 1 −1
· · · 1 −1

 .

Then Sol(L) consists of the set of solutions to x1 = x2 = · · · = xm, so that tL(f) = E[f(x)m].
Thus, if m is even, then L is norming and otherwise it is weakly norming. To see why it is not
norming for odd m, it is enough to construct nonzero f such that E[f(x)m] = 0. Indeed, such
a function exists, e.g., f(x) = 1[x = 0] − 1[x = a] for a nonzero a. Proposition 5.5 implies that
the r-subdivision of L is also weakly norming. In particular, the 2 × 6 weakly norming system in
Example 2.4 corresponds to the case where m = 3 and r = 1.

It turns out that the two examples above include all possible 2× k weakly norming systems.

Theorem 5.8. A 2 × k system L is weakly norming if and only if it is isomorphic to one of the
following three systems:

(i) k = 3 and x1 = x2 = x3.

(ii) k = 4r for some r ∈ N, x1 +· · ·+xr = xr+1 +· · ·+x2r and x2r+1 +· · ·+x3r = x3r+1 +· · ·+x4r.

(iii) k = 6r for some r ∈ N and x1 − x2 + · · · − x2r = x2r+1 − x2r+2 + · · · − x4r = x4r+1 − x4r+2 +
· · · − x6r.

Proof. The first one is simply the classical L3-norm. The second is the r-subdivision of the 2 × 2
identity matrix L. The third one is isomorphic to the r-subdivision of the first one. Proposition 5.5
therefore proves that all three systems are weakly norming.

Let L be a 2 × k weakly norming system with girth `. By Corollary 5.3, the row space of L
contains two distinct Schatten vectors a and b whose support has size ` and whose first non-zero
coordinate is 1. These two vectors are linearly independent and, therefore, span the whole row
space. Let I be the intersection of the support of a and b. If I is empty, then solutions to L are,
up to permutation of coordinates, of the form in (ii).

Suppose now that I is non-empty. Without loss of generality, we may assume that the support
of a is [1, `] and the support of b is [k− `+ 1, k]. Note that k+ |I| = 2`. Recall that L \ j is defined
as the linear system in which we remove all vectors with non-zero jth coefficient from the row space
of L. Since L \ k contains the equation a1x1 + · · ·+ a`x` = 0, we know by Corollary 4.6 that L \ `
also contains a Schatten vector whose support has size `. Thus, the row space of L must contain
a Schatten vector c with c` = 0. We can express c as c = λa + µb for λ, µ ∈ Fq. Since we may
assume without loss of generality that c1 = 1 and, therefore, ci ∈ {0,±1} for all i ∈ [k], it follows
that λ = 1 and µ ∈ {±1}. Furthermore, by replacing b by −b if necessary, we may assume that
µ = 1. It follows that ci = 0 precisely when i ∈ I. Thus, ` = k− |I|, so, since k+ |I| = 2`, we have
2k = 3` = 6|I|.

Denoting |I| = k/3 by s, we see that because a1 + · · ·+as+ b2s+1 + · · ·+ b3s = c1 + · · ·+ ck = 0,
we have a1 + · · ·+ as = −(b2s+1 + · · ·+ b3s). We also have ai = −bi for all i ∈ [s+ 1, 2s] and, since
all rows sum to zero, we know that as+1 + · · ·+a2s = −(a1 + · · ·+as). In summary, as all non-zero
coefficients of a and b are 1 or −1, we may assume by reordering columns if necessary that L has
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the form

L =

(
a1 · · · as −a1 · · · −as 0 · · · 0
0 · · · 0 a1 · · · as −a1 · · · −as

)
for some a1, . . . , as ∈ {±1}. To see that L is a system of the form in (iii), it remains only to show
that σ =

∑s
i=1 ai = 0.

Assume, for the sake of contradiction, that σ 6= 0. We fix linearly independent γ1, γ2 ∈ Fnq and
let γ3 = γ2 − γ1. We also take some α > 0 and set z = exp(πi/σ). We define f and g to be the
real-valued functions on Fnq with Fourier coefficients

f̂(ξ) =


1 if ξ = 0,

αzε if ξ = εγ1 for ε ∈ {±1},
α if ξ ∈ {±γ2,±γ3},
0 otherwise,

ĝ(ξ) =


1 if ξ = 0,

αz(1−asσ)ε if ξ = εγ1 for ε ∈ {±1},
α if ξ ∈ {±γ2,±γ3},
0 otherwise.

Note that f and g take only positive real values if α is sufficiently small. Moreover, for any ξ ∈ Ĝ,
we have that

ĝ(asξ)
s−1∏
i=1

f̂(aiξ) =
∣∣∣f̂(ξ)

∣∣∣s ,
as is readily verified by checking the only non-trival case ξ = ±γ1. Letting fs = f2s = f3s = g and
fi = f for all other i ∈ [k], we therefore have, by Proposition 2.3, that

tL(f1, . . . , fk) =
∑
ξ1,ξ2

(
ĝ(asξ1)

s−1∏
i=1

f̂(aiξ1)

)(
ĝ(as(ξ2 − ξ1))

s−1∏
i=1

f̂(ai(ξ2 − ξ1)

)(
ĝ(asξ2)

s−1∏
i=1

f̂(aiξ2)

)
=
∑
ξ1,ξ2

|f̂(ξ1)|s|f̂(ξ2 − ξ1)|s|f̂(ξ2)|s.

On the other hand, denoting the real part of a complex number z by <(z), we have that

tL(f) =
∑
ξ1,ξ2

s∏
j=1

f̂(ajξ1)
s∏
j=1

f̂(aj(ξ2 − ξ1))
s∏
j=1

f̂(−ajξ2)

= <

∑
ξ1,ξ2

s∏
j=1

f̂(ajξ1)

s∏
j=1

f̂(aj(ξ2 − ξ1))

s∏
j=1

f̂(−ajξ2)


=
∑
ξ1,ξ2

<

 s∏
j=1

f̂(ajξ1)
s∏
j=1

f̂(aj(ξ2 − ξ1))
s∏
j=1

f̂(−ajξ2)


≤
∑
ξ1,ξ2

∣∣∣∣∣∣
s∏
j=1

f̂(ajξ1)
s∏
j=1

f̂(aj(ξ2 − ξ1))
s∏
j=1

f̂(−ajξ2)

∣∣∣∣∣∣
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=
∑
ξ1,ξ2

|f̂(ξ1)|s|f̂(ξ2 − ξ1)|s|f̂(ξ2)|s = tL(f1, . . . , fk).

Moreover, the inequality is strict when fi = f , since

tL(f) =
∑
ξ1,ξ2

s∏
j=1

f̂(ajξ1)

s∏
j=1

f̂(aj(ξ2 − ξ1))

s∏
j=1

f̂(−ajξ2)

≤ tL(f1, . . . , fk) + <

 s∏
j=1

f̂(ajγ1)f̂(ajγ3)f̂(−ajγ2)

− |f̂(γ1)|s|f̂(γ3)|s|f̂(γ2)|s

= tL(f1, . . . , fk) + αk (<(zσ)− 1) .

Since z = exp(πi/σ), this yields that tL(f) ≤ tL(f1, . . . , fk)− 2αk, implying that L does not have
the Hölder property.

Remark. Which of these weakly norming systems are norming? In Example 5.7, we have already
seen that the first system is not norming. The second family of systems L2 is norming, since
tL2(f)1/4r = tL′(f)1/2r, where L′ is the single Schatten equation x1 + · · · + xr = xr+1 + · · · + x2r.

To verify that the third system L3 is not norming, let f be the real function that satisfies f̂(ξ) =
1[ξ = ±a] for some a 6= 0. Then

tL3(f) =
∑
ξ1,ξ2

|f̂(ξ1)|2r|f̂(ξ2)|2r|f̂(ξ1 + ξ2)|2r,

which evaluates to 0 unless Fq has characteristic 3. If Fq has characteristic 3, then tL3(f) = 2.
However, deleting the first 2r variables x1, . . . , x2r gives a Schatten equation L′ of length 4r, for
which tL′(f) = 2. In either case, we have a contradiction to Corollary 3.3.

One may wonder if weakly norming systems of rank three or more have a similar characterisation.
Unfortunately (or fortunately), there are weakly norming systems of rank three that do not come
from subdividing trivial examples.

Example 5.9. Let L be the 3× 12 system given by the matrix 1 −1 1 −1 1 −1 0 0 0 0 0 0
0 0 0 0 −1 1 −1 1 −1 1 0 0
−1 1 0 0 0 0 1 −1 0 0 1 −1

 .

Then Sol(L) consists of all those (x1, x2, . . . , x12) that can be parameterised by

(x1, x2, x3, x4, x5, x6) = (y1 + z12, z12 + y2, y2 + z23, z23 + y3, y3 + z13, z13 + y1),

(x5, x6, x7, x8, x9, x10) = (y3 + z31, z31 + y1, y1 + z14, z14 + y4, y4 + z34, z34 + y3),

(x1, x2, x7, x8, x11, x12) = (y1 + z12, z12 + y2, y1 + z14, z14 + y4, y4 + z24, z24 + y2).

This system is weakly norming, since the parameterisation comes from the singleton-pair incidence
graph of the set {1, 2, 3, 4}, which is a weakly norming graph. More details will be given in Section 7.

On the other hand, L is included in neither Example 5.6 nor Example 5.7. Indeed, if Example 5.6
includes L, then it must be the case that m = 3 and r = 2; however, the 2-subdivision of the 3× 3
degenerate system has girth 4, whereas the girth of L is 6. Similarly, Example 5.7 does not include
L for the simple reason that one would need to take m = 4 and r = 3/2.

We leave the characterisation of weakly norming systems of rank three as an open problem.
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6 Forcing systems

A graph H is said to be forcing if the fact that tH(W ) = pe(H) for a graphon W with p = tK2(W )
implies that W = p a.e. While it is easy to see that trees and non-bipartite graphs are not forcing,
the forcing conjecture [20], a strengthening of Sidorenko’s conjecture, says that all bipartite graphs
containing a cycle should be forcing.

In analogy with the graph case, we say that an m× k linear system L is forcing if, for every n
and every non-negative function f on Fnq , tL(f) = E[f ]k implies that f is a constant function on
Fnq . Taking our lead from a similar result for graphs, we will now show that every forcing system
is Sidorenko.

Proposition 6.1. Let L be an m×k linear system such that tL(f) < E[f ]k for some f : Fnq → [0, 1].
Then L is not forcing.

Proof. We may assume that n > 1 by extending f to a larger Fnq through adding an extra zero to
each point in the support. Let g1 be the indicator function of the subspace {(x1, . . . , xn) ∈ Fnq :

xn = 0}. Then tL(g1) = (qn−1)k−m/(qn)k−m = qm−k since L consists of m linearly independent
forms and E[g1]k = q−k. Thus,

tL(g1)− E[g1]k = q−k(qm − 1) > 0.

Now consider P (α) := tL(αg1+(1−α)f)−E[αg1+(1−α)f ]k, which is a polynomial in α. As P (0) < 0
and P (1) > 0, there exists α0 ∈ (0, 1) with P (α0) = 0. Then the function h1 := α0g1 + (1 − α0)f
with range in [0, 1] satisfies tL(h1) = E[h1]k, so, if L is forcing, h1 must be constant.

One can similarly obtain a function h2 = β0g2 + (1 − β0)f such that β0 ∈ (0, 1) and tL(h2) =
E[h2]k, where g2 is the indicator function of the subspace {(x1, . . . , xn) ∈ Fnq : xn−1 = 0}. It follows
that h2 is also a constant and, thus, that g1 is a constant multiple of g2 plus another constant;
however, it is easy to check that this is not the case.

We now classify all the single equations that are forcing by showing that a single equation is
forcing if and only if it is norming. Recall that, by Theorem 5.2, the norming and weakly norming
properties are the same for a single equation, so all three properties agree in this case.

Theorem 6.2. A 1× k system L is forcing if and only if it is norming.

Proof. By Theorem 5.2, L is norming if and only if it is isomorphic to
(
1 · · · 1 −1 · · · −1

)
.

Since tL(f) =
∑

ξ |f̂(ξ)|2k, tL(f) = E[f ]2k if and only if
∑

ξ 6=0 |f̂(ξ)|2k = 0. That is, f̂(ξ) = 0 for
every ξ 6= 0 and, thus, f is a constant function.

To prove the converse, suppose L is forcing but not norming. By Proposition 6.1, L is Sidorenko
and so, by [9, Theorem 1.4], isomorphic to a system of the form

(
a1 −a1 · · · ar −ar

)
for

r = k/2 and a1, . . . , ar ∈ Fq. Thus,

tL(f) =
∑
ξ

|f̂(a1ξ)|2 · · · |f̂(arξ)|2.

Since L is not norming, there must be i, j ∈ [r] such that ai /∈ {±aj}. Fix a non-zero γ ∈ F̂nq
and let f be the function with Fourier transform f̂(ξ) = 1

2 (1[ξ = γ] + 1[ξ = −γ]) for every ξ 6= 0

and f̂(0) = 1. Then f is a non-negative real-valued function, as
∑

ξ 6=0 |f̂(ξ)| ≤ 1. Moreover,

f̂(aiξ)f̂(ajξ) = 0 whenever ξ 6= 0, so tL(f) = |f̂(0)|2k = E[f ]2k. But f is clearly not constant,
contradicting our assumption that L is forcing.
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In particular, every 1 × k weakly norming system is forcing. We now prove a much stronger
result, that every weakly norming system L is forcing. For weakly norming graphs, we know
that they are forcing whenever they contain an even cycle because there is a ‘domination’ relation
between the weakly norming graph and the even cycle (see, for example, [5, Section 5.2]). We
may then use the simple fact that every even cycle is forcing to reach the required conclusion.
Unfortunately, this proof does not transfer in an obvious way to the arithmetic setting, so we take
a slightly different approach.

Theorem 6.3. Every weakly norming system L is forcing.

Proof. Let ` be the girth of L. By Theorem 5.1, the row space of L contains a Schatten vector
a whose support has size `. Without loss of generality, we may assume that the support of this
vector is [`]. Let M be the 1× ` system

(
a1 · · · a`

)
.

Suppose now that tL(g) = E[g]k for some non-negative function g on Fnq . Because ` is the girth
of L, every vector in the row space of L that is only supported on [`] must be a multiple of a. Thus,
by Proposition 2.6, letting fi = g for i ≤ ` and fi = 1 for i > `, we have tM (g) = tL(f1, . . . , fk). By
Proposition 2.2,

tL(f1, . . . , fk) ≤
k∏
i=1

‖fi‖L.

But ‖g‖L = E[g] by assumption and ‖1‖L = 1, which yields tM (g) ≤ E[g]`. Since M is norming,
Theorem 6.2 implies that it is also forcing, so that g must be constant.

One might suspect that Theorem 6.2 generalises and the converse of Theorem 6.3 is also true.
However, as we now show, there are forcing systems that are not weakly norming.

Example 6.4. Consider the 2× 7 linear system L given by the matrix(
1 1 −1 −1 0 0 0
0 0 0 1 1 −1 −1

)
.

Let f be a non-negative function. Then the Cauchy–Schwarz inequality gives

tL(f) = Ex∈G
[
f(x)f ∗ f ∗ f(x)2

]
≥ Ex∈G [f(x)f ∗ f ∗ f(x)]2

Ex∈G[f ]
=

Ex∈G
[
f ∗ f(x)2

]2
Ex∈G[f ]

.

Now suppose that tL(f) = E[f ]7. It follows that
∑

ξ f̂(ξ)4 = E
[
f ∗ f(x)2

]
= E[f ]4, which means

f̂(ξ) = 0 for every ξ 6= 0. Therefore, L is forcing.
To see that L is not weakly norming, we apply Corollary 4.6. Indeed, L \ 1 is isomorphic to the

Schatten system x1 + x2 = x3 + x4, whereas L \ 4 is isomorphic to x1 + x2 + x3 = x4 + x5 + x6.

7 From norming hypergraphs to norming systems

In this section, we describe how (weakly) norming hypergraphs naturally give rise to (weakly) norm-
ing linear systems. Indeed, given a k-uniform hypergraph H, we may look at the homomorphism
density tH(W ) restricted to functions of the form W (x1, . . . , xk) := f(x1 + · · ·+ xk) for a function
f : Fnq → R. Then, in this Cayley setting, we have that

tH(W ) = E

 ∏
i1···ik∈E(H)

W (xi1 , . . . , xik)

 = E

 ∏
i1···ik∈E(H)

f(xi1 + · · ·+ xik)

 =: tLH
(f),
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where LH is the system of linear equations whose solution set is defined by the parametrisation

ye = xi1 + · · ·+ xik , e = {i1, . . . , ik} ∈ E(H).

We call LH the linear H-system and the parametrisation above the standard parametrisation of
Sol(LH).

To see that LH is (weakly) norming whenever H is, it is enough to observe that if f1, . . . , fe(H) :
Fnq → R are functions and We(x1, . . . , xk) := fe(x1 + · · ·+ xk) for each e ∈ E(H), then

tH(W1, . . . ,We(H)) = E

 ∏
e=i1···ik∈E(H)

We(xi1 , . . . , xik)


= E

 ∏
e=i1···ik∈E(H)

fe(xi1 + · · ·+ xik)

 = tLH
(f1, . . . , fe(H)).

Therefore, the inequality (1) holds for L = LH if and only if the corresponding inequality

|tH(W1, . . . ,We(H))| ≤
∏

e∈E(H)

‖We‖H

holds, where ‖W‖H := |tH(W )|1/e(H). To summarise, we have the following result.

Proposition 7.1. The linear H-system LH is (weakly) norming whenever H is (weakly) norming.

Though our focus in this paper is on norming systems of equations, we note that a similar result
holds for Sidorenko and common systems. That is, for example, that any Sidorenko hypergraph
gives rise to a Sidorenko system of equations. This gives a simple mechanism for producing many
examples of Sidorenko and common systems, though it also suggests that the classification of such
systems will be difficult.

We now give some examples of weakly norming systems that come from weakly norming hyper-
graphs.

Example 7.2. Let H = Ka,b, the complete bipartite graph on A ∪ B with |A| = a and |B| = b,
which is one of the simplest examples of a weakly norming graph. Then

tLH
(f) = E

 ∏
(a,b)∈A×B

f(xa + yb)

 ,
where the expectation is taken over uniform random vectors (xa)a∈A ∈ GA and (yb)b∈B ∈ GB. The
corresponding norms are the so-called grid norms, which played a key role in the recent paper [8].
In particular, if a = b = 2, then tLH

(f) = E [f(x1 + y1)f(x2 + y1)f(x1 + y2)f(x2 + y2)], which
corresponds to the fourth power of the Gowers U2-norm. Moreover, if a = 2 and b = 3, then one
can check that LH is isomorphic to the 2× 6 linear system given in Example 2.4.

Example 7.3. For H-systems, the subdivision operation defined in Section 5 can be viewed in
purely graph-theoretic terms. Indeed, if H is a norming r-graph, let H+ and H− be two vertex-
disjoint copies of H, both also vertex-disjoint from H. For an edge e ∈ E(H), let e+ and e− be
the edges corresponding to e in H+ and H−, respectively. The 2-blow-up extension of H, denoted
by β2(H), is then the (r+ 1)-graph on V (H+)∪ V (H−)∪E(H), whose edges are those sets of the
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form e+ ∪{e} and e− ∪{e}. A standard application of the Cauchy–Schwarz inequality implies that
β2(H) is also norming, a fact which first appeared implicitly in [3].

We claim that the subdivision sub(LH) of LH is equal to the β2(H)-system. To see this,
enumerate E(H) and E(β2(H)) by the integers in [k] and [2k] in such a way that the (2i − 1)-th
and the 2i-th edges of β2(H) are obtained by adding a common vertex to two copies of the i-th
edge of H, respectively. Then each vector (z1, z2, . . . , z2k) in Sol(Lβ2(H)) can be parameterised by
z2j−1 = yj +xj and z2j = y′j +xj , where (y1, . . . , yk) and (y′1, . . . , y

′
k) are vectors in Sol(LH) and xj

is a free variable. Therefore, if (y1, . . . , yk) satisfies a1y1 + · · ·+ akyk = 0 and (y′1, . . . , y
′
k) satisfies

a1y
′
1 + · · ·+ aky

′
k = 0, then (z1, z2, . . . , z2k) satisfies the equation a1(z1 − z2) + a2(z3 − z4) + · · ·+

ak(z2k−1 − z2k) = 0, which is in sub(LH). Conversely, if (z1, z2, . . . , z2k) satisfies a linear equation
b1z1 + b2z2 + · · ·+ b2kz2k = 0, then b2i−1 = b2i must hold, since otherwise the free variable xi does
not vanish. It therefore follows that the equation is in sub(LH).

To give a concrete example, ifH = C4, then β2(H) is the line 3-graph of a cube, denoted byM(3)
in [3]. The H-system for H = M(3), the line 3-graph of a cube, is therefore the subdivision of LC4

and is defined by the single linear equation x1 + x2 + x3 + x4 = y1 + y2 + y3 + y4, which is just the
L8-norm of the spectrum.

For graphs H, it is reasonably straightforward to determine the corresponding system of linear
equations LH . The first step is to specify the set of all minimal linear dependencies between
variables.

Theorem 7.4. Let LH be the linear H-system defined by a graph H and let F ⊆ E(H) be an edge
subset. Then {ye : e ∈ F} in the standard parametrisation of LH is a minimal linearly dependent
set if and only if F is an even cycle in H.

Proof. It is straightforward to see that {ye : e ∈ F} is a minimal linearly dependent set of variables
if F is an even cycle. Let us re-index the variables in such a way that F = [2k] and yi = xi + xi+1,
where the addition of indices is taken modulo 2k. Then

∑2k
j=1(−1)jyj = 0 and every proper subset

of {y1, . . . , y2k} is linearly independent.
Conversely, suppose that {ye : e ∈ F} is a minimal linearly dependent set of variables. Then F

must be the edge set of a subgraph, which, abusing notation slightly, we also call F , with minimum
degree at least two. In particular, F contains an even cycle with edge set F ′ ⊆ F ; however,
{ye : e ∈ F ′} is a linearly dependent set of variables, which means F = F ′.

The cycle matroid of a graph H is the matroid defined on the edge set E(H) of a graph H whose
independent sets are those edge subsets of H which do not contain a cycle. In other words, every
minimal dependent set, i.e., every circuit, is the edge set of a cycle, which for (weakly) norming
graphs H, which are necessarily bipartite, exactly corresponds to the minimal linear dependence
condition in Theorem 7.4. Hence, for (weakly) norming graphs H, the map e 7→ ye is a matroid
isomorphism from the cycle matroid of H to {ye : e ∈ E(H)}. This observation now allows us to
compute the rank of the linear system LH .

Proposition 7.5. Let LH be the linear H-system defined by a (weakly) norming graph H. Then
LH has rank |E(H)| − |V (H)| + κ(H), where κ(H) denotes the number of connected components
in H.

Proof. It is a standard fact that the rank of the cycle matroid of a graph H is |V (H)| − κ(H), the
number of edges in a spanning forest of H. Therefore, the dimension of Sol(LH), which is the rank
of {ye : e ∈ E(H)}, is also |V (H)| − κ(H), so the rank of the matrix LH with columns indexed by
E(H) is |E(H)| − |V (H)|+ κ(H).
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Together, Proposition 7.5 and Theorem 7.4 allow us to explicitly write out the m × k linear
system LH corresponding to a bipartite graph H in matrix form in two steps. First, compute the
rank m of LH using Proposition 7.5. Second, assign alternating signs to the edges in each cycle of
H. Once we find m such cycles whose corresponding ±1 row vectors are linearly independent, we
are done.

Example 7.6. Let H be the 1-subdivision of the complete graph Kt. That is, we replace each edge
of Kt with a path of length two. By the results of [5], this is a connected weakly norming graph for
every t ≥ 3, though it was shown in [15] that it is not norming for any t ≥ 4. As |E(H)| = t(t− 1)
and |V (H)| = t + t(t − 1)/2 = t(t + 1)/2, LH has rank t(t − 3)/2 + 1. In particular, if t = 4, this
gives the 3× 12 system given in Example 5.9.

For another example, let H = Ka,b as given in Example 7.2. Then we have an m × k system
LH with m = (a − 1)(b − 1) and k = ab. In particular, we can write the 4 × 9 matrix LH for the
case a = b = 3 as 

1 −1 1 −1
−1 1 −1 1

−1 1 1 −1
−1 1 1 −1

 .

Thus, the grid norms generalise Example 2.4 in a different way to Example 5.7.

Unfortunately, the simple characterisation of minimal dependent sets given in Theorem 7.4
does not generalise in a straightforward manner to hypergraphs. A generalisation, if it exists, must
at least depend on the characteristic of the underlying field Fq. To illustrate the dependence on
the characteristic, suppose first that Fq is a field of characteristic 2. Then the set of variables
{ye : e ∈ F} for an edge subset F ⊆ E(H) in the standard parametrisation of the linear H-system
LH is linearly dependent if and only if F is an even-degree subgraph. That is, the number of edges
of F incident to each vertex must be even. For example, let {xi + yj + zk : i, j, k ∈ {0, 1}} be the
standard parametrisation of the linear H-system LH , where H is the ‘octahedron’ 3-graph. This
is the standard 3-graph that defines the Gowers octahedral norm, while LH defines the Gowers
U3-norm. Then {xi + yj + zk : i+ j + k = 0 mod 2} is a minimal linearly dependent set. However,
this is not the case over other characteristics. Indeed, if {xi + yj + zk : i + j + k = 0 mod 2} is a
linearly dependent set of variables, then

∑
i+j+k even cijk(xi + yj + zk) = 0 for some cijk ∈ {±1};

however, one may easily check that this is impossible for characteristics other than 2.
Before moving on, let us show that every linear H-system L defined by a norming graph H

gives a norm which is topologically equivalent to the Gowers U2-norm.

Theorem 7.7. Let H be a norming graph and let L be the linear H-system. Then, for every ε > 0
and any f : G→ R with |f | ≤ 1, the following hold:

(i) ‖f‖L ≤ ε implies ‖f‖U2 ≤ ε2/e(H) and

(ii) ‖f‖U2 ≤ ε implies ‖f‖L ≤ ε.

Proof. By Theorem 5.1, every norming system contains a Schatten equation of length 2` for some
` ∈ [2, e(H)/2]. Thus, ‖f‖L ≤ ε implies

∑
ξ |f̂(ξ)|2` ≤ ε by Corollary 3.3. In particular, we must

have |f̂(ξ)|2 ≤ ε1/` for all ξ. Since the U2-norm arises from the equation x1 − x2 + x3 − x4 = 0, we
have by Proposition 2.3 and Plancherel’s theorem that

‖f‖U2 =
∑
ξ∈Ĝ

|f̂(ξ)|4 ≤

(
max
ψ∈Ĝ
|f̂(ψ)|2

)∑
ξ∈Ĝ

|f̂(ξ)|2 =

(
max
ψ∈Ĝ
|f̂(ψ)|2

)
Ex∈G|f(x)|2 ≤ ε1/`,

25



yielding the required conclusion.
Conversely, let H be a graph on vertex set [d]. Since a norming graph must have at least one

edge, we may assume that {1, 2} is an edge of H. By the definition of L = LH , we then have

‖f‖e(H)
L = Ex1,...,xd∈G

 ∏
ij∈E(H)

f(xi + xj)



=

Ex2,...,xd∈G

[ ∏
ij∈E(H)

1/∈ij

f(xi + xj)

]
Ex1∈G

[ ∏
j∈N(1)

f(x1 + xj)

] .

By the Cauchy–Schwarz inequality, this is at mostEx2,...,xd∈G


( ∏
ij∈E(H)

1/∈ij

f(xi + xj)

)2




1/2 (
Ex2,...,xd∈GEx1,x′1∈Gf(x1 + xj)f(x′1 + xj)

)1/2
.

Using the fact that |f | ≤ 1 and applying Cauchy–Schwarz once more, we see that this is at most(
Ex3,...,xd∈GEx1,x′1,x2,x′2∈Gf(x1 + x2)f(x′1 + x2)f(x1 + x′2)f(x′1 + x′2)

)1/4
.

Since (x1 + x2, x
′
1 + x2, x1 + x′2, x

′
1 + x′2) parametrises the solutions of y1 − y2 − y3 + y4 = 0, this is

precisely the U2 norm of f .

Example 7.8. Theorem 7.7 does not generalise to hypergraphs, in that, for r ≥ 3, different r-
graphs may define inequivalent systems. Example 7.3 shows that the line 3-graph of a cube gives
rise to the L8-norm of the spectrum. This is equivalent to the U2-norm, whereas the ‘octahedron’
3-graph gives rise to the U3-norm. On the other hand, Hatami, Hatami and Lovett [13] proved
that ‖ · ‖L is equivalent to the Uk-norm for some k whenever L is a norming system, so norming
hypergraphs H always give rise to norms ‖ · ‖LH

that are equivalent to some Uk-norm.

8 Complex-valued functions

Gowers norms were originally defined for complex-valued functions [11]. For instance, for any
function f : G→ C,

‖f‖4U2
:= E

[
f(x1)f(x2)f(x3)f(x4)

]
,

where the expectation is taken over all solutions to the equation x1 − x2 − x3 + x4 = 0 and, unlike
the real-valued case, some of the f ’s have been conjugated. The question we will be concerned with
here is whether, for a given (real-)norming system, it is possible to assign conjugates in a similar
fashion so that the system defines a norm on the space of complex-valued functions. We stress that
here we are only concerned with norming systems, since weakly norming systems have an absolute
value under the expectation which makes the distinction moot.

The analogous question for graphs was already answered in the affirmative by Lee and Sidorenko
[15], who proved that, given a (real-)norming graph, there exists a conjugation assignment under
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which the graph density defines a norm for complex-valued functions. That is, the (real-)norming
property is equivalent to the complex-norming property. In this section, following their technique,
we prove that the same holds for linear systems.

Let L be an m × k linear system and α a 0/1-valued function defined on [k]. The complex
L-density tL,α with respect to α is defined by

tL,α(f) := E(x1,...,xk)∈Sol(L)

[
k∏
i=1

f(xi)
α(i)f(xi)

1−α(i)

]
.

That is, we use f(xi) if α(i) = 0 and f(xi) otherwise for each i ∈ [k]. We say that the pair (L,α)
is complex-norming if |tL,α(f)|1/k defines a norm on the space of complex-valued functions on Fnq
for every n. With this notation, the main result of this section is as follows.

Theorem 8.1. Let L be an m × k norming system. Then there exists α : [k] → {0, 1} such that
(L,α) is complex-norming.

To prove Theorem 8.1, we need some notation. Let F be the set of all complex-valued functions
defined on FN

q with finite support. That is, each f ∈ F can be seen as a complex-valued function on

Fnq for a large enough n. Following [15], we define a decoration functional on Fk to be a function

from Fk to C that satisfies the following conditions:

(i) |τ(cf1, . . . , cfk)| = |c|k|τ(f1, . . . , fk)| for each c ∈ C;

(ii) τ(f1, . . . , fi−1, g + ah, fi+1, . . . , fk)
= τ(f1, . . . , fi−1, g, fi+1, . . . , fk) + aτ(f1, . . . , fi−1, h, fi+1, . . . , fk)

for any f1, . . . , fk, g, h ∈ F and any real number a;

(iii) τ(f1, . . . , fk) = τ(f1, . . . , fk);

(iv) τ(f1 ⊗ g1, . . . , fk ⊗ gk) = τ(f1, . . . , fk) τ(g1, . . . , gk).

For brevity, we will sometimes write τ(f) = τ(f, . . . , f). Following [15], we set sL(f1, . . . , fk) :=
maxα |tL,α(f1, . . . , fk)|, where the maximum is taken over all α : [k] → {0, 1}. Then sL(·) only
satisfies a weaker ‘subadditivity’ property rather than the linearity condition (ii), namely,

(ii’) |τ(f1, . . . , fi−1, g + h, fi+1, . . . , fk)|
≤ |τ(f1, . . . , fi−1, g, fi+1, . . . , fk)|+ |τ(f1, . . . , fi−1, h, fi+1, . . . , fk)|.

If τ satisfies (i) and (ii’), then we say that τ is a weak decoration functional. In particular, sL(·)
is a weak decoration functional. By adapting the proof of Proposition 2.1, we have the following
lemma.

Lemma 8.2. Let τ be a weak decoration functional on Fk. Then |τ(·)|1/k is a seminorm on F if,
for any f1, . . . , fk ∈ F ,

|τ(f1, . . . , fk)|k ≤
k∏
i=1

|τ(fi)| .

The converse also holds if τ is a decoration functional.

This in turn allows us to verify the following property of sL(·). Since the proof is verbatim the
same as that of [15, Lemma 5.5], we omit it.
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Corollary 8.3. Let L be an m× k norming system. Then sL(·)1/k is a norm on F .

We will also need the following easy fact [15, Lemma 2.2] saying that |τ(·)|1/k is a seminorm if
and only if |τ(·)| is convex.

Lemma 8.4. Let τ be a weak decoration functional on Fk. Then |τ(·)|1/k is a seminorm on F if
and only if |τ(·)| is convex, i.e., |τ(1

2(f + g))| ≤ 1
2(|τ(f)|+ |τ(g)|) for all f, g ∈ F .

Thus, combining Corollary 8.3 with this lemma shows that sL(·) is a convex functional.

Corollary 8.5. Let L be an m× k norming system. Then sL(·) is convex on F .

The final ingredient we need is the following lemma [15, Lemma 2.3], which says that the
convexity of sL(·) implies the convexity of some |tL,α(·)| under appropriate technical conditions.
To state the conditions, we need some more definitions. A density functional is a functional of the
form τ(f) = τ(f, f, . . . , f) where τ is a decoration functional (and, crucially, not a weak decoration
functional). A set C in a vector space F is called algebraically open at f ∈ C if, for any g ∈ F , there
exists ε > 0 such that f + xg ∈ C for each x ∈ (−ε, ε). We simply say that C is algebraically open
if it is algebraically open at every f ∈ C.

Lemma 8.6. Let τ1, τ2, . . . , τr be non-negative real-valued density functionals on F that satisfy:

(a) τ(f) := maxj τj(f) is convex on F ;

(b) for each j ∈ [r], there is f ∈ F such that max`6=j τ`(f) < τj(f);

(c) for any non-empty algebraically open subset C ⊆ F , there is f ∈ C such that τj(f) > 0 for all
j ∈ [r].

Then there exists j ∈ {1, 2, . . . , r} such that τj(·) is convex.

With these results in hand, we are now ready to prove Theorem 8.1, which states that every
norming system is also complex norming under an appropriate conjugation assignment.

Proof of Theorem 8.1. Let us first give a brief sketch. By Corollary 8.5, we already know that
sL(·) is convex, which verifies condition (a) of Lemma 8.6 for τ = sL and τ1, . . . , τr any collection
of functionals of the form |tL,α|. Therefore, if (b) and (c) hold, there exists |tL,α(·)| that is convex.
Finally, Lemma 8.4 and the ‘converse’ part of Lemma 8.2 show that (L,α) is norming, with the
latter excluding the possibility that |tL,α(·)|1/k defines a seminorm that is not a norm.

Thus, it remains to verify the technical conditions (b) and (c) in Lemma 8.6. Let A be a minimal
collection of 0/1-valued functions on [k] such that sL(f) = maxα∈A |tL,α(f)|. Then (b) immediately
follows from minimality once we take τ1, . . . , τr to be the collection of |tL,α| with α ∈ A.

It therefore suffices to verify (c). For 0/1-valued functions α1, . . . , αr on [k], consider the aug-
mented function α : [rk]→ {0, 1} that maps each j ∈ [rk] to αq(i) if j = (q− 1)k+ i for 1 ≤ i ≤ k.
Let L(r) be the rm × rk system obtained by taking the disjoint union of r copies of the m × k
system L, i.e.,

L(r) =


L · · ·

L · · ·
. . .

· · · L
· · · L

 .
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Let g be the constant function 1 and let f ∈ C for an algebraically open set C ⊆ F . Then there
exists ε > 0 such that C contains all functions of the form f + xg with x ∈ (−ε, ε). The function
P (x) := tL(r),α(f + xg) is a polynomial of degree rk with complex coefficients, since the coefficient

tL(r),α(f + xg) of xrk is tL(r),α(g) = 1 6= 0. Thus, P (x) has only a finite number of zeros on
the interval (−ε, ε) and, therefore, there exists some c ∈ (−ε, ε) and h = f + cg ∈ G such that∏r
i=1 tL,αi(h) = tL(r),α(h) = P (c) 6= 0.

9 Concluding remarks

Some surprisingly basic questions about the structure of weakly norming systems remain open. For
instance, while we have shown that every weakly norming system must include a Schatten vector
in its row space, it remains open as to whether every weakly norming system has a basis consisting
only of Schatten vectors. Moreover, if this is true, is it the case that there is a basis for the row
space consisting of Schatten vectors all of which have the same support size?

In Section 7, we saw that each (weakly) norming hypergraph gives rise to a (weakly) norming
linear system. But is it the case that every weakly norming linear system arises in this way? If so,
then the conjecture (see, for instance, [5, 15]) that every weakly norming hypergraph is associated
to a finite reflection group in a specific way would also extend to weakly norming linear systems.
Since Fourier techniques are available to us in the latter context, it may be that such statements
are then easier to prove.
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