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Abstract

Hypergraph expanders are hypergraphs with surprising, non-intuitive
expansion properties. In a recent paper, the first author gave a simple con-
struction, which can be randomized, of 3-uniform hypergraph expanders
with polylogarithmic degree. We generalize this construction, giving a
simple construction of r-uniform hypergraph expanders for all r ≥ 3.

1 Introduction

An expander is a sparse graph with the property that every small vertex subset
expands, that is, is adjacent to many vertices outside of the set. The study
of expanders has occupied a central place in both mathematics and computer
science for the last forty years, finding numerous applications across both areas.
We refer the reader to the detailed surveys [10] and [14] for further information.

That expanders exist was first shown by Pinsker [25], who observed that ran-
dom regular graphs are almost surely expanders. Since his result, many different
methods have been developed for constructing expanders, some completely ex-
plicit and some retaining elements of randomness: using representation theory
and Kazhdan’s property (T), as done by Margulis [20] when he found the first
explicit construction; by taking finite quotients of an infinite tree, a procedure
used by Margulis [21] and by Lubotzky, Phillips and Sarnak [16] to produce Ra-
manujan graphs, graphs with optimal spectral properties; the zig-zag product
approach of Reingold, Vadhan and Wigderson [26]; through random lifts [2], an
idea which has recently led to constructions of bipartite Ramanujan graphs [19]
of all degrees; and by taking random Cayley graphs [1, 3]. Since the last of these
will be important to us in what follows, let us say a little more.
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The basic result on the expansion of random Cayley graphs is due to Alon
and Roichman [1]. Their result is best explained in terms of spectral properties.
Writing AG for the adjacency matrix of a graph G, we let λ(G) be the maximum
absolute value of a non-trivial eigenvalue of AG. We then say that a d-regular
graph G is an ε-expander if λ(G) ≤ (1−ε)d. By Cheeger’s inequality, a standard
result in the area, the spectral condition implies that every vertex subset U of G
with |U | ≤ |V (G)|/2 has at least ε

2 |U | neighbours outside of U , so G conforms
with our intuitive idea of what an expander should be. The Alon–Roichman
theorem now says that for any 0 < ε < 1 there exists C such that if a finite group
has n elements then the Cayley graph generated by C log n random elements
of this group is almost surely an ε-expander. This theorem is easily seen to be
best possible when the group is Ft2, the case which will be of most relevance to
us here.

In recent years, a theory of hypergraph, or high-dimensional, expanders has
begun to emerge. The literature in this area is already quite large, but a good
place to start exploring might be with the recent ICM survey by Lubotzky [15].
Many different definitions have been proposed for hypergraph expansion, each
with their own strengths and weaknesses. Intriguingly, one of the few points
of consensus among these definitions is that random hypergraphs are not good
models for hypergraph expansion.

What then is a good model? The prototype for all subsequent constructions
(and, in effect, the foundation on which the entire area is built) are the Ramanu-
jan complexes of Lubotzky, Samuels and Vishne [17], Li [13] and Sarveniazi [27].
In the same way that Ramanujan graphs are built as finite quotients of infinite
trees, inheriting many properties of these trees, Ramanujan complexes are fi-
nite quotients of Bruhat–Tits buildings and again inherit properties from these
buildings.

To say more about their properties, let us fix some terminology. An r-
uniform hypergraph is a pair H = (V,E) where E ⊆

(
V
r

)
. The elements of V

are called vertices and the elements of E are called r-edges. A k-edge of H is a
k-element subset of an r-edge. A hypergraph is D-regular if every (r − 1)-edge
is contained in exactly D of the r-edges. Then one property of Ramanujan
complexes is that they are regular.

This is already a non-trivial property to obtain, especially if the number of
edges in the hypergraph is linear in the number of vertices, as it is for Ramanu-
jan complexes. But one might hope for more. The property that has drawn
the most attention in the literature is Gromov’s notion of topological expan-
sion [8] and its weaker relative, geometric expansion. We say that an r-uniform
hypergraph H, seen as a simplicial complex, is an ε-topological expander if for
any continuous map ϕ from the complex into Rr−1 there exists a point p such
that ϕ−1(p) intersects an ε-fraction of the edges of H. Geometric expansion
is defined similarly but only needs to hold for affine maps φ defined by first
mapping the vertices of H and then extending the map to the convex hull us-
ing linearity. That Ramanujan complexes are geometric expanders was shown
in [7], while topological expansion (of a hypergraph derived from Ramanujan
complexes) was shown in [6, 11].
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The property we will be particularly concerned with here is very different,
but also very natural, being a generalization of the notion of graph expansion de-
fined earlier. Given an r-uniform hypergraph H, define its walk graph Gwalk(H)
to be the graph whose vertices are the (r− 1)-edges of H with an edge between
two (r − 1)-edges if they are contained in a common r-edge. We say that H is
an ε-expander if Gwalk(H) is an ε-expander. In particular, this implies that the
random walk defined by starting at any (r−1)-edge and then repeatedly moving
to an adjacent (r − 1)-edge chosen uniformly at random converges rapidly to
the uniform distribution. For Ramanujan complexes, this latter property was
verified by Kaufman and Mass [12].

The main result of this paper is a simple construction of such expanders for
all uniformities r ≥ 3, building significantly on earlier work of the first author [4]
which applied in the 3-uniform case. The construction in [4] is surprisingly
simple: given an expanding Cayley graph over Ft2 with generating set S, define
H to be the hypergraph with vertex set Ft2 and 3-edges (x + s1, x + s2, x + s3)
for x ∈ Ft2 and s1, s2, s3 ∈ S distinct. Then H is a hypergraph expander. For
higher uniformities, the construction is not quite so simple, though it also not
much more complicated.

1.1 The construction

We work with the following parameters: r ≥ 3, the uniformity of our hyper-
graph; t, the dimension of our base vector space; S ⊂ Ft2, the generating set of
our underlying Cayley graph; and ε > 0, the degree of expansion of this Cayley
graph. We will typically make the following three assumptions.

Assumption 1. For r ≥ 3, t and S ⊂ Ft2, the set S satisfies |S| ≥ 22r.

Assumption 2. For r ≥ 3, t and S ⊂ Ft2, the sum s1 + · · ·+ sl is different for
every choice of 0 ≤ l ≤ 2r and every choice of distinct {s1, . . . , sl} ⊂ S.

Assumption 3. For t, ε > 0 and S ⊂ Ft2, the graph Cay(Ft2, S) is an ε-
expander.

In practice, for r ≥ 3 and ε > 0 fixed, we will let C be a sufficiently large
constant in terms of r and ε and take t sufficiently large in terms of C, r and
ε. If we then define S to be a uniform random set S ⊂ Ft2 of size |S| = Ct,
the assumptions are all satisfied with high probability. Indeed, Assumption 1 is
obvious, Assumption 2 follows from a first moment calculation and Assumption
3 follows from the Alon–Roichman theorem [1].

Let P be a collection of subsets of [r] defined as follows:

P =

{
{I ⊂ [r] : 1 ≤ |I| < r/2} if r is odd,

{I ⊂ [r] : 1 ≤ |I| < r/2 or |I| = r/2 and 1 ∈ I} if r is even.
(1.1)

Observe that {∅}∪P is a downward-closed family of subsets of [r] that contains
exactly one of I and Ic for each I ⊆ [r].
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Let T ⊂ SP be the set of |P|-tuples

T = {(sI)I∈P : sI ∈ S distinct}. (1.2)

For x ∈ Ft2 and s ∈ T , define e(x, s) to be the ordered r-tuple

e(x, s) =

x+
∑
I∈P
i∈I

sI


1≤i≤r

.

In the above equation and throughout this paper we always use the convention
that the bold-face letters s, t,u refer to elements of T . The coordinates of these
tuples are then named by subscripted normal-print letters, e.g., s = (sI)I∈P .

For r ≥ 3, t and S ⊂ Ft2 satisfying Assumptions 1, 2, define Hr,t,S to be the
r-uniform hypergraph whose vertex set is Ft2 and with {v1, . . . , vr} an r-edge if
and only if there exists some x ∈ Ft2 and s ∈ T such that e(x, s) = (v1, . . . , vr).
Note that Assumption 2 implies that every r-tuple e(x, s) for s ∈ T has distinct
coordinates.

The 3-uniform hypergraph H3,t,S has 3-edges {x + s1, x + s2, x + s3} for
x ∈ Ft2 and s1, s2, s3 ∈ S distinct. This is exactly the hypergraph considered
in [4]. The r = 4 case will be spelled out explicitly for the sake of illustration
in the next subsection.

Recall that for an r-uniform hypergraph H, we use Gwalk(H) to denote the
graph whose vertices are the (r − 1)-edges of H where two (r − 1)-edges are
connected if and only if they are contained in a common r-edge of H. The main
result of this paper is that if Cay(Ft2, S) is an ordinary expander graph then
Hr,t,S is a hypergraph expander in the sense that Gwalk(Hr,t,S) is an expander
graph.

Theorem 1.1. For r ≥ 3, t, ε > 0 and S ⊂ Ft2 satisfying Assumptions 1, 2, 3,
there exists a constant c = c(r) > 0 such that the walk graph Gwalk(Hr,t,S) is a
cε-expander.

We also prove a generalization of this theorem to all lower-order random
walks. For an r-uniform hypergraph H and for 1 ≤ k ≤ r − 1, define the k-th

order walk graph G
(k)
walk(H) to be the graph whose vertices are the k-edges of H

where two k-edges are connected if and only if they are contained in a common
(k + 1)-edge of H.

Theorem 1.2. For r ≥ 3, t, ε > 0 and S ⊂ Ft2 satisfying Assumptions 1, 2, 3,
there exists a constant c = c(r) > 0 such that for every 1 ≤ k ≤ r − 1, the k-th

order walk graph G
(k)
walk(Hr,t,S) is a cε-expander.

We also prove a discrepancy result about Hr,t,S similar to the conclusion
of a high-dimensional expander mixing lemma. For an r-uniform hypergraph
H = (V,E) and V1, . . . , Vr ⊆ V , define eH(V1, . . . , Vr) to be the number of
r-tuples (v1, . . . , vr) ∈ V1 × · · · × Vr such that {v1, . . . , vr} ∈ E.
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Theorem 1.3. For r ≥ 3, t, ε > 0 and S ⊂ Ft2 satisfying Assumptions 1, 2, 3
and V1, . . . , Vr ⊆ V ,∣∣∣∣eHr,t,S (V1, . . . , Vr)−

|S|(|S| − 1) · · · (|S| − (2r−1 − 2))

(2t)r−1
|V1| · · · |Vr|

∣∣∣∣
≤ (1− ε)2r|S|2

r−1−1(|V1| · · · |Vr|)1/r.

When ε is sufficiently close to 1 in terms of r, an argument in [23, 24] allows
us to deduce that Hr,t,S is a geometric expander. The idea is simple. By a
result of Pach [22], for any set of n points in Rr−1, there are r sets A1, . . . , Ar,
each of order at least cn, and a point p ∈ Rr−1 such that p is contained in
the convex hull of {a1, . . . , ar} for all a1, . . . , ar with ai ∈ Ai for i = 1, . . . , r.
But Theorem 1.3 implies that a positive fraction of the edges in Hr,t,S have one
vertex in each of A1, . . . , Ar. Since all of these contain p, the desired conclusion
follows.

1.2 Proof techniques (the r = 4 case)

We illustrate the main features of the construction by exploring the r = 4 case.
Fix S ⊂ Ft2 such that the sum s1 + · · · + s` is different for every choice of
0 ≤ ` ≤ 16 and s1, . . . , s` ∈ S distinct. Define

T = {(s1, s2, s3, s4, s12, s13, s14) ∈ S7 : s1, s2, s3, s4, s12, s13, s14 distinct}.

Then for x ∈ Ft2 and s ∈ T , define the ordered 4-tuple

e(x, s) =

(x+s1 +s12+s13+s14,
x +s2 +s12 ,
x +s3 +s13 ,
x +s4 +s14).

The 4-uniform hypergraph H4,t,S has vertices Ft2 and 4-edges {v1, v2, v3, v4}
where e(x, s) = (v1, v2, v3, v4) for some x ∈ Ft2 and s ∈ T .

At first sight it might seem that there is a distinguished vertex in each 4-edge,
but this is an artifact of our presentation. For example, consider the ordered
4-tuple

(x +s2 +s12 ,
x+s1 +s12+s13+s14,
x +s3 +s13 ,
x +s4 +s14).

(1.3)

If we define t by t1 = s2, t2 = s1, t3 = s3, t4 = s4, t12 = s12, t13 = s14,
t14 = s13, and set y = x+ s13 + s14, then one can easily check that

e(y, t) =

(x+ s13 + s14+s2 +s12+s14+s13,
x+ s13 + s14 +s1 +s12 ,
x+ s13 + s14 +s3 +s14 ,
x+ s13 + s14 +s4 +s13)
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is exactly the same as (1.3).
Define the graph G4,t,S to have vertex set Ft2×T with an edge between (x, s)

and (y, t) if e(x, s) and e(y, t) agree in all but one coordinate. This graph is
dual to Gwalk(H4,t,S) in a sense that will be made precise later on. A theme
that recurs throughout this paper is that we will typically prove that G4,t,S

has some desired property and then deduce that the same property holds for
Gwalk(H4,t,S).

In this case, we wish to prove that Gwalk(H4,t,S) is an expander, so we might
want to first prove that G4,t,S is an expander. Let us start with the easier
problem of showing that G4,t,S is connected.

Start at the vertex (x, s) = (x, (s1, s2, s3, s4, s12, s13, s14)). This vertex is
adjacent to (x, s(1)) = (x, (t12, s2, s3, s4, s12, s13, s14)) since

e(x, s) =

(x+s1 +s12+s13+s14,
x +s2 +s12 ,
x +s3 +s13 ,
x +s4 +s14),

e(x, s(1)) =

(x+t12 +s12+s13+s14,
x +s2 +s12 ,
x +s3 +s13 ,
x +s4 +s14)

(1.4)

agree in all but the first coordinate.
Vertex (x, s(1)) is adjacent to (x, s(2)) = (x, (s12, s2, s3, s4, t12, s13, s14)) since

e(x, s(1)) =

(x+t12 +s12+s13+s14,
x +s2 +s12 ,
x +s3 +s13 ,
x +s4 +s14),

e(x, s(2)) =

(x+s12 +t12+s13+s14,
x +s2 +t12 ,
x +s3 +s13 ,
x +s4 +s14)

(1.5)

agree in all but the second coordinate.
Repeating these two steps two more times produces a path of length four

from (x, s(2)) to (x, s(6)) = (x, (s14, s2, s3, s4, t12, t13, t14)), where t12, t13, t14 are
arbitrary elements of S. Repeating a step similar to (1.4) four times produces
a path of length four from (x, s(6)) to (x, s(10)) = (x, (t1, t2, t3, t4, t12, t13, t14)),
where t1, t2, . . . , t14 are arbitrary.

We call this procedure ‘Boolean bubbling’ because it has the following inter-
pretation. The coordinates of s are indexed by the bottom half of the Boolean
lattice of rank four. Now the above procedure allows us to insert a new value
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at the bottom of the Boolean lattice (1.4) and then ‘bubble’ it up the lattice
(1.5). Repeating this procedure allows us to change the value of s arbitrarily.1

s12 s13 s14

s1 s2 s3 s4

∅

s12 s13 s14

t s2 s3 s4

∅

a

t s13 s14

s12 s2 s3 s4

∅

a
(1.4) (1.5)

Let us pause to talk about two details of this procedure that we have not
mentioned yet. First, we have to make sure that each new value we ‘bubble’ up
the lattice does not disturb previous values we have inserted. This is an easy
problem to deal with: as long as we bubble up values to the top level before
dealing with the lower level, future steps will not disturb previous ones. Second,
recall that the coordinates of s must be distinct at every step of the process.
This might be a problem if we wish to find a path from (x, s) to (x, t) where, for
example, s4 = t12. The easiest way to get around this problem is to pick a new
u whose coordinates are disjoint from both s and t and then use the Boolean
bubbling procedure to construct a path from (x, s) to (x,u) and then to (x, t).

Boolean bubbling allows us to construct a path in G4,t,S from a vertex (x, s)
to any vertex of the form (x, t). To walk to an arbitrary (y, t), we only need
one further ingredient.

Given a vertex (x, t) = (x, (t1, t2, t3, t4, t12, t13, t14)), this vertex is adjacent
to (x′, t′) = (x+ t3 + t14, (t1, t2, t14, t4, t12, t13, t3)) since

e(x, t) =

(x+t1 +t12+t13+t14,
x +t2 +t12 ,
x +t3 +t13 ,
x +t4 +t14),

e(x′, t′) =

(x+ t3 + t14+t1 +t12+t13+t3,
x+ t3 + t14 +t2 +t12 ,
x+ t3 + t14 +t14 +t13 ,
x+ t3 + t14 +t4 +t3)

(1.6)

agree in all but the second coordinate.
Now we claim that for any x, y which are adjacent in Cay(Ft2, (S + S) \

{0}), there is a path from (x, s) to (y, t) in G4,t,S . This follows using Boolean
bubbling and (1.6). Write y = x + a1 + a2 for a1, a2 distinct elements of S.
By Boolean bubbling, there is a path from (x, s) to some (x,u) where u3 = a1

1Note that (1.4) and (1.5) are essentially the same operation. The latter switches two
coordinates, sI and sIt{j}, while the former can be thought of as switching s∅ and sj . Since
s∅ does not affect the value of e(x, s), its value can be changed arbitrarily. We take advantage
of this to insert new values.
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and u14 = a2. Then (x,u) is adjacent to (y,u′) for some u′ by (1.6). Finally,
another application of Boolean bubbling gives a path from (y,u′) to (y, t). Since
Assumption 3 easily implies that Cay(Ft2, (S+S)\{0}) is also an expander, and
in particular connected, this argument shows that G4,t,S is connected as well.

Here is a convenient rephrasing of this argument which shows how we may
extend it to prove that G4,t,S is an expander. Define GCay to be the graph with
vertex set Ft2 × T with an edge between (x, s) and (y, t) if x, y are adjacent
in Cay(Ft2, (S + S) \ {0}). We write GM4,t,S for the multigraph which has one
edge between (x, s) and (y, t) for each walk of length M between these vertices
in G4,t,S . The argument above shows that for some M there is a copy of GCay

contained in GM4,t,S . Since GCay is connected, this proves that G4,t,S is connected.
To prove that G4,t,S is an expander we need a slightly stronger fact. Write

c ·GCay for the multigraph that has c edges for each edge of GCay. We need to
prove that for some M and c the graphs GM4,t,S and c ·GCay are approximately
the same in some appropriate sense. Establishing this fact requires showing that
for each (x, s) and (y, t) adjacent in GCay there are many paths between them
in G4,t,S . This can be done with a small modification of (1.5) and (1.6).

Suppose we are in the process of Boolean bubbling, having inserted t12 at the
bottom of the Boolean lattice. Let (x, s) = (x, (t12, s2, s3, s4, s12, s13, s14)) be the
current state. We would normally proceed as in (1.5) to bubble t12 up the lattice.
Instead, what we do is simultaneously bubble t12 up and insert an arbitrary ele-
ment a in place of s2. Explicitly, if we set (x, s′) = (x, (s12, a, s3, s4, t12, s13, s14)),
then (x, s) and (x, s′) are adjacent since

e(x, s) =

(x+t12 +s12+s13+s14,
x +s2 +s12 ,
x +s3 +s13 ,
x +s4 +s14),

e(x, s′) =

(x+s12 +t12+s13+s14,
x +a +t12 ,
x +s3 +s13 ,
x +s4 +s14)

(1.5′)

still agree in all but the second coordinate. Replacing every move of type (1.5)
with one of type (1.5′) in the Boolean bubbling procedure gives not one path of
length M from (x, s) to (x, t), but instead on the order of |S|M−7 such paths.
Here the exponentM−7 comes from the fact that our modified Boolean bubbling
procedure gives on the order of |S|M paths of length M starting at (x, s) and
ending at a vertex of the form (x, t), while the number of choices for t is on
the order of |S|7. The full details of this procedure in the general r-uniform
construction are given in Section 2.2.

Similarly, we upgrade the moves of type (1.6) by inserting an arbitrary el-
ement a at the bottom of the lattice. In particular, suppose we are given a
vertex (x, t) = (x, (t1, t2, t3, t4, t12, t13, t14)). This vertex is adjacent to (x′, t′) =

8



(x+ t3 + t14, (t1, a, t14, t4, t12, t13, t3)) since

e(x, t) =

(x+t1 +t12+t13+t14,
x +t2 +t12 ,
x +t3 +t13 ,
x +t4 +t14),

e(x′, t′) =

(x+ t3 + t14+t1 +t12+t13+t3,
x+ t3 + t14 +a +t12 ,
x+ t3 + t14 +t14 +t13 ,
x+ t3 + t14 +t4 +t3)

(1.6′)

still agree in all but the second coordinate. This is the only additional ingredient
that we need to deduce that G4,t,S is an expander from the fact that GCay is an
expander.

To complete the proof, all that remains is to deduce the corresponding result
for Gwalk(H4,t,S). This will be immediate once we write down exactly in what
sense G4,t,S and Gwalk(H4,t,S) are dual to each other. We refer the reader to
Section 2.3 for the details.

2 Proof of main theorem

2.1 Degree properties

We start by proving a couple of basic properties of our hypergraph Hr,t,S . We
find the number of representations each r-edge has of the form e(x, s) and com-
pute the number of r-edges of Hr,t,S containing a given (r − 1)-edge.

Lemma 2.1. Recall T from (1.2). For r, t, S satisfying Assumption 2, the
ordered r-tuples e(x, s) for x ∈ Ft2 and s ∈ T are all distinct.

Proof. Suppose e(x, s) = e(x′, s′) for x, x′ ∈ Ft2 and s, s′ ∈ T . Then this implies
that

ei(x, s) + ej(x, s) = ei(x
′, s′) + ej(x

′, s′)

for each 1 ≤ i < j ≤ r. We rewrite this equation as∑
I∈P

|{i,j}∩I|=1

sI =
∑
I∈P

|{i,j}∩I|=1

s′I .

By Assumption 2 on S, this implies that

{sI : I ∈ P with |{i, j} ∩ I| = 1} = {s′I : I ∈ P with |{i, j} ∩ I| = 1} (2.1)

for each 1 ≤ i < j ≤ r.
We claim that the above equation implies that s = s′. To see this, fix I ⊆ [r]

and consider the pairs (i, j) ∈ [r]2 such that i 6= j and |{i, j} ∩ I| = 1. This
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condition is satisfied if and only if (i, j) ∈ (I × Ic)∪ (Ic× I). Note that the sets
(I × Ic) ∪ (Ic × I) are distinct for all I ∈ P and are non-empty. This is true
simply because ∅, [r] 6∈ P and if I ∈ P then one has Ic 6∈ P.

Thus for I ∈ P the element sI is present on the left-hand side of (2.1) if
and only if (i, j) ∈ (I × Ic) ∪ (Ic × I) and no other sJ has the same property.
Furthermore, s′I is present on the right-hand side of (2.1) if and only if (i, j) ∈
(I × Ic) ∪ (Ic × I) and no other s′J has the same property. Since the left- and
right-hand sides of (2.1) are equal for all 1 ≤ i < j ≤ r, this implies that sI = s′I
for all I ∈ P.

To complete the proof, note that

x = e1(x, s) +
∑
I∈P
1∈I

sI = e1(x′, s′) +
∑
I∈P
1∈I

s′I = x′,

as required. �

This implies that given an r-edge e = {v1, . . . , vr} of Hr,t,S there are at most
r! possible e(x, s) that it corresponds to, one for each ordering of its vertices. We
claim that this is an equality. This is immediate for r odd. Suppose e(x, s) =
(v1, . . . , vr). For a permutation π ∈ Sr define sπ by sπI = sπ(I) where π(I) =
{π(i) : i ∈ I}. Then e(x, sπ) = (vπ(1), . . . , vπ(r)). This argument does not work
for r even since for some I ∈ P, there are π such that π(I) 6∈ P. However, the
same result follows easily from the next lemma.

Lemma 2.2. Fix r even and S ⊂ Ft2. Recall T from (1.2). For each (x, s) ∈
Ft2 × T , there exists (y, t) ∈ Ft2 × T such that e(y, t) is the same as e(x, s) but
with the first two coordinates swapped.

Proof. Let π be the transposition that swaps 1 and 2. Write P = P1 tP2 tP3,
where P1 = {I ⊂ [r] : 0 < |I| < r/2}, P2 = {I ⊂ [r] : |I| = r/2 and 1, 2 ∈ I}
and P3 = {I ⊂ [r] : |I| = r/2, 1 ∈ I and 2 6∈ I}. Note that for I ∈ P1 one
has π(I) ∈ P1, while for I ∈ P2 one has π(I) = I ∈ P2. Finally, note that for
I ∈ P3 one has π(Ic) ∈ P3.

Now let

tI =

{
sπ(I) if I ∈ P1 ∪ P2,

sπ(Ic) if I ∈ P3

and
y = x+

∑
I∈P3

sI .

We claim that e(y, t) has the desired property. We refer the reader to (1.3) for
the r = 4 case. For the general case, note that for I ∈ P1 ∪ P2 one has i ∈ I
if and only if π(i) ∈ π(I). Moreover, for I ∈ P3 one has i ∈ I if and only if
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π(i) 6∈ π(Ic). Therefore,

ei(y, t) = x+
∑
I∈P3

sI +
∑

I∈P1∪P2
i∈I

sπ(I) +
∑
I∈P3
i∈I

sπ(Ic)

= x+
∑
I∈P3

sI +
∑

I∈P1∪P2
π(i)∈I

sI +
∑
I∈P3
π(i)6∈I

sI

= x+
∑
I∈P3
π(i)∈I

sI +
∑

I∈P1∪P2
π(i)∈I

sI

= eπ(i)(x, s). �

Next we use a similar technique to the proof of Lemma 2.1 to compute the
degree of each (r − 1)-edge in the hypergraph Hr,t,S . Recall that the degree of
an (r − 1)-edge is the number of r-edges that it is contained in. Note that in
light of Lemma 2.2 and the discussion preceding it, the degree of the (r − 1)-
edge formed by the set of all coordinates of e(x, s) but the k-th is exactly the
number of (x′, s′) ∈ Ft2 × T such that e(x, s) and e(x′, s′) agree in all but the
k-th coordinate.

Lemma 2.3. Recall T from (1.2). For r, t, S satisfying Assumption 2, (x, s) ∈
Ft2 × T and 1 ≤ k ≤ r, there are exactly(

|S| − (2r−1 − 2)
)

22r−2−1

pairs (x′, s′) ∈ Ft2 × T such that e(x, s) and e(x′, s′) agree in all but (possibly)
the k-th coordinate.

Proof. First we construct the desired number of pairs (x′, s′). To begin, note
that for each I ∈ P exactly one of the following three statements holds:

1. there exists a unique J ∈ P such that either J = I t {k} or I = J t {k};2

2. there exists J ∈ P such that I t J = [r] \ {k};

3. I = {k}.

To see this, note that if k ∈ I, then we can let J = I \ {k} except in the case
I = {k}. On the other hand, if k /∈ I, we can let J = I t {k} unless |I| = br/2c
or r is even, k 6= 1 and |I| = r/2 − 1 with 1 /∈ I. But in both these cases, we
can take J to be the complement of I in [r] \ {k}.

For I ∈ P satisfying condition 1 and J ∈ P the unique set satisfying either
J = I t {k} or I = J t {k}, define (x′, s′) by

x′ = x

2We use the notation J = I t {k} to imply that the sets I and {k} are disjoint and that J
is their union.
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and

s′K =


sJ if K = I,

sI if K = J,

sK otherwise.

Note that ei(x, s) = ei(x
′, s′) for i 6= k.

For I ∈ P satisfying condition 2 and J ∈ P given by I tJ = [r] \ {k}, define
(x′, s′) by

x′ = x+ sI + sJ

and

s′K =


sJ if K = I,

sI if K = J,

sK otherwise.

Note that ei(x, s) = ei(x
′, s′) for i 6= k. For example, suppose i ∈ I. Then

ei(x
′, s′) = x+ sI + sJ +

∑
K∈P
i∈K

s′K

= x+ sI + sJ + s′I +
∑
K∈P

i∈K and K 6=I

s′K

= x+ sI +
∑
K∈P

i∈K and K 6=I

sK

= ei(x, s).

A similar computation covers the complementary case i ∈ J .
For I = {k} and any a ∈ S such that a 6= sK for all K ∈ P \ {{k}}, define

(x′, s′) by
x′ = x

and

s′K =

{
a if K = I,

sK otherwise.

Note that ei(x, s) = ei(x
′, s′) for i 6= k.

Note that P \ {{k}} is partitioned into 2r−2 − 1 disjoint pairs {I, J} where
either J = I t{k}, I = J t{k} or I t J = [r] \ {k}. Using a combination of the

three operations described above, we can find
(
|S| − (2r−1 − 2)

)
22r−2−1 pairs

(x′, s′) ∈ Ft2 × T satisfying ei(x, s) = ei(x
′, s′) for i 6= k: we choose whether

or not to swap each of the 2r−2 − 1 pairs {I, J} and there are |S| − (2r−1 − 2)
choices for the value of s′{k}.

Now we prove that these are the only (x′, s′) with the desired property.
Suppose (x′, s′) ∈ Ft2 × T satisfies ei(x, s) = ei(x

′, s′) for i 6= k. As in the proof
of Lemma 2.1, this implies

{sI : I ∈ P with |{i, j} ∩ I| = 1} = {s′I : I ∈ P with |{i, j} ∩ I| = 1} (2.2)
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for 1 ≤ i < j ≤ r with i 6= k and j 6= k.
For I ∈ P, define AI ⊂ ([r] \ {k})2 by

AI = (I \ {k})× (Ic \ {k}) ∪ (Ic \ {k})× (I \ {k}).

Note that sI appears on the left-hand side of (2.2) if and only if (i, j) ∈ AI .
Note that AI 6= ∅ for I 6= {k}. Now partition P \ {{k}} into equivalence classes
under the relation I ∼ J if AI = AJ . The same argument as in the proof of
Lemma 2.1 then implies that for any equivalence class Π ⊂ P \ {{k}}, we have

{sI}I∈Π = {s′I}I∈Π.

Now it is easy to see that these equivalence classes are exactly the pairs {I, J}
described earlier with J = I t{k}, I = J t{k} or I tJ = [r]\{k}. Therefore, if

ei(x, s) = ei(x
′, s′) for i 6= k, then s′ must be one of the (|S|−(2r−1−2))22r−2−1

elements that we have already found. Finally, note that for fixed i and x, s, s′,
there is a unique x′ satisfying the equation ei(x, s) = ei(x

′, s′). Therefore, there
are exactly the desired number of pairs (x′, s′). �

2.2 Expansion properties

Given r ≥ 3, t and S ⊂ Ft2, write Gr,t,S for the graph with vertex set Ft2 × T
and with an edge between (x, s) and (y, t) if and only if the ordered r-tuples
e(x, s) and e(y, t) differ in exactly one coordinate.

For a graph G, we use the notation GM to refer to the multigraph with
the same vertex set as G whose edges between u and v correspond to the M -
step walks in G from u to v. We will prove that Gr,t,S is an expander under
Assumptions 1, 2, 3 by first showing that there is some constant M = M(r) such
that GMr,t,S contains an expander as a dense subgraph. The specific expander we

will find is a multigraph on the vertex set Ft2 × T with c edges between (x, s)
and (y, t) whenever xy is an edge in Cay(Ft2, (S+S) \ {0}). In the next section,
we will show that this result implies that Gr,t,S is an expander.

We prove the claimed combinatorial properties of Gr,t,S in three stages. First
we show how to change the value of sI for some specific I without changing x
or too many of the other sJ ’s. Then we iterate this to walk from (x, s) to (x, t)
for arbitrary t. Finally, we combine this walk with our second type of move to
walk from (x, s) to (y, t) for y an arbitrary neighbor of x in the Cayley graph
Cay(Ft2, (S + S) \ {0}) and t arbitrary.

Lemma 2.4. Given r, t, S satisfying Assumption 1, there is a constant c =
c(r) > 0 such that for each I ∈ P, each (x, s) ∈ Ft2 × T and each a ∈ S distinct
from all coordinates of s, there are at least c|S||I|−1 walks of length |I| in Gr,t,S
which begin at (x, s) and end at an element of the form (x, s′), where s′I = a
and sJ = s′J for all J ∈ P with J * I.

Proof. Write I = {k1, . . . , kl}. Then define Ii = {k1, . . . , ki}. To walk from
(x, s) to a vertex of the form (x, s′) in Gr,t,S we insert a at I1 and then bubble it
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up to I2, I3, . . . , Il = I. This finds one such path; to find many paths we insert
arbitrary values a2, . . . , al at the bottom of the lattice on all steps but the first.

Fix a2, . . . , al. Write s0 = s and define s1 by

s1
I =

{
a if I = I1 = {k1},
sI otherwise.

(2.3)

Inductively define s2, . . . , sl by

siI =


si−1
Ii−1

= a if I = Ii,

si−1
Ii

if I = Ii−1,

ai if I = {ki},
si−1
I otherwise.

(2.4)

We claim that e(x, si−1) and e(x, si) agree everywhere except for the ki-th
coordinate. For i = 1, the r = 4 case is given in (1.4) and for 2 ≤ i ≤ l, the
r = 4 case is given in (1.5′). Consider

ej(x, s
1) = x+

∑
I∈P
j∈I

s1
I .

For j 6= k1, the fact that j ∈ I implies that I 6= {k1}, so s1
I = s0

I . Thus, e(x, s0)
and e(x, s1) agree in all but the k1-th coordinate. Similarly, consider

ej(x, s
i) = x+

∑
I∈P
j∈I

siI .

For j 6= k1, . . . , ki, the fact that j ∈ I implies that siI = si−1
I . Furthermore, for

j = k1, . . . , ki−1, the sum can be written as

ej(x, s
i) = x+ siIi−1

+ siIi +
∑
I∈P

j∈I and I 6=Ii−1,Ii

siI

= x+ si−1
Ii

+ si−1
Ii−1

+
∑
I∈P

j∈I and I 6=Ii−1,Ii

si−1
I

= ej(x, s
i−1).

Thus, e(x, si−1) and e(x, si) agree in all but the ki-th coordinate.
Finally, note that as long as a2, . . . , al are distinct from one another and from

a and all the coordinates of s, then the tuples s1, . . . , sl all lie in T . Therefore,
we have found a walk of length l = |I| from e(x, s) to e(x, s′) for each valid
sequence a2, . . . , a|I|, of which there are (|S| − 2r−1)(|S| − (2r−1 + 1)) · · · (|S| −
(2r−1 + |I| − 2)) ≥ c|S||I|−1 by Assumption 1. �
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Remark 2.5. Suppose we are in the setup of Lemma 2.4, but we are also given a
set X not containing a or any of the coordinates of s. Suppose we wish to count
walks of length |I| from (x, s) to an element of the form (x, s′) such that s′I = a
and sJ = s′J for all J ∈ P with J * I as before, but now with the additional
restriction that no coordinate of s′ can lie in X. The argument above still covers
this case, giving one walk for each choice of a2, . . . , a|I| which are distinct from
one another and from a, all coordinates of s and all elements of X. Thus, there
are at least (|S|−(2r−1+|X|))(|S|−(2r−1+|X|+1)) · · · (|S|−(2r−1+|X|+|I|−2))
walks. For X small enough, say |X| ≤ 2r, Assumption 1 still guarantees at least
c|S||I|−1 such walks.

Lemma 2.6. For r, t, S satisfying Assumption 1, there exist constants c =
c(r) > 0 and M ′ = M ′(r) such that for x ∈ Ft2 and s, t ∈ T , there are at least
c|S|M ′−|P| walks of length M ′ from (x, s) to (x, t) in Gr,t,S.

Proof. Fix any u ∈ T whose set of coordinates are disjoint from those of s and
t. Fix an ordering I1, I2, . . . , I|P| of P so that Ii 6⊆ Ij for i < j. We use the
notation

u
`
 v

to refer to an `-step walk in Gr,t,S from u to v.
Our goal is to walk from (x, s) to (x,u) by bubbling uI1 up to I1, then

bubbling uI2 up to I2, and so on. Lemma 2.4 lets us perform each of these
individual steps as long as uIi , the element we wish to bubble up, is distinct
from all coordinates of the current vertex. Moreover, our choice of ordering
means that each successive bubbling does not disturb the previous ones. Thus,
it suffices to find many walks of the form

(x, s)
|I1|
 (x,u1)

|I2|
 (x,u2) · · · (x,u),

where ui ∈ T satisfies uiIj = uIj for all 1 ≤ j ≤ i and no coordinate of ui is
equal to uIj for j > i.

For each 1 ≤ i ≤ |P|, note that if uIi is distinct from all coordinates of ui−1,
Lemma 2.4 guarantees that the number of walks of the form

(x,ui−1)
|Ii|
 (x,ui)

is Ω(|S||Ii|−1).3 Furthermore, Remark 2.5 implies that we can still find this
many walks with no coordinate ui equal to uIj for j > i.

Multiplying these together, we see that there are Ω(|S|M ′′−|P|) walks of
length M ′′ from (x, s) to (x,u), where M ′′ =

∑
I∈P |I|. Setting M ′ = 2M ′′, we

conclude that there are Ω(|S|M ′−2|P|) walks of the form

(x, s)
M ′′

 (x,u)
M ′′

 (x, t)

3We use the notation Ω(f) to denote a quantity of size at least cf where c = c(r) > 0 is a
positive constant that only depends on the uniformity r.
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for each u whose coordinates are distinct from the coordinates of both s and t.
Since there are at least Ω(|S||P|) choices for u, summing over them gives the
desired result. �

Lemma 2.7. For r, t, S satisfying Assumption 1, there exist constants c =
c(r) > 0 and M = M(r) such that, given x adjacent to y in Cay(Ft2, (S+S)\{0})
and s, t ∈ T , there are at least c|S|M−|P|−2 walks of length M from (x, s) to
(y, t) in Gr,t,S.

Proof. Define

I1 =
{

3, 4, . . . ,
⌈r

2

⌉
+ 1
}

and
I2 =

{
1,
⌈r

2

⌉
+ 2,

⌈r
2

⌉
+ 3, . . . , r

}
.

The relevant properties of these two sets are that I1, I2 ∈ P, they are disjoint
and I1 ∪ I2 = [r] \ {2}.

Since x is adjacent to y in Cay(Ft2, (S+S)\{0}), we can write y = x+a1 +a2

for a1, a2 ∈ S. Suppose now that u ∈ T is such that uI1 = a1 and uI2 = a2 and
pick b ∈ S distinct from all coordinates of u. Define u′ by

u′I =


uI2 = a2 if I = I1,

uI1 = a1 if I = I2,

b if I = {2},
uI otherwise.

(2.5)

We claim that there are Ω(|S|2M ′−2|P|) walks of the form

(x, s)
M ′

 (x,u)
1
 (y,u′)

M ′

 (y, t).

By Lemma 2.6, there are Ω(|S|M ′−|P|) walks of length M ′ from (x, s) to (x,u)
and also from (y,u′) to (y, t). All that remains to be checked is that (x,u) and
(y,u′) are adjacent in Gr,t,S . We refer the reader to (1.6′) for the r = 4 example.
Now

ei(y,u
′) = x+ a1 + a2 +

∑
I∈P
i∈I

u′I .

For i ∈ I1, this can be written as

ei(y,u
′) = x+ a1 + a2 + u′I1 +

∑
I∈P

i∈I and I 6=I1

u′I

= x+ a1 +
∑
I∈P

i∈I and I 6=I1

uI

= ei(x,u).
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A similar computation shows that ei(x,u) = ei(y,u
′) for i ∈ I2. Therefore,

e(x,u) and e(y,u′) agree in all but the second coordinate.
Finally, note that there are Ω(|S||P|−1) choices for the pair (u,u′) given the

constraints that uI1 = a1, uI2 = a2 and u and u′ are related by (2.5). Setting
M = 2M ′ + 1 and summing over all choices of u,u′ with the above properties,
we see that there are Ω(|S|M−|P|−2) walks of length M from (x, s) to (y, t). �

2.3 Spectral properties

Lemma 2.8. For r ≥ 3, t, ε > 0 and S ⊂ Ft2 satisfying Assumptions 1, 2, 3,
there exists a constant c = c(r) > 0 such that Gr,t,S is a cε-expander.

Proof. This follows from Lemma 2.7 in three steps.
First we claim that Assumption 3 implies that Cay(Ft2, (S + S) \ {0}) is an

ε-expander. Note that

ACay(Ft2,(S+S)\{0}) =
1

2

(
A2

Cay(Ft2,S) − |S|I
)
.

To see this equation, note that Cay(Ft2, S)2 has an edge from x to x + s1 + s2

for each pair s1, s2 ∈ S. This differs from Cay(Ft2, (S + S) \ {0}) in that the
pairs with s1 = s2 contribute |S| loops at each vertex and every other edge is
double-counted since x+ s1 + s2 = x+ s2 + s1.

Now, by Assumption 3 and the above equation, it follows that the non-
trivial eigenvalues of Cay(Ft2, (S+S)\{0}) lie in

[
− 1

2 |S|,
1
2

(
(1− ε)2|S|2 − |S|

)]
.

This interval is contained within
[
− 1

2 (1− ε)(|S|2 − |S|), 1
2 (1− ε)(|S|2 − |S|)

]
,

proving that Cay(Ft2, (S + S) \ {0}) is an ε-expander.
Define the multigraph GCay to have vertex set Ft2 × T and c|S|M−|P|−2

edges between (x, s) and (y, t) whenever xy is an edge in Cay(Ft2, (S+S)\{0}).
Here c,M are the same as in the statement of Lemma 2.7. Note that GCay

is regular of degree d1 ≥ c′|S|M for some c′ = c′(r) > 0. We claim that
GCay is an ε-expander. To see this, note that GCay is the tensor product of
Cay(Ft2, (S + S) \ {0}) with another graph, namely, the complete graph on |T |
vertices with self-loops where every edge has multiplicity c|S|M−|P|−2. Then
the fact that Cay(Ft2, (S+S) \ {0}) is an ε-expander implies the same is true of
GCay.

Second, note that Lemma 2.3 implies that GMr,t,S is regular of degree d2 ≤
c′′|S|M for some c′′ = c′′(r). By Lemma 2.7, we know that GCay is a subgraph
of GMr,t,S . Thus,

AGMr,t,S
= AGCay + AGMr,t,S\GCay

.

Here GMr,t,S \GCay is a (d2 − d1)-regular graph, which implies that

λ(GMr,t,S) ≤ λ(GCay) + (d2 − d1) ≤ (1− ε) d1 + (d2 − d1) =

(
1− d1

d2
ε

)
d2.

Since d1 ≥ c′|S|M and d2 ≤ c′′|S|M , we conclude that GMr,t,S is a c′

c′′ ε-expander.
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Third, the equation
AGMr,t,S

= AM
Gr,t,S

implies that

λ(Gr,t,S) ≤
(

1− c′

c′′M
ε

)
d,

where d is the degree of Gr,t,S . Since c′, c′′,M are all constants that depend
only on r, this proves the desired result. �

Finally, we use this result to prove the main theorem.

Theorem 1.1. For r ≥ 3, t, ε > 0 and S ⊂ Ft2 satisfying Assumptions 1, 2, 3,
there exists a constant c = c(r) > 0 such that the walk graph Gwalk(Hr,t,S) is a
cε-expander.

Proof. In this proof we consider three graphs: Gr,t,S , Gwalk(Hr,t,S) and a third
graph that we will call G′walk(Hr,t,S). The graph Gr,t,S was defined in the pre-
vious section; its vertices are pairs (x, s) ∈ Ft2 × T . The graph Gwalk(Hr,t,S)
is the walk graph whose vertices are (r − 1)-edges of Hr,t,S with an edge ef if
there is some common r-edge that contains both e and f . We define the graph
G′walk(Hr,t,S) dually to have vertices the r-edges of Hr,t,S with an edge ef if there
is some common (r − 1)-edge contained in both e, f . By Lemma 2.3, we know
that there is some D such that every (r−1)-edge of Hr,t,S is contained in exactly
D of the r-edges. Then Gwalk(Hr,t,S) is (r − 1)D-regular and G′walk(Hr,t,S) is
r(D − 1)-regular.

Define a map π : V (Gr,t,S) → V (G′walk(Hr,t,S)) that sends (x, s) to the un-
ordered underlying set of e(x, s). Then this map defines a graph homomorphism
π : Gr,t,S → G′walk(Hr,t,S). By Lemma 2.2, these two graphs have the same de-
gree and π is r!-to-1 on both the vertex- and edge-sets. We claim that this im-
plies that λ(G′walk(Hr,t,S)) ≤ λ(Gr,t,S). For any eigenvector ~v ∈ RV (G′walk(Hr,t,S)),
we can lift ~v to a vector π−1~v ∈ RV (Gr,t,S) that is constant on the fibers
of π. The above properties of π easily imply that π−1~v is an eigenvector of
Gr,t,S with the same eigenvalue as ~v. Thus, by Lemma 2.8, we conclude that
λ(G′walk(Hr,t,S)) ≤ (1 − cε)r(D − 1) for some c = c(r) satisfying 0 < c < 1/2.
(If the value of c which comes out of Lemma 2.8 is not less than 1/2, we can
reduce it to 1/2 without changing the validity of this eigenvalue bound.)

Let B be the incidence matrix whose rows are indexed by the (r − 1)-edges
of Hr,t,S and whose columns are indexed by the r-edges of Hr,t,S . Note that the
adjacency matrices of Gwalk(Hr,t,S) and G′walk(Hr,t,S) satisfy

AG′walk(Hr,t,S) + rI = BTB

and
AGwalk(Hr,t,S) +DI = BBT .

Therefore, the non-trivial eigenvalues of BTB lie in the interval [0, (1−cε)r(D−
1) + r]. (The lower bound follows since BTB is positive semi-definite.) Further-
more, BBT has the same eigenvalues as BTB with some 0’s removed. Therefore,
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the non-trivial eigenvalues of Gwalk(Hr,t,S) lie in the interval [−D, (1− cε)r(D−
1) + r − D]. Since r ≥ 3, c < 1/2 and D ≥ r, this interval is contained in
[−(1− cε)(r − 1)D, (1− cε)(r − 1)D]. �

3 Lower-order random walks

Given an r-uniform hypergraph H = (V,E), recall that a k-edge of H is a k-
element subset of V that is contained in an r-edge of H. Two different k-edges
are said to be adjacent if there is some (k + 1)-edge of H that they are both
contained in. The k-th order random walk on H is a random walk that starts
at some k-edge of H and moves to a random adjacent k-edge of H repeatedly.

In the previous section, we showed that the (r− 1)-st order random walk on
Hr,t,S mixes rapidly. In this section, we extend this to prove that the k-th order
random walk mixes rapidly for all 1 ≤ k ≤ r − 1. We do this by proving that
the k-th order random walk on Hr,t,S behaves almost exactly the same as the
k-th order random walk on Hk+1,t,2r−k−1S′ where 2r−k−1S′ is a modification of
the 2r−k−1-fold sumset of S defined below.

In this section, we use Pr to refer to P of (1.1) and Tr(S) to refer to T of (1.2)
when confusion may arise. Define lS′ = {s1 + · · ·+ sl : s1, . . . , sl ∈ S distinct}.
For a hypergraph H, we write G

(k)
walk(H) for the graph whose vertices are the

k-edges of H with an edge between each pair of adjacent k-edges.

Let G
(k)
r,t,S be the graph whose vertices are the ordered k-tuples (ei(x, s))

k
i=1

for (x, s) ∈ Ft2 × T . Two vertices of G
(k)
r,t,S are adjacent if they agree in all

but one coordinate. Note that previously we defined the graph Gr,t,S to have

vertex set consisting of pairs (x, s). This definition agrees with G
(r)
r,t,S since for

(x, s) 6= (y, t) the r-tuples e(x, s) and e(y, t) are distinct. However, for k < r,
there may be many pairs (x, s) and (y, t) such that (ei(x, s))

k
i=1 = (ei(y, t))

k
i=1.

Our proof proceeds in three stages. First we show that G
(r−k)
r,t,S is an induced

subgraph of Gr−k,t,2kS′ . Second, we use this fact to prove that G
(r−k)
r,t,S is an

expander in the same manner as in Section 2. Third, we deduce from this that

G
(r−k−1)
walk (Hr,t,S) is an expander in the same manner as in the proof of Theorem

1.1.
Define T ′ ⊆ Tr−k(2kS′) by

T ′ =


 2k∑
a=1

sa,I


I∈Pr−k

: all the sa,I ∈ S are distinct

 . (3.1)

Note that this definition differs from that of Tr−k(2kS′) in that the latter set
is defined by the two conditions that for each I the elements {sa,I}1≤a≤2k are
distinct and the elements {

∑
a sa,I}I∈Pr−k are distinct. Since S satisfies As-

sumption 2 the condition that defines Tr−k(2kS′) is a weaker condition than the
one that defines T ′.
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Now define U ⊆ V (Gr−k,t,2kS′) by

U = Ft2 × T ′. (3.2)

We write Gr−k,t,2kS′ [U ] for the induced subgraph on vertex set U .
Let us briefly discuss the properties of Gr−k,t,2kS′ . Assume that r, t, S, ε

satisfy Assumptions 1, 2, 3. Obviously, r − k, t, 2kS′ still satisfy Assumption
1. Later on, we will show that t, 2kS′, cε still satisfy Assumption 3 for some
constant c. However, r−k, t, 2kS′ fail Assumption 2. To see this, suppose k = 1
and a, b, c, d ∈ S. Then a+ b, a+ c, b+ d, c+ d ∈ 2kS′, but (a+ b) + (c+ d) =
(a + c) + (b + d). This means that Lemmas 2.1 and 2.3 may not apply to
Gr−k,t,2kS′ . However, we will see that these lemmas still apply to Gr−k,t,2kS′ [U ].

Lemma 3.1. Recall T ′ from (3.1). For r, t, S satisfying Assumption 2 and
0 ≤ k ≤ r − 2, the ordered (r − k)-tuples e(x, s) for x ∈ Ft2 and s ∈ T ′ are all
distinct.

Proof. This follows from essentially the same proof as Lemma 2.1.

Suppose e(x, s) = e(x′, s′) for x, x′ ∈ Ft2 and s, s′ ∈ T ′, where sI =
∑2k

a=1 sa,I

and s′I =
∑2k

a=1 s
′
a,I with sa,I , s

′
a,I ∈ S. Then we know that

ei(x, s) + ej(x, s) = ei(x
′, s′) + ej(x

′, s′)

for 1 ≤ i < j ≤ r − k. This can be rewritten as

∑
I∈Pr−k
|{i,j}∩I|=1

2k∑
a=1

sa,I =
∑

I∈Pr−k
|{i,j}∩I|=1

2k∑
a=1

s′a,I .

Since the sa,I ’s are all distinct, the s′a,I ’s are all distinct and S satisfies Assump-
tion 2, the same argument as in Lemma 2.1 implies that {sa,I}a = {s′a,I}a for
each I ∈ Pr−k. Thus s = s′. Finally, since e1(x, s) = e1(x′, s′), this implies that
x = x′, as desired. �

Lemma 3.2. Recall U from (3.2). For r, t, S satisfying Assumption 2 and

0 ≤ k ≤ r − 2, the graph G
(r−k)
r,t,S is isomorphic to Gr−k,t,2kS′ [U ].

Proof. We will define maps ψ : V (Gr,t,S)→ V (G
(r−k)
r,t,S ) and φ : V (Gr,t,S)→ U ⊆

V (Gr−k,t,2kS′) and show that φ ◦ ψ−1 is a well-defined isomorphism between

G
(r−k)
r,t,S and Gr−k,t,2kS′ [U ].

Define ψ : V (Gr,t,S)→ V (G
(r−k)
r,t,S ) by ψ((x, s)) = (ei(x, s))

r−k
i=1 .

Next start by defining a map φ : Pr → Pr−k ∪ {∅}. For J ∈ Pr, note that
exactly one of J ∩ [r−k] and [r−k]\J lies in Pr−k∪{∅}. Let φ(J) be the one of
these two sets that lies in Pr−k∪{∅}. Note that for any I ∈ Pr−k∪{∅}, there are
exactly 2k sets J ∈ Pr such that φ(J) = I. Then φ : V (Gr,t,S)→ V (Gr−k,t,2kS′)
is given by φ((x, s)) = (y, t) where

tI =
∑
J∈Pr
φ(J)=I

sJ

20



and
y = x+

∑
J∈Pr

J∩[r−k]6∈Pr−k∪{∅}

sJ .

This map has two important properties. First, φ((x, s)) ∈ U ⊆ V (Gr−k,t,2kS′)
for any (x, s) ∈ V (Gr,t,S). Second, if φ((x, s)) = (y, t) then ei(x, s) = ei(y, t) for

1 ≤ i ≤ k− r. To see this property, write Pr = P(1)
r tP(2)

r , where P(1)
r consists

of those J such that J ∩ [r − k] ∈ Pr−k ∪ {∅} and P(2)
r consists of the other J .

Then note that

ei(y, t) = x+
∑

J∈P(2)
r

sJ +
∑

I∈Pr−k
i∈I

∑
J∈Pr
φ(J)=I

sJ

= x+
∑

J∈P(2)
r

sJ +
∑

J∈P(1)
r

i∈J

sJ +
∑

J∈P(2)
r

i6∈J

sJ

= ei(x, s).

By Lemma 3.1, this implies that φ((x, s)) = φ((x′, s′)) if and only if ei(x, s) =
ei(x

′, s′) for all 1 ≤ i ≤ r − k. This is the same condition as the one for

ψ((x, s)) = ψ((x, s′)). Therefore, we see that φ ◦ψ−1 : V (G
(r−k)
r,t,S )→ U is a well-

defined map that sends (v1, . . . , vr−k) to (y, t) ∈ U such that (ei(y, t))
r−k
i=1 =

(v1, . . . , vr−k). Therefore, φ ◦ ψ−1 is a graph isomorphism, as desired. �

Lemma 3.3. Recall U from (3.2). For r, t, S satisfying Assumption 2 and
0 ≤ k ≤ r − 2, there exist constants c = c(r) and D = D(r, k, |S|) such that the
induced subgraph Gr−k,t,2kS′ [U ] is D-regular with

D ≤ c|2kS′| ≤ c|S|2
k

.

Proof. This follows from a similar argument to Lemma 2.3.
Fix (x, s) ∈ Ft2×T ′ and 1 ≤ l ≤ r−k. We wish to count pairs (x′, s′) ∈ Ft2×T ′

such that ei(x, s) = ei(x
′, s′) for all i 6= l. Say s, s′ are defined by sI =

∑2k

a=1 sa,I

and s′I =
∑2k

a=1 s
′
a,I . We know that

∑
I∈Pr−k
|{i,j}∩I|=1

2k∑
a=1

sa,I =
∑

I∈Pr−k
|{i,j}∩I|=1

2k∑
a=1

s′a,I

for 1 ≤ i < j ≤ r − k with i 6= l and j 6= l.
As in the proof of Lemma 2.3, we partition Pr−k \ {{l}} into pairs {I, J}

where either J = I t {l}, I = J t {l} or I t J = [r − k] \ {l}. Using essentially
the same argument as in the proof of Lemma 2.3, we conclude that for each
such pair {I, J},

{sa,I}a ∪ {sa,J}a = {s′a,I}a ∪ {s′a,J}a.
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Therefore, for each (x, s) ∈ Ft2 × T ′ and 1 ≤ l ≤ r − k the number of pairs
(x′, s′) ∈ Ft2 × T ′ satisfying ei(x, s) = ei(x

′, s′) for all i 6= l is exactly equal to

(
|S| − (2r−1 − 2k+1)

2k

)(
2k+1

2k

)2r−k−2−1

.

The first term is the number of choices for s′{l} =
∑2k

a=1 s
′
a,{l} where the s′a,{l}

are distinct from the sa,I for I 6= {l}. The second term is the number of ways

to choose s′I =
∑2k

a=1 s
′
a,I and s′J =

∑2k

a=1 s
′
a,J given the set {s′a,I}a ∪ {s′a,J}a

for each of the 2r−k−2− 1 pairs {I, J} that Pr−k \ {{l}} is partitioned into. �

Lemma 3.4. For r, t, ε, S satisfying Assumptions 1, 3 and 0 ≤ k ≤ r− 2, there
exists a constant c > 0 such that Cay(Ft2, 2k+1S′) is a cε-expander.

Proof. For brevity, write m = 2k+1 and |S| = d. Let A denote the adjacency
matrix of Cay(Ft2, S) and let its eigenvalues be d = λ1 ≥ |λ2| ≥ · · · ≥ |λN |.

Observe that the edges in Cay(Ft2, S)m incident to vertex x are in bijection
with m-tuples (s1, . . . , sm) ∈ Sm, i.e., for each tuple there is an edge (x, x+s1 +
· · · + sm). Similarly, note that the edges in m! · Cay(Ft2,mS′) are in bijection
with the tuples (s1, . . . , sm) where all m coordinates are distinct.

For a partition P of [m], say that a tuple (s1, . . . , sm) is of type P if whenever
i, j are in the same part of P then si = sj . Write AP (S) for the multiset with
element s1 + · · ·+ sm for each (s1, . . . , sm) of type P .

By Möbius inversion, we know that

Am!·Cay(Ft2,mS′) =
∑
P

µ(P )ACay(Ft2,AP (S)),

where µ(P ) is the Möbius function (−1)m−|P |
∏
p∈P (|p|−1)!. For a partition P ,

let e(P ) be the number of even-sized parts and o(P ) be the number of odd-sized
parts. It is not hard to see that

ACay(Ft2,AP (S)) = de(P )Ao(P ).

Therefore, we conclude that

ACay(Ft2,mS′) =
1

m!

∑
P

µ(P )de(P )Ao(P ).

Write

f(x) =
1

m!

∑
P

µ(P )d|P |xo(P ).

Note that since m = 2k+1 is even, any partition of [m] has an even number of
odd-sized parts. Thus, f(x) is an even function. Therefore, the second largest
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eigenvalue of ACay(Ft2,mS′) is bounded in absolute value by sup0≤x≤1−ε |f(x)|.
We can upper bound f(x) by

f(x) ≤ (1− ε/2)
1

m!

∑
P

µ(P )d|P | − (1− ε/2− xm)
dm

m!

+
1

m!

∑
P 6=(1,...,1)

|µ(P )|d|P |
∣∣∣1− ε/2− xo(P )

∣∣∣ . (3.3)

The first term is exactly (1 − ε/2)
(
d
m

)
. To bound the last term, we use the

following inequality.

Claim 3.5. ∑
P`[m]
|P |=m−a

|µ(P )| ≤ m2a.

Proof. We use |µ(P )| =
∏
p∈P (|p| − 1)! ≤

∏
p∈P |p|!. Now∑

P`[m]
|P |=m−a

∏
p∈P
|p|!

has a combinatorial interpretation as the number of partitions of [m] into m−a
parts where the elements of each part are ordered. Such a partition can be
represented schematically as a directed graph on m labeled vertices where each
connected component is a directed path. The condition that the partition has
m − a parts is equivalent to the constraint that the graph has a edges. But
there are m(m− 1) choices for a single edge, so (m(m− 1))a ≤ m2a is a simple
upper bound on the number of m-vertex a-edge directed graphs. �

We are interested in the case where m = 2k+1 ≤ 2r−1 which, with Assump-
tion 1, implies that d ≥ 4m2. Together with Claim 3.5 this implies that

∑
P 6=(1,...,1)

|µ(P )|d|P | =
∑
a>1

∑
|P |=m−a

|µ(P )|dm−a ≤ dm
∑
a>1

(
m2

d

)a
≤ 2m2dm−1.

Using this with (3.3) gives

f(x) ≤ (1− ε/2)

(
d

m

)
− (1− ε/2− xm)

dm

m!

+ max{ε/2, 1− ε/2− xm}2m2dm−1

m!

for 0 ≤ x ≤ 1− ε, since
∣∣1− ε/2− xo(P )

∣∣ is extremized when o(P ) = 0,m. But

max{ε/2, 1− ε/2− xm}2m2dm−1

m!
≤ (1− ε/2− xm)

dm

m!
,
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since 1− ε/2− xm ≥ 1− ε/2− (1− ε) = ε/2 and 2m2dm−1

m! ≤ dm

m! . Therefore,

f(x) ≤ (1− ε/2)

(
d

m

)
.

For the lower bound, we use the analogous inequality

f(x) ≥ (1− ε/2)

(
d

m

)
− (1− ε/2− xm)

dm

m!

−max{ε/2, 1− ε/2− xm}2m2dm−1

m!
.

Since

max{ε/2, 1− ε/2− xm}2m2dm−1

m!
≤ 1

2
(1− ε/2− xm)

dm

m!
,

we conclude

f(x) ≥ (1− ε/2)

(
d

m

)
− 3

2
(1− ε)d

m

m!
.

Since d ≥ 4m2, we have(
d

m

)
≥
(
d−m
d

)m
dm

m!
≥
(

1− 1

4m

)m
dm

m!
≥ e−2/7dm/m!.

Combining these inequalities yields

f(x) ≥
(

1− 3

2
e2/7

)
(1− ε/2)

(
d

m

)
≈ −0.996(1− ε/2)

(
d

m

)
,

as required. �

Note that Lemma 2.7 only requires Assumption 1. Therefore, if we define
GCay to be the multigraph with vertex set Ft2×Tr−k(2kS′) and c|2kS′|M−|Pr−k|−2

edges between (x, s) and (y, t) if xy is an edge in Cay(Ft2, (2kS′ + 2kS′) \ {0}),
then we know that GMr−k,t,2kS′ contains GCay as a subgraph. Furthermore, it

(essentially) follows from Lemma 3.4 that GCay is an expander. However, this
does not imply that Gr−k,t,2kS′ is an expander since we do not have a degree
bound.

Lemma 3.3 gives us the required degree bound on Gr−k,t,2kS′ [U ], so to prove
that this subgraph is an expander all we need to do is prove that GCay[U ] is a
subgraph of Gr−k,t,2kS′ [U ]M . This follows by the same technique as in the proof
of Lemma 2.7 with some small modifications.

Lemma 3.6. Given r, t, S satisfying Assumption 1 and 0 ≤ k ≤ r − 2, there
exists a constant c = c(r) > 0 such that for each I ∈ Pr−k, each (x, s) ∈ Ft2×T ′
and each a ∈ 2kS′ disjoint from all coordinates of s, there are at least c|2kS′||I|−1

walks of length |I| in Gr−k,t,2kS′ [U ] which begin at (x, s) and end at an element
of the form (x, s′) where s′I = a and sJ = s′J for all J ∈ Pr−k with J * I.
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Proof. Following the proof of Lemma 2.4, write |I| = l and note that for each
sequence a2, . . . , al ∈ 2kS′ we can define s = s0, s1, . . . , sl by (2.3) and (2.4)
such that each pair e(x, si) and e(x, si+1) agree in all but one coordinate.

These are exactly the desired paths as long as s1, . . . , sl lie in T ′. To satisfy
this condition we simply need to pick a2, . . . , al disjoint from each other and
from a and the coordinates of s. The number of ways to do this(
|S| − 2r−1

2k

)(
|S| − 2r−1 − 2k

2k

)
· · ·
(
|S| − 2r−1 − (l − 2)2k

2k

)
≥ c|2kS′|l−1.

The inequality follows by Assumption 1. �

Lemma 3.7. Given r, t, S satisfying Assumption 1 and 0 ≤ k ≤ r − 2, there
exist constants c = c(r) > 0 and M ′ = M ′(r − k) such that for x ∈ Ft2 and
s, t ∈ T ′, there are at least c|2kS′|M ′−|Pr−k| walks of length M ′ from (x, s) to
(x, t) in Gr−k,t,2kS′ [U ].

Proof. Following the proof of Lemma 2.6, fix u ∈ T ′ all of whose coordinates are
disjoint from all the coordinates of both s and t. By exactly the same argument,
we can repeatedly use Lemma 3.6 to find c|2kS′|M ′−2|Pr−k| walks of length M ′

from (x, s) to (x,u) to (x, t). Finally, note that there are(
|S| − (2r − 2k+1)

2k

)(
|S| − (2r − 2k+1)− 2k

2k

)
· · ·
(
|S| − (2r − 2k+1)− (|Pr−k| − 1)2k

2k

)
≥ c′|2kS′||Pr−k|

choices for u, completing the proof. �

Lemma 3.8. Given r, t, S satisfying Assumption 1 and 0 ≤ k ≤ r − 2, there
exist constants c = c(r) > 0 and M = M(r − k) such that, given x adjacent to
y in Cay(Ft2, 2k+1S′) and s, t ∈ T ′, there are at least c|2kS′|M−|Pr−k|−2 walks
of length M from (x, s) to (y, t) in Gr−k,t,2kS′ [U ].

Proof. Following the proof of Lemma 2.7, let I1, I2 be disjoint elements of Pr−k
such that I1tI2 = [r−k]\{2}. Now since x is adjacent to y in Cay(Ft2, 2k+1S′),
there exist a1, a2 ∈ 2kS′ such that y = x + a1 + a2. For any u ∈ T ′ satisfying
uI1 = a1 and uI2 = a2 and any b disjoint from all coordinates of u, define u′

as in (2.5). Then, by the exact same argument, we can use Lemma 3.7 twice
to find c|2kS′|2M ′−2|Pr−k| walks of length M = 2M ′ + 1 from (x, s) to (x,u) to
(y,u′) to (y, t). Finally, note that there are(

|S| − 2 · 2k

2k

)(
|S| − 3 · 2k

2k

)
· · ·
(
|S| − |Pr−k| · 2k

2k

)
≥ c′|2kS′||Pr−k|−1

choices for (u,u′), completing the proof. �

Lemma 3.9. For r ≥ 3, t, ε > 0 and S ⊂ Ft2 satisfying Assumptions 1, 2, 3

and 0 ≤ k ≤ r − 2, there exists a constant c = c(r) > 0 such that G
(r−k)
r,t,S is a

cε-expander.
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Proof. Following the proof of Lemma 2.8, define GCay to be the multigraph
with vertex set U and c|2kS′|M−|Pr−k|−2 edges between (x, s) and (y, t) if xy
is an edge in Cay(Ft2, 2k+1S′). Here c,M are the same constants as in the
proof of Lemma 3.8. Note that GCay is regular of degree d1 ≥ c′|2kS′|M for
some c′ = c′(r) > 0. Furthermore, by Lemma 3.4, we know that GCay is a
c∗ε-expander.

By Lemma 3.3, we know that Gr−k,t,2kS′ [U ]M is regular of degree d2 ≤
c′′|2kS′|M for some c′′ = c(r) and, by Lemma 3.8, we know that GCay is a
subgraph of Gr−k,t,2kS′ [U ]M . By the exact same proof as Lemma 2.8, this
implies that Gr−k,t,2kS′ [U ] is a c0ε-expander for some c0 depending on c′, c′′, c∗

and M . Since this graph is isomorphic to G
(r−k)
r−k,t,S , this proves the desired

result. �

Theorem 1.2. For r ≥ 3, t, ε > 0 and S ⊂ Ft2 satisfying Assumptions 1, 2, 3,
there exists a constant c = c(r) > 0 such that for every 1 ≤ k ≤ r − 1, the k-th

order walk graph G
(k)
walk(Hr,t,S) is a cε-expander.

Proof. First assume that k > 1. This case is essentially the same as the proof
of Theorem 1.1 from Lemma 2.8.

By Lemma 3.3, we know that there is some Dk such that every k-edge of
Hr,t,S is contained in exactly Dk of the (k + 1)-edges.

As before, we consider three graphs: G
(k+1)
r,t,S , G

′(k+1)
walk (Hr,t,S), G

(k)
walk(Hr,t,S).

The vertices of G
(k+1)
r,t,S are ordered (k + 1)-tuples (v1, . . . , vk+1) such that there

exists (x, s) ∈ Ft2 × T with vi = ei(x, s). We define G
′(k+1)
walk (Hr,t,S) to be the

graph whose vertices are the unordered (k+1)-edges of Hr,t,S where two (k+1)-
edges are adjacent if they contain a common k-edge. We know that the first two
of these graphs are (k+1)(Dk−1)-regular, while the third graph is kDk-regular.

Now define a graph homomorphism π : G
(k+1)
r,t,S → G

′(k+1)
walk (Hr,t,S) that sends a

vertex (v1, . . . , vk+1) to the vertex {v1, . . . , vk+1}. These two graphs are regular
of the same degree and, by Lemma 2.2 and the discussion preceding it, the
preimage of each vertex has size (k + 1)!. As in the proof of Theorem 1.1, it

follows that λ(G
′(k+1)
walk (Hr,t,S)) ≤ λ(G

(k+1)
r,t,S ) ≤ (1− cε)(k + 1)(Dk − 1).

Next define B to be the incidence matrix whose rows are indexed by the
k-edges of Hr,t,S and whose columns are indexed by the (k + 1)-edges of Hr,t,S .
We know that

A
G
′(k+1)
walk (Hr,t,S)

+ (k + 1)I = BTB

and
A
G

(k)
walk(Hr,t,S)

+DkI = BBT .

From the first equation, we conclude that the non-trivial eigenvalues of BTB lie
in the interval [0, (1− cε)(k+ 1)(Dk − 1) + k+ 1], so the non-trivial eigenvalues

of G
(k)
walk(Hr,t,S) lie in the interval [−Dk, (1− cε)(k + 1)(Dk − 1) + k + 1−Dk].

Since k ≥ 2, Dk ≥ k + 1 and choosing c such that cε < 1/2, this interval is
contained in [−(1− cε)kDk, (1− cε)kDk].
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Now assume that k = 1. Note that a first order random walk on Hr,t,S is
exactly the same as an ordinary random walk on the graph Cay(Ft2, 2r−2S′).
By Lemma 3.4, we know that Cay(Ft2, 2r−2S′) is a cε-expander, completing the
proof. �

4 A discrepancy result

For H = (V,E) an r-uniform hypergraph and V1, . . . , Vr ⊆ V , let eH(V1, . . . , Vr)
be the number of tuples (v1, . . . , vr) ∈ V1 × · · · × Vr such that {v1, . . . , vr} ∈ E.
In this self-contained section, we prove that our hypergraph Hr,t,S satisfies
the pseudorandomness condition that eHr,t,S (V1, . . . , Vr) is always close to its
expected value. For simplicity, we write e(V1, . . . , Vr) for eHr,t,S (V1, . . . , Vr)
throughout this section.

A general result of this type was proven by Parzanchevski [23], saying that
the desired pseudorandomness condition holds under essentially the hypothesis
on the spectra of all the adjacency matrices that we proved in Theorem 3.9.

However, Parzanchevski’s result only applies when |λ2|
λ1

< ε0(r) where ε0(r) is
a small constant depending on the uniformity, while we have only proved that
|λ2|
λ1

< 1− c(r)ε where ε is the expansion parameter of the original Cayley graph
and c(r) is a very small constant depending on the uniformity. We will therefore
use a different proof method.

In this section, Q will denote an arbitrary multiset supported in 2[r]. For
such a Q and (x, s) ∈ Ft2 × SQ, define

eQ,i(X, s) = x+
∑
I∈Q
i∈I

sI .

Write eQ(x, s) for the r-tuple (eQ,1(x, s), . . . , eQ,r(x, s)).
We wish to compute e(V1, . . . , Vr), the number of pairs (x, s) ∈ Ft2 ×T such

that e(x, s) ∈ V1× · · · × Vr. We will start by computing fQ(V1, . . . , Vr), defined
to be the number of pairs (x, s) ∈ Ft2 × SQ such that eQ(x, s) ∈ V1 × · · · × Vr.
We will then use Möbius inversion to turn this into a formula for the desired
quantity.

Lemma 4.1. For r ≥ 3, t, ε > 0 and S ⊂ Ft2 satisfying Assumptions 2, 3, Q a
multiset supported in 2[r] and V1, . . . , Vr ⊆ Ft2,∣∣∣∣fQ(V1, . . . , Vr)−

|S||Q|

(2t)r−1
|V1| · · · |Vr|

∣∣∣∣ ≤ (1− ε)(r − 1)|S||Q|
√
|V1||Vr|.

Proof. For 1 ≤ k ≤ r, define Q(k) ⊆ Q by

Q(k) = {I ∈ Q : 0 < |I ∩ {1, . . . , k}| < k}.

Furthermore, write e
(k)
Q (x, s) for the k-tuple (eQ(k),1(x, s), . . . , eQ(k),k(x, s)). Let

F k(V1, . . . , Vk) be the set of pairs (y, s) ∈ Ft2 × SQ
(k)

such that e
(k)
Q (y, s) ∈

V1 × · · · × Vk. We write fk(V1, . . . , Vk) = |F k(V1, . . . , Vk)|.
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Define L(k) = {I ∈ Q : I ∩ {1, . . . , k + 1} = {k + 1}} and U (k) = {I ∈ Q :
I ∩ {1, . . . , k + 1} = {1, . . . , k}}. Then

Q(k+1) = Q(k) t L(k) t U (k).

By definition, F k+1(V1, . . . , Vk+1) can therefore be written as the set of pairs

(x, (s, t,u)) ∈ Ft2 ×
(
SQ

(k) × SL(k) × SU(k)
)

such that e
(k+1)
Q (x, (s, t,u)) ∈ V1 ×

· · · × Vk+1. Recall that

eQ(k+1),i(x, (s, t,u)) = x+
∑
I∈Q(k)

i∈I

sI +
∑
I∈L(k)
i∈I

tI +
∑
I∈U(k)

i∈I

uI .

Therefore, we can rewrite the condition that e
(k+1)
Q (x, (s, t,u)) ∈ V1×· · ·×Vk+1

as
(y, s) ∈ F k(V1, . . . , Vk) for y = x+

∑
I∈U(k)

uI

and
x+

∑
I∈Q(k)

k+1∈I

sI +
∑
I∈L(k)

tI ∈ Vk+1.

Therefore, fk+1(V1, . . . , Vk+1) is the number of edges between the multisets Wk

and Vk+1 in the multigraph Cay(Ft2, S)m where m = |L(k) tU (k)| and Wk is the
multiset with element

y +
∑
I∈Q(k)

k+1∈I

sI

for each (y, s) ∈ F k(V1, . . . , Vk).

Write wx for the multiplicity of x in Wk, noting that wx ≤ |S||Q
(k)| since this

is the number of choices for s. Hence, by the ordinary expander-mixing lemma
(for multisets), we have∣∣∣∣∣fk+1(V1 , . . . , Vk+1)− |S|

|Q(k+1)|−|Q(k)|

2t
fk(V1, . . . , Vk)|Vk+1|

∣∣∣∣∣
≤ (1− ε)|S||Q

(k+1)|−|Q(k)|

√√√√( ∑
x∈Wk

w2
x

)
|Vk+1|

≤ (1− ε)|S||Q
(k+1)|−|Q(k)|

√
|S||Q(k)|fk(V1, . . . , Vk)|Vk+1|

≤ (1− ε)|S||Q
(k+1)|

√
|V1||Vk+1|.

The last line follows from the easy bound fk(V1, . . . , Vk) ≤ |S||Q(k)||V1|. To

see this inequality, note that |S||Q(k)| is the number of choices for s. Once s is
chosen, for each x ∈ V1, there is a unique y ∈ Ft2 such that eQ(k),1(y, s) = x.
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Since f1(V1) = |V1|, we can telescope this bound to conclude that∣∣∣∣∣fr(V1 , . . . , Vr)−
|S||Q(r)|

(2t)r−1
|V1| · · · |Vr|

∣∣∣∣∣
≤ (1− ε)|S||Q

(r)|
r∑
i=2

√
|V1||Vi|

r∏
j=i+1

|Vj |
2t

≤ (1− ε)(r − 1)|S||Q
(r)|
√
|V1||Vr|.

To complete the proof, note that fQ(V1, . . . , Vr) = |S||Q|−|Q(r)|fr(V1, . . . , Vr),
since Q \ Q(r) is a multiset supported on {∅, [r]} and these terms do not con-
tribute materially to eQ(x, s). �

Proposition 4.2. For r ≥ 3, t, ε > 0 and S ⊂ Ft2 satisfying Assumptions 1, 2,
3 and V1, . . . , Vr ⊆ Ft2,∣∣∣∣eHr,t,S (V1, . . . , Vr)−

|S|(|S| − 1) · · · (|S| − (2r−1 − 2))

(2t)r−1
|V1| · · · |Vr|

∣∣∣∣
≤ (1− ε)2r|S|2

r−1−1
√
|V1||Vr|.

Proof. For Λ a partition of P, let T [Λ] ⊆ SP be the set of tuples (sI)I∈P such
that if I, J are in the same part of Λ then sI = sJ . We define a multiset P[Λ]
supported in 2[r] of size |Λ| by letting the symmetric difference I14· · ·4Ik (that
is, the set of elements that appear in an odd number of the Ii’s) be an element
of P[Λ] for each {I1, . . . , Ik} a part of Λ.

For s ∈ T [Λ], define t ∈ SP[Λ] by letting tI14···4Ik be equal to sI1 = · · · = sIk
whenever {I1, . . . , Ik} is a part of Λ. This gives a bijection between T [Λ] and
SP[Λ]. Moreover, this map has the property that e(x, s) = eP[Λ](x, t) whenever
s ∈ T [Λ]. Thus, the number of pairs (x, s) ∈ Ft2 × T [Λ] such that e(x, s) ∈
V1 × · · · × Vr is exactly equal to fP[Λ](V1, . . . , Vr).

Finally, we want to count e(V1, . . . , Vr), the number of (x, s) ∈ Ft2×S|P| with
e(x, s) ∈ V1 × · · · × Vr and the additional constraint that the sI ’s are distinct.
By Möbius inversion, it follows that

e(V1, . . . , Vr) =
∑
Λ

µ(Λ)fP[Λ](V1, . . . , Vr),

where
µ(Λ) = (−1)|P|−|Λ|

∏
L∈Λ

(|L| − 1)!.

Combining this formula with the result of Lemma 4.1 gives that∣∣∣∣e(V1, . . . , Vr)−
|V1| · · · |Vr|

(2t)r−1

∑
Λ

µ(Λ)|S||Λ|
∣∣∣∣∣

≤ (1− ε)r
√
|V1||Vr|

∑
Λ

|µ(Λ)||S||Λ|.

29



The first sum is exactly equal to |S|(|S| − 1) · · · (|S| − (2r−1 − 2)), while we

can bound the second sum by 2|S|2r−1−1 in the same manner as in the proof of
Lemma 3.4. �

Averaging the above result over all renumberings of V1, . . . , Vr, we obtain
Theorem 1.3.

5 Concluding remarks

We conclude with two questions. The first is essentially a reiteration of a ques-
tion in [4]: are the hypergraphs Hr,t,S topological expanders for some suitable
choice of parameters? In [4], the first author speculated that they might even
satisfy a certain combinatorial notion of expansion, known as cosystolic expan-
sion, from which topological expansion follows [5]. Unfortunately, as pointed
out to us by Gundert and Luria [9], this is not the case. Nevertheless, the pos-
sibility that our hypergraphs are topological expanders remains a tantalizing
one.

The second question concerns generalizations of our construction. In a fairly
precise sense, abelian groups are the worst possible groups over which to define
Cayley graphs if one is trying to produce expanders. A much better choice
would be to work over finite simple groups of Lie type with bounded rank,
where it is known [3] that two random elements almost surely suffice to gener-
ate an expander. However, our constructions depend in an absolutely critical
way on commutativity, so much so that they might fittingly be called abelian
complexes. On the other hand, r-uniform Ramanujan complexes can be explic-
itly rendered [18] in terms of Cayley graphs over PGLr(Fq), so it is reasonable
to believe that there is some more general mechanism which works over these
groups. We consider the problem of distilling out this mechanism to be one of
the central problems in the area.
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