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Abstract

Given a graph H and a natural number n, the extremal number ex(n, H) is the largest
number of edges in an n-vertex graph containing no copy of H. In this paper, we obtain a
general upper bound for the extremal number of generalised face-incidence graphs, a family
which includes the standard face-incidence graphs of regular polytopes. This builds on and
generalises work of Janzer and Sudakov, who obtained the same bound for hypercubes and
bipartite Kneser graphs, and allows us to confirm a conjecture of Conlon and Lee on the extremal
number of K, ,-free bipartite graphs for certain incidence graphs.

In their work, Janzer and Sudakov showed that such an upper bound on the extremal
number holds whenever the graph H satisfies a certain percolation property which captures
an appropriate sequence of repeated applications of the Cauchy—Schwarz inequality, a property
which they then verify for hypercubes and bipartite Kneser graphs. This percolation property
bears close resemblance to a property that arose in earlier work of Conlon and Lee on weakly
norming graphs. In this latter work, Conlon and Lee developed a method for controlling repeated
applications of the Cauchy—Schwarz inequality based on the properties of reflection groups, which
then allowed them to isolate a broad family of weakly norming graphs. Here, we develop this
method further, casting it in a purely algebraic form that allows us not only to combine it with
the Janzer—Sudakov result and obtain the desired result about the extremal number of incidence
graphs, but also to simplify the proofs of both the Conlon—Lee result on weakly norming graphs
and a related result of Coregliano.

1 Introduction

The Cauchy—Schwarz inequality is often used in extremal combinatorics to bound the number
of discrete structures of a given type. Its use is so pervasive that several techniques have been
developed that allow one to automate, in some appropriate sense, repeated applications of the
inequality. One example of this is the flag algebra technique developed by Razborov [25], which
allows one to find such sequences of inequalities computationally through the use of semidefinite
programming. This is arguably one of the most important developments in extremal combinatorics
this century and has allowed researchers to make significant progress on a range of notorious
problems (see, for example, [2, 16l 26]).

Our focus in this paper is on another method for automating repeated applications of the
Cauchy—Schwarz inequality developed by Conlon and Lee [8]. This method, which we call the
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reflection group method, applies only to graphs of a certain type, which we call reflection graphs,
but, for those graphs, applications of the Cauchy—Schwarz inequality can be encoded algebraically
in terms of reflections within an appropriate finite reflection group, which allows one to analyse
them in an efficient way. This method has proved surprisingly useful for studying problems on
graph homomorphism inequalities, such as Sidorenko’s conjecture, where it has led to a proof that
the conjecture holds for large enough blow-ups of any fixed bipartite graph [10], and a question
of Lovéasz and Hatami on categorising graph norms [I5], 23], where it has suggested a possible
classification [§].

To get a better idea of how the reflection group method works, it will help to describe how the
Cauchy—Schwarz inequality can be applied to graphs. A key role in applying Cauchy—Schwarz in
this context is played by a particular type of automorphism that we call a cut involution, which
is essentially a reflection of the graph into itself. Formally, a cut involution of a graph H is an
involutary automorphism ¢ paired with a tripartition L U F'U R of the vertex set V (H) such that
¢ swaps vertices in L and R while fixing all the vertices in the vertex cut F. An application of the
Cauchy—Schwarz inequality then gives that

t(H,G) - t(H[F],G) > t(H[L U F], G)?,

where t(K, Q) is the homomorphism density [Hom(K,G)|/|V(G)|VUFl of K in G and H[U] is
the induced subgraph of H on U C V(H). That is, cut involutions of H give rise, through the
Cauchy—Schwarz inequality, to graph homomorphism inequalities between its subgraphs. For any
reflection graph, a family which we will define formally in Section [2 below, there is an embedding
of the graph in some Euclidean space such that cut involutions correspond to geometric reflections
across hyperplanes through the origin. In turn, this allows us to leverage the properties of finite
reflection groups when studying sequences of graph homomorphism inequalities between subgraphs
of reflection graphs.

The main result of this paper is an application of the reflection group method to the study of
extremal numbers. Given a graph H and a natural number n, the extremal number ex(n, H) is the
largest number of edges in an n-vertex H-free graph. While the classical Erdés—Stone—Simonovits
theorem determines the asymptotic behaviour of ex(n, H) for non-bipartite H, determining the
asymptotics of ex(n, H) for bipartite H remains an important and difficult open problem, one that
has been solved for only a handful of examples.

Quite recently, a novel approach to the study of extremal numbers of bipartite graphs, making
use of graph homomorphism inequalities, has been developed by Janzer and Sudakov [19] and,
independently, Kim, Lee, Liu and Tran [20]. To give a rough sketch of the idea, note that if an
n-vertex graph G is H-free for a particular bipartite graph H, then all homomorphic copies of H
must be degenerate, in the sense that at least two vertices must map to the same vertex. The
key observation of [19] 20] is that, provided H has a particular form, repeated applications of the
Cauchy—Schwarz inequality allow us to conclude that there are many degenerate copies where more
and more vertices coincide until, eventually, we arrive at the fact that there are many degenerate
copies of H where all of the vertices on one side of its bipartition agree. That is, there are many
stars of a particular size in G. We can then trade this off against an easily obtained upper bound
for the number of such stars to obtain an upper bound for ex(n, H).

In their paper [19], Janzer and Sudakov showed that their process applies to any graph H which
satisfies a certain combinatorially defined percolation property and, moreover, that this property
is satisfied by hypercubes and by bipartite Kneser graphs, allowing them to improve the upper
bounds for the extremal numbers of these graphs. In particular, their bounds confirm the following
conjecture of Conlon and Lee [9] for these graphs.



Conjecture 1.1. If H is a K, .-free bipartite graph with degree at most r on one side, then there
exists ¢ = cpr > 0 such that ex(n, H) = O(n>~1/7=°),

The motivation behind this conjecture comes from a classical result of Fiiredi [14] (see also [I])
saying that if H is a bipartite graph with degree at most r on one side, then ex(n, H) = O(n>~ /).
By a celebrated result of Kolldr, Rényai and Szabé [21], this bound is known to be tight when
H = K, , for s sufficiently large in terms of r (see [4] for a recent improvement on the quantitative
aspects of this theorem) and it is conjecturally tight when H = K, ,, though this is somewhat
controversial. What Conjecture[l.1]is saying is that the only reason Fiiredi’s bound should be tight
is if H contains K, ,. For r = 2, this conjecture was proved in the original paper of Conlon and
Lee [9] and an elegant alternative proof was subsequently found by Janzer [18]. More recently,
a weak version of the general conjecture stated in [7], asking for ex(n, H) = o(n?>~/") instead of
ex(n, H) = O(n?*~1/7=¢), was proved by Sudakov and Tomon [27].

It was already noted in [19] that there is a similarity between the percolation property they need
and a percolation property shown in an earlier paper of Conlon and Lee [§] to imply that a graph
is weakly norming, which roughly means that there are a collection of very strong homomorphism
inequalities between the graph and its subgraphs. The reflection group method was developed in
that same paper [§] to show that a certain family of graphs, the aforementioned reflection graphs,
satisfies the required percolation property. As such, it is natural to ask whether the reflection group
method also applies to the percolation property used by Janzer and Sudakov. We show that the
answer is yes, using the reflection group method to show that a broad family of reflection graphs
satisfy their percolation property. We may then use this and their main result [I9, Theorem 2.16]
to give an upper bound for the extremal numbers of these graphs.

To state one such result, let P be a regular polytope and, for k& < r, let H be the bipartite
graph between the set of all k-faces and the set of all r-faces of P, where an r-face and a k-face
are adjacent if and only if one contains the other. We call this graph the (k,r)-incidence graph of
P. For instance, the bipartite Kneser graph which has an edge between a k-subset and a (d — k)-
subset of [d] if and only if one includes the other is the (kK — 1,d — k — 1)-incidence graph of a
(d — 1)-dimensional simplex.

Theorem 1.2. Let H be the (k,r)-incidence graph of a regular polytope P and let t be the order
v(H)—t—1

of the largest part in its bipartition. Then ex(n, H) = O(n*~¢), where ¢ = =T -

The family of (k, r)-incidence graphs of regular polytopes does not include the hypercubes, but
this latter family is included in a slightly more general class, which we call generalised face-incidence
graphs, to which our results also apply. Since the precise definition of these graphs requires some
notation on reflection groups, we will hold back on stating it formally until the next section.

Besides our chief purpose of extending the results of Janzer and Sudakov, we have also taken
the opportunity to explain the reflection group method in a more accessible manner. In the original
paper [§], Conlon and Lee took a slight detour, embedding reflection graphs into Euclidean space
before casting them in a purely algebraic setting. Here we skip this step, showing that one can
jump straight to the algebraic setting. As a consequence, we are able to give a somewhat simpler
proof for the main result in [8], as well as for another related result of Coregliano [11].

The remainder of the paper is organised as follows. In the next section, we give a brief in-
troduction to finite reflection, or Coxeter, groups. In particular, we will be able to define both
reflection graphs and generalised face-incidence graphs, thus allowing us to state our real main
result, Theorem We also note a range of useful results about Coxeter groups, culminating in a
result saying that reflections in Coxeter groups yield cut involutions in the corresponding reflection
graphs. Section (3| contains the proofs of our main results. We first warm up by giving a short proof



of the result from [8] saying that reflection graphs are weakly norming. We then proceed to the
proof of Theorem after which we spend some time studying specific examples and analysing
when they satisfy Conjecture We conclude with some brief further remarks.

2 Preliminaries

A finite reflection group, usually denoted by the letter W, is a finite subgroup of the general linear
group GL(n,R) generated by reflections across hyperplanes passing through the origin. The set of
all reflections in W, denoted by T, then forms a subset of W. Among these reflections, one may
identify particular generating sets S, known as sets of simple reflections, that play a central role in
the theory. There is a geometric way to view these sets of simple reflections, but we shall discuss
them in purely algebraic terms. When interpreted in this way, reflection groups are often referred
to as Cozxeter groups.

Formally, a Cozeter group W is a group with presentation (sq,s2,...,s,|(sis;)™% = 1), where
m;; = 1 for all 4 and m;; = mj; is an integer greater than 1 or ooH The pair (W, S) where W is a
Coxeter group with S = {s1,...,s,} its set of generators is then called a Cozeter system. For us,
a Coxeter system will consist of a finite reflection group, which, by the fundamental work of Cox-
eter [12], is isomorphic to a finite Coxeter group W, together with a generating set S corresponding
to a set of simple reflections in that finite reflection group. Because of this correspondence, given a
Coxeter system (W, .S), we will refer to the elements s € S as simple reflections. Throughout what
follows, (W, S) will always denote such a Coxeter system.

We now come to the definition of reflection graphs, an algebraically-defined class of graphs
to which we can apply the reflection group method. For I C S, let W be the subgroup of W
generated by I, which is usually referred to as a parabolic subgroup. Let W /W denote the set of
all left cosets of Wy. For I,J C S, the (I, J; W, S)-graph is the bipartite graph between W /W and
W/W; with wW; and wW; adjacent for all w € W. That is, two cosets are adjacent if and only if
they intersect. A reflection graph is now any graph that is isomorphic to the (I, J; W, S)-graph for
some (W, S) and I,J C S.

A well-known fact from the theory of reflection groups (see, for example, [24, Theorem 3D7]
and [8, Theorem 1.1]) is that the (k,r)-incidence graph of a regular polytope P is isomorphic to an
(I,J; W, S)-graph, where W is the underlying symmetry group of P and |I| = |J| = |S| — 1. More
generally, we use the term generalised face-incidence graph to refer to any graph which is isomorphic
to a (I,J;W,S)-graph with |[I| = |J| = |S| — 1. As noted in the introduction, hypercubes are
not face-incidence graphs of any regular polytopes, but they are generalised face-incidence graphs
(see [8, Example 4.14]), so this latter family is indeed somewhat more general. Our main result,
which therefore subsumes Theorem is now as follows.

Theorem 2.1. Let H be a generalised face-incidence graph and let t be the order of the largest part

in its bipartition. Then ex(n, H) = O(n?~°), where ¢ = %

The proof of this result has two main steps. First, we prove that every reflection in W naturally
defines a cut involution of the (I, J; W, S)-graph, no matter what I and J are. In fact, we will prove
a slightly more general statement concerning r-uniform hypergraphs, which we will henceforth refer
to as r-graphs. To describe the context of this more general result, let I, ..., I, be subsets of S. For
brevity, we shall write W; := Wy, in what follows. Then the (I1,..., I;; W, S)-graph is the r-partite
r-graph on (W/W1) U (W/Wy) U --- U (W/W,) whose edges are all (wW1,...,wW,) with w € W.
A cut involution of an r-graph H is an involutary automorphism of H paired with a tripartition

1mi]- = oo means that there is no relation between s; and s;, a case which never occurs for W finite.



LUFUR of V(H) that swaps L and R and where the fixed point set F' is a vertez cut in the sense
that no r-edge of ‘H intersects both L and R.

To state our result about how reflections define cut involutions, whose proof will occupy the rest
of Section [2, we also need to formally define reflections in Coxeter groups. We have already noted
that the generating set S in a finite Coxeter system can be identified with a set of simple reflections
in a corresponding finite reflection group. The reflections in that reflection group correspond exactly
to the elements of the set T := {wsw™! : s € S,w € W}, which we now refer to as reflections. It is
easy to verify that S C T and t?> = e for every t € T.

Theorem 2.2. Lett € T be a reflection in W. Then the map ¢r(wW;) := twW; is a cut involution
of the (I1,...,I; W, S)-graph, where W; = W7, is the parabolic subgroup generated by I;.

Second, by using this fact, we will translate certain ‘combinatorial’ percolation processes on
reflection graphs to an algebraic setting, thereby allowing us to apply the reflection group method
and prove our main results, though the precise details will vary depending on the extremal problem
we wish to consider. Those readers who are only interested in these applications may skip the proof
of Theorem and proceed straight to Section [3]

2.1 Basic properties of Coxeter systems

In this subsection, we give a brief overview of some of the basic properties of Coxeter systems,
focusing on those properties that are needed for the proof of Theorem For a more thorough
introduction, we refer the reader to either [3] or [I7].

The length ¢(w) of an element w € W is the minimum word length taken over all expressions
for w in terms of simple reflections, i.e., the minimum k such that w = sys9 - - - s for some s; € S,
i =1,..., k. A minimum-length expression for w in terms of simple reflections is called a reduced
word or reduced expression for w, though we stress that this may not be unique. It is an elementary
fact that the parity of every expression for w is the same.

Lemma 2.3 (Lemma 1.4.1 in [3]). The map w +— (=1)") is a group homomorphism from W to
the multiplicative group {+1,—1}. In particular, every reflection t = wsw™", fors € S andw € W,
has odd length, so ¢(w) # £(tw) mod 2 for allw € W andt € T.

We now state a fundamental combinatorial property of Coxeter systems, the so-called strong
exchange property. It states that whenever the length of w is reduced by multiplying by a reflection
t € T on the left, each expression w = s12 - - - s, reduces to one that deletes some s; while the order
of the expression is preserved. If s; is deleted from siss - - - s, then we simply write the resulting
expression Sy - --8;_18j+1 - Sk a8 §1- -+ S; - -+ S. We remark that the proof relies on Lemma [2.3

Theorem 2.4 (Theorem 1.4.3 in [3]). Let w = s152--- s, s; € 5, and let t € T. If L(tw) < L(w),
then tw =s1---8;--- S for somei=1,2,.... k. That is, t = us;u”t, where u = $189 - - Si_1.

Another fundamental property of Coxeter systems is the deletion property. This says that one
can reduce any unreduced expression by deleting exactly two simple reflections while preserving
the order of multiplications.

Proposition 2.5 (Proposition 1.4.7 in [3]). If w = sys2---sx and l(w) < k, then, for some
1<i<j<k,w=s1 -8 8§ 8.

These two properties characterise Coxeter systems, in the sense that a group W generated by
a set of involutions S is a Coxeter system if and only if it has the deletion property (or the strong
exchange property) with respect to S (see Theorem 1.5.1 in [3] for the proof).

We will need the following corollary of Proposition [2.5



Corollary 2.6 (Corollary 1.4.8 in [3]). Any reduced expression for w contains the same set of
simple reflections.

In the proof of Theorem we will rely heavily on a partial order defined on W and its
quotients, often referred to as the Bruhat order. We have that v < w in this order if there exists
a sequence u,...,ur € W such that ug = u, ux = w, ujy; = uitiﬂ and £(u;) < l(u;41) for each
i1 =0,1,...,k—1with ¢; € T. The notation © < w then means that either © = w or u < w. When u
and w are both written in reduced form, v < w simply means that deleting some simple reflections
from w gives u, i.e., u can be seen as a subword of w. This is called the subword property.

Theorem 2.7 (Theorem 2.2.2 and Corollary 2.2.3 in [3]). Let w = s152--- 54 be a reduced expres-
sion. Then v < w if and only if uw = 84,84y -+ 84, 1 < i1 < -+ <1 < q. That is, u < w if and only
if every reduced expression for w has a subword which is a reduced expression for u.

Another useful fact is the chain property of the Bruhat poset.

Theorem 2.8 (Theorem 2.2.6 in [3]). If u < w, there exists a chain u =129 < x; < -+ < x)p =W
such that €(xz;) = €(u) +1i for 1 <i<k.

We end this subsection by stating the lifting property, which will be needed for the proof of
Theorem To state the result, we need the notation Dy (w) := {s € S: £(sw) < ¢(w)}. That is,
Dy (w) consists of those simple reflections that decrease the length of w when we multiply on the
left. Similarly, we write Dg(w) := {s € S : l(ws) < l(w)}.

Proposition 2.9 (Proposition 2.2.7 in [3]). Suppose u < w and s € Dp(w)\ Dr(u). Then u < sw
and su < w. By replacing u and w by u~! and w™!, respectively, u < w and s € Dg(w) \ Dg(u)
implies u < ws and us < w.

2.2 Quotients of parabolic subgroups and the proof of Theorem

Let W!:={w € W :ws > w for all s € I}. This is called the quotient of the parabolic subgroup
W generated by I C S. Indeed, as implied by the next result, the elements of W are exactly the
representatives of each left coset of W; that have minimum length.

Proposition 2.10 (Proposition 2.4.4 in [3]). Let I C S. Then every w € W has a unique factor-
ization w = w! - wy such that w! € W and w; € W;. Furthermore, £(w) = £(w!) + £(wy).

A useful fact is that the projection w — w!, denoted by P!, preserves the Bruhat order.
Proposition 2.11 (Proposition 2.5.1 in [3]). Let u,w € W. If w < u, then w! < ul.
The chain property also carries over to quotients.

Theorem 2.12 (Theorem 2.5.5 in [3]). If u < w in W, there exists a chain u =wo < wy < - <
wy, = w such that w; € W and (w;) = (u) +1i for 1 <i < k.

Recall that the map ¢; in Theorem is defined by ¢¢(wWj) = twWj for I C S. The next
lemma shows that the set F' = F(I,t) of cosets wWW; that are fixed under ¢; corresponds exactly
to the set of w such that £((tw)!) = £(w").

2This definition is equivalent to the left-multiplication version, since such a sequence satisfies w;11 = tju; for

t) = ust;u; . Therefore, u < w is equivalent to u™! < w™?.



Lemma 2.13. Let W be the parabolic subgroup generated by I C S. Then ¢i(wWy) = wW7 if and
only if £((tw)!) = L(w").

Proof. As twW; = wW; implies (tw)! = w!, £((tw)!) = £(w?) trivially follows. It therefore remains
to prove the converse.

Suppose that £((tw)!) = £(w’) holds. We may assume the representative w already has the
minimum length, i.e., w = w!. By Lemma multiplying by a reflection changes the parity, so
that £(tw) and £(w) are distinct. As (tw)! has the minimum length amongst all elements in twW;,

((w) = L(w!) = 0((tw)!) < t(tw),

which gives w < tw. Since w # tw, we must have that w < tw.

We claim that if £(u!) = f(w!) = f(w) and w < u, then uW; = wW;. If so, taking u = tw
concludes the proof. Since 4(u!) = f(w!) = #(w) and w < wu, Proposition implies that
l(ur) = £(u) — ¢(w) is positive. Thus, again by Proposition u = u! - uy with nontrivial ;.
By choosing s € I in the rightmost position of a reduced word for u;, we have us < u. On
the other hand, since w = w!, ws > w, which means s is in Dg(u) \ Dg(w). Hence, the lifting
property, Proposition implies that us > w. If us = w, then uW; = usWy = wWj. Otherwise,
us > w, but we still have £((us)!) = £(u’) = £(w). Repeating the same process by replacing u by
us until we get usy - - - s, = w proves the claim. O

We are now in a position to prove Theorem which we recall states that the map ¢, (wW;) =
twW; is a cut involution of the (I1,...,I; W, S)-graph, where W; is a shorthand for Wr,.

Proof of Theorem[2.3. For each i =1,2,...,r, let
L; == {wW; : 0((t
Ri := {wW; : £((tw)?) < L(w')},
Fy = {wW; : 0((tw)") = ¢(w')}.

S
~—
&
SN—
V
S
—~
S
ol
SN—
—

Set L:=U;_L;, R:=U,_;R; and F :=U]_, F}.

We claim that ¢; is a cut involution such that L and R are mapped to each other and F' is
fixed. Firstly, ¢; is a homomorphism since it maps each edge (wW4,...,wW,) to another edge
(twWr, ..., twW,). The fact that F is fixed under ¢; follows from Lemma If wW; € L;, then
0((tw)!) > £(w'?), so u = tw satisfies £(u!?) > £((tu)’). This simply means that uW; € R;. Since,
similarly, ulW; € L; if wW; € R;, L; and R; are mapped to each other under ¢;.

Finally, suppose that there is an r-edge (wWi,...,wW,) of the (Iy,...,I;W,S)-graph that
intersects both L and R. That is, £((tw)!) > £(w!) and £((tw)”) < £(w”) for some I = I; and
J = I;. But this contradicts Proposition which implies that both of the projection maps
PL.wW — W! and P/ : W — W are order-preserving. O

In what follows, the cut involution ¢; of the (Iy,...,I.;W,S)-graph that corresponds to a
reflection ¢ € T will always be oriented in a way that is consistent with the proof of Theorem
That is, L :=U]_,L;, R:=U_;R; and F :=U]_ F}.

Finally, we note the following intersection property that will allow us to encode the edges of
the (I1,...,I; W, S)-graph as cosets of the parabolic subgroup Wy with I =nN/_, ;.

Proposition 2.14 (Proposition 2.4.1 in [3]). Let Wi and W be the parabolic subgroups generated
by I,J € S. Then Wi~y = Wy N Wy, That is, the parabolic subgroup gemerated by I N J is the
intersection of the parabolic subgroups generated by I and J.



3 Percolating sequences in Coxeter groups

Let H be an r-graph and let ¢ be a cut involution of H. The left-folding map ¢+ : V(H) — V(H)
is defined by

v\ Jol) ifveR
¢ (U)_{fu ifve LUF.

The right-folding map ¢~ is defined in a symmetric way by swapping L and R. As folding maps are
homomorphisms on H, the image of an edge subset J C E(#) under a folding map is well defined
as an edge subset of H.

For a vertex subset K C V(H), let

Kt (¢)={veV(H):¢T(v) e K} and K (¢) :={v e V(H):¢ (v) € K}.

Equivalently, K*(¢) = (KN(LUF))Up(KNL)and K (¢) = (KN (RUF))U@(K NR). That
is, to obtain KT (¢), we keep all elements of K that are in L or F' but replace K N R by ¢(K N L).
Similarly, for an edge subset J C E(H), let

JH(@) :=={(v1,va,...,v.) € E(H): (6T (v1), 0T (v2),...,6T (v.)) € J}

and let J~(¢) be defined by replacing ¢ by ¢~.

The folding maps capture a particular type of application of the Cauchy—Schwarz inequality to
graph homomorphism densities. If we let J C E(H) be an edge subset of an r-graph H, which can
also be viewed as a spanning subgraph of H, then the Cauchy—Schwarz inequality gives

t(J,G) < t(Jt (), G) (T (), G)'/?,

in a sense allowing us to transform J into either J¥(¢) or J~(¢). Our goal here will be to ‘lift’
these transformations to the algebraic setting.

To this end, we now observe that, in the (I, ..., I,; W, S)-graph, vertices and edges both cor-
respond to algebraic objects of the same type, namely, cosets of a parabolic subgroup.

Proposition 3.1. Suppose I1,...,I, are subsets of S and I = NI, N---N1.. If W; = Wy,
for 1 < i < r, then the map e = (WWy,...,wW,) — wW} is a bijection from the edges of the
(I1,...,I;; W, S)-graph to the left cosets of Wr.

Proof. Suppose that (wWi,...,wW,) = (w'Wy,...,w'W,). This is equivalent to w™lw’ € W;
for all 4 = 1,2,...,r, which means that wW; = w'W; by Proposition Thus, the map
o(wWy,...,wW,) = wWj is well-defined. If wW; = w' Wy, then w™tw’ € Wy, so (wWi,...,wW,) =
(W'Wh,...,w'W,), i.e., ¢ is an injection. O

This key observation allows us to take a purely algebraic view of folding maps. For a reflection
t in a Coxeter system (W, 5), let

Ly :={weW  L(tw) > l(w)} and Ry :={w € W : L(tw) < l(w)}.

Note that Ly U Ry = W, since {(tw) # ¢(w) by Lemma The left-folding map t* is then defined
by

() tw ifw e Ry
w =
w ifw e L.



Symmetrically, the right-folding map t~ (w) = tw if w € Ly and w otherwise.
If I C S is a set of simple reflections and W7y is the parabolic subgroup generated by I, we
define
tH (wWy) := tT (w)Wr.

This left-folding map on the cosets of W also preserves, in a sense, the ‘direction’ of the folding
map. To see this, let

LE = {wWr - ¢((tw)") > (w
R = {wW; : ¢((tw)") < £(w!)},
FF = {wW; - ¢((tw)!) = l(w

~
N
—

~
N
—

Then t1 satisfies

£ (wT) {thI ifwW; € Rg 1
wWr  ifwWr e L UF}.
Indeed, since P! : W+ W/ is order-preserving, w € L; implies wW; € L{ UF/ and w € R; implies
wWr € RtI U FtI . Moreover, w € R; and wW7 € FtI implies that twW; = wWj, by Lemma m
We can similarly define the right-folding map t= on W/Wry, ie., t—(wWy) = t~(w)W;. Then
t~(wWp) = twW; if wW; € L and wW] otherwise.
For J C W/Wr, let

JH(t) == {wW; : tT(wW;) € J} and J~(t) := {wW; : t~ (wW;) € J}.

A sequence of subsets Jy, J1, ... of W/W7r is now said to be a folding sequence if there is a reflection
ti such that Ji+1 = J:r(tl) or Ji+1 = .]; (LLZ)

Recall that Theorem shows that ¢;(v) = twW7 is a cut involution of the (Iy,..., I; W, S)-
graph H, where v is the vertex in H that corresponds to wWj for some I = I;. Furthermore, from
the proof of Theorem LI = Ly, and R} = Ry,. Therefore, t7(v) = ¢/ (v) and t7(e) = ¢; (e)
for each vertex v and edge e in the (I1,...,I; W, S)-graph. For a vertex or edge subset J of the
(I,...,I;W,S)-graph, it follows that J*(¢;) is the same as J*(t), provided we identify J with a
subset of W/W7 for a suitable choice of I, i.e., I = I; if J is a vertex subset of the j-th part W/W;
and I =N;_,I; if J is an edge subset. A similar correspondence holds for ¢t~ and ¢, , as well as for
J7(¢¢) and J ().

3.1 Percolating sequences: the Conlon—Lee theorem

As a warm-up, we reprove the main result (Theorem 1.2) of [§], which states that every reflection
graph is weakly norming. We will not say much about the weakly norming property here, as we
prove the result using a reduction step from [§], but informally a graph is weakly norming if the
graph homomorphism density can be used to define a norm on the space of real-valued functions
on [0,1]2. More formally, a result of Lee and Schiilke [22] says that a graph H is weakly norming
if and only if ¢(H, ) is a convex function on the set of graphons.

Let H be an r-partite r-graph. Recalling some definitions from [8] (and their vertex-folding
variants from [I1]), a sequence Jy, Ji,... of edge (resp. vertex) subsets of H is an edge-folding
sequence (resp. vertex-folding sequence) in H if there is a cut involution ¢; such that J;11 = Jj'(qﬁl)
or Jiy1 = J; (¢;) for each i. If a finite edge-folding sequence starts from a set consisting of a single
edge and ends with E(H), then we call it an edge-percolating sequence. Analogously, a vertez-
percolating sequence is a finite vertex-folding sequence that begins with a single vertex and ends



with the entire part which contains the starting vertex. To specify the part that the sequence
percolates over, we say that a vertex-percolating sequence is in A C V(#H) rather than in H if A is
the part that the starting vertex belongs to.

The importance of these definitions may be seen in the following theorem, which says that if
an r-graph has an edge-percolating sequence, then it is weakly norming.

Theorem 3.2 (Theorem 3.3 in [8]). Suppose that H is an r-graph which is edge-transitive under
the cut involution group, the subgroup of the automorphism group of H generated by cut involutions.
If there exists an edge-percolating sequence Jy, J1,...,Jn, then H is weakly norming.

Therefore, to show that a graph is weakly norming, it is enough to prove that there exists
an edge-percolating sequence. In light of Proposition [3.1, we can view both edge- and vertex-
percolating sequences in reflection graphs in terms of elements in W/W7 for an appropriate Cox-
eter system (W,S) and I C S. A finite folding sequence that starts from one element and ends
with the whole set W/W7 is said to be a percolating sequence. The following theorem, together
with Theorem and Proposition then implies the main result of [§], that every reflection
graph is weakly norming.

Theorem 3.3. There is a percolating sequence of W/Wy starting from Wr.

By Proposition [3.1] Theorem also proves the existence of vertex-percolating sequences.
The (I1,Io U --- U I; W, S)-bigraph is the bipartite graph between W/W; and (W/W3) U --- U
(W/W,.), where wW; and wW;, i > 1, are adjacent. In other words, we replace each r-edge in the
(I1,...,1; W, S)-graph by a star with r — 1 leaves centred at the vertex in W/W; and simplify the
resulting multigraph.

Corollary 3.4. The (I, I, U --- U I,.; W, S)-bigraph has a vertex-percolating sequence in the part
W/Wy.

This reproves the main result (Theorem 3.1) of [I1], an interesting paper of Coregliano where
he proves variations on many of the results in [8] and uses them to give a quantitative improvement
on the result of Conlon and Lee [10] saying that sufficiently large blow-ups of any fixed bipartite
graph satisfy Sidorenko’s conjecture. While he uses slightly different terminology, for instance,
saying left-cut-percolating instead of vertex-percolating, the statement above is the same as his
main theorem once appropriately rephrased.

We now turn to the proof of Theorem Following [§], a stack is a subset U C W /W with
the property that if wW; € U, then w'W; € U for every w' < w.

Lemma 3.5. Let J C W/Wy. If U C J is a stack, then U C J*(t) for everyt € T.

Proof. Let wW; € U. If w € Ry, then wW; € Rl U F}, so tT(wW;) = twWj. As twW; € U since
tw < w and U is a stack, it follows that wW; € J*(t). Next, if w € Ly, then wW; € LI U F{, so
tT(wW;) = wWy. Then wW; € J implies wW; € J*(¢t). O

Let Up := {wW; : {(w') < L}, which is a stack by definition. The following proposition
states that there exists a folding sequence starting from Uy, and ending with Ur41. Applying this
proposition repeatedly for each L then produces a percolating sequence.

Proposition 3.6. Let J C W/W;. IfUr, C J, then there exists a folding sequence J = Jo, J1,...,Jy
such that Upy1 C Jy. Furthermore, for eachi=0,1,...,n—1, Ji11 = J;(si) for a simple reflection
s; €85.
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Proof. Let {w1,ws, ..., w,} be the set of all elements of length L 4 1 in W/ and let s; be the first
simple reflection in a reduced expression for wj, i.e., w; = s;r; for some r; € W' of length L by
Theorem In particular, Wy € Uy,.

We claim that the folding sequence Jy, J1, ..., J, defined by J;11 = J;r (si+1) ends with a set
Jy, that contains Ur41. We first check that w;Wr € J; for i > 1. By Lemma [3.5] Uy C J;—1 and
thus 7, W; € Ji—1. As L = U(r;) < £(w;), m;W7 is in Lgi, whereas s;7;W; = w;W7 is in Rgi. Hence,
Sj(wiW]) =r,Wr € J;_1, so w;Wr € Ji—tl(si) = J;.

It now suffices to prove that w;W; never disappears from J; for j > i. Suppose that w;W; € J;
for some j > 4. If w;W; € ng U FSI]_, then s;r(wiWI) = w;Wr € Jj, so wWr € Jj1 = Jf(sj).
Suppose now that w;W; € jo, Le., £((sjwi)l) < ((w;)!). As w; € WT already, (w;)! = w; and
hence é((sjwi)l) < L+1. Thus, s;w;Wy is in Uy, so it is also in J;. Hence, sj(wiWI) = sjw;Wr €
Jj, so w;Wr is again in J;11, completing the proof. O

This now easily implies Theorem

Proof of Theorem [3.3. Note that Uy = {W;}. Applying Proposition repeatedly from L = 0 to
the maximum length proves the existence of a percolating sequence starting from Jy = Uy. 0

3.2 Strong percolating sequences: the Janzer—Sudakov theorem

While it is often easy to find many homomorphic copies of a given bipartite graph H in another
sparse n-vertex graph G, it can be challenging to show that the copies are non-degenerate, that is,
that no two vertices of H map to the same vertex in G. This issue is often the main obstacle for
giving accurate estimates for the extremal number ex(n, H). For instance, this remains the chief
impediment towards fully resolving the rational exponents conjecture of Erdés and Simonovits [13],
which states that for every rational number r € [1, 2] there exists a graph H, such that ex(n, H,) =
©(n") (though see [5] for a proof when H, is allowed to be a finite family and [6] and its references
for partial progress on the original conjecture).

An important idea used by Janzer and Sudakov in [19], and observed independently by Kim,
Lee, Liu and Tran in [20], is that a suitable application of the Cauchy—Schwarz inequality can
sometimes make the degree of degeneracy worse. What we mean by this is that if there are many
homomorphic copies of H where v; and vo both map to the same vertex in G, then there are also
many homomorphic copies of H where vy, vo and another vertex vz all map to the same vertex.
Assuming H has an appropriate form, we can repeat this process until we find many homomorphic
copies of H where all the vertices on one side of the bipartition of H map to a single vertex in G,
that is, many homomorphic copies of H span a star. As is usual when studying extremal numbers,
we can assume that G is almost regular and, therefore, we can easily estimate the number of stars
from above. Trading this off against the lower bound coming from the process above then allows
us to show that the number of degenerate copies is small, which in turn implies that there must be
at least one, but in fact many, non-degenerate copies of H in G.

Janzer and Sudakov’s key contribution was to show that this degeneracy-spreading process ap-
plies to graphs H having vertex-percolating sequences that satisfy some additional conditions. If H
is a connected bipartite graph with bipartition AU B, a finite vertex-folding sequence Jy, J, ..., Jn
of subsets of A is said to be a strong vertez-percolating sequence in A if

(i) Jo consists of two vertices in A;

(11) JN = A;
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(iii) each J; intersects both Fy U Ly and Fy U R4, where ¢ is the cut involution such that J;11 =
Jf(gb) or Jit1 = JZ_(gb)

The graph H strongly percolates if any set Jy of order two chosen from either A or B extends to a
strong percolating sequence in the corresponding part. In their paper, Janzer and Sudakov refer to
such graphs as reflective graphs, though we avoid the phrase because of its proximity to reflection
graphs.

If we think of J; as being the vertices of H that map to the same vertex in G after i steps of our
degeneracy-spreading process, then, provided the third condition holds, a further application of the
Cauchy—Schwarz inequality cannot eliminate the degeneracy. Moreover, by the second condition,
we ultimately arrive at the entirety of A or B, regardless of which pair Jy we started with. For
more details, we refer the interested reader to [19, Lemma 2.11].

We may now rephrase [19, Theorem 2.16] as follows. Recall that a graph H is Sidorenko if it
satisfies t(H,G) > t(Ky, G)*) for any graph G. The assumption that H is Sidorenko is needed
in order to guarantee that there are many homomorphic copies of H in G. The key to proving
the result is then in using the method we have described above to show that most of these copies
must be non-degenerate. In particular, this means that we obtain not just one copy of H, but a
supersaturation result, meaning that there are, up to a constant factor, at least as many copies as
in a random graph of the same density.

Theorem 3.7. Let H be a connected bipartite graph with bipartition AU B that is Sidorenko but
not a tree. If H strongly percolates, then there are constants C,c > 0 such that any n-vertex graph
G with edge density p > Cn_v;i:l, where v =v(H), e = e(H) and t = max{|A|,|B|}, contains at
least cn"p® copies of H.

We wish to study which reflection graphs satisfy the conditions of this theorem. To this end,
let H be the (I,J;W,S)-graph. By Theorems and this is a weakly norming graph. In
particular, H is Sidorenko, as was noted by Hatami [I5]. We now give conditions under which a
reflection graph H contains a cycle or is connected. In particular, this result implies that if I and
J are proper subsets of S with I UJ = S, then the (I, J; W, S)-graph is connected with a cycle.

Lemma 3.8. Let H be the (I,J;W,S)-graph. Then
(i) H contains a cycle unless I C J or J C I and
(i) H is connected if [UJ = S.

Proof. (i) Suppose that both I'\ J and J\ I are nonempty and let s € I'\J and s’ € J\I. Then there
exists a minimum m = m(s, s’) such that (ss’)™ = 1. In particular, Wy, sWy, ss'Wr, ..., (ss')™W;
forms a cycle of length 2m.

(ii) Suppose that TUJ = S and let w € W be w = s182---s4 for s; € S. Then each s;
isin I or J, so w can be written as w = wjws - - - wy, Where each wo; 1 € Wi and wo; € Wj.
Note that W; and wyW; are adjacent as wy € Wiy N wWjy. Similarly, w1 W; and wweW7r are
adjacent as wiws € wiwoWrNwiWy. Again, wiwsWr and wiwewsW i are adjacent since wiwows €
wrwoWr NwiwowsWy. Repeating this process gives a walk from W to wW;. The same argument
with I and J swapped gives a walk from W to wWj, so H is connected. ]

As the the (I, J; W, S)-graph is vertex-transitive on each side, we may always assume that Jy
consists of {Wy, wW7r} for some w € W such that wW; # W or {W;,wW;} for some w € W such
that wWj; # Wj;. We formalise this reduction as follows.
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Lemma 3.9. Let H be the (I,J;W,S)-graph for I,J C S with I UJ = S. Then H strongly
percolates if and only if there exists a strong percolating sequence starting with {Wr,wWr} for each
w € W such that wWi # Wi and starting with {Wj;,wWj;} for each w € W such that wWy # W .

Proof. Suppose that there exists a strong percolating sequence Jy, Ji, . .., Jy with Jo = {W,wW;}
for each w € W. Let J| = {w1Wr,woWr} with wiW; # weWy. Let ¢ be an automorphism that
sends Wr to wiWy. Such an automorphism exists since each simple reflection s € S gives a cut
involution of H by Theorem and so, if w1 = s189---s; for s; € S, then the composition of
the corresponding cut involutions gives an automorphism  that sends W to wiWj. Moreover,
1) sends wl_leWI to weWy. Let Jy,J1,...,Jn be a strong percolating sequence starting from
Jo = {W[, wfleWI}.

For any cut involution ¢ of H, ¢ ~! is again a cut involution that sends 1 (v) to ¥ (¢(v)) with
L =1(Lg), R = ¥(Ry) and F = (F,). Thus, taking J/,; := J/" (¢~ 1), where ¢; is the cut
involution such that J;41 = J;r (¢:), gives a strong percolating sequence starting from Jj. O

We now introduce an algebraic analogue of strong percolating sequences in a Coxeter system
(W, S). A folding sequence Jy, J1,...,Jy C W/Wy is a strong folding sequence if each J; has
nonempty intersection with both L/ UF] and RIUF], where t is the reflection such that J;+1 = J;' ()
or Jiy1 = J; (t). A strong percolating sequence is a strong folding sequence that starts from a pair
of the form {W, wW;} and ends with the whole collection of left cosets W/W;. We say that W/W;
strongly percolates if, for any w € W\ W (or, equivalently, any w € W7\ {e}), there exists a strong
percolating sequence starting from {W;,wW;}. The importance of these definitions is that, by
Lemmas [3.8 and we have the following variant of Theorem [3.7] for reflection graphs.

Proposition 3.10. Let H be the (I,J; W, S)-graph for I,J C S with IUJ = S. If both W/Wr and
W /W strongly percolate, then there are constants C,c > 0 such that any n-vertex graph G with
edge density p > Cn_%, where v =v(H), e = e(H) and t = max{|W/W|,|W/Wj|}, contains
at least enVp® copies of H.

To apply this result, we would like to determine those proper subsets I of S for which W/Wj
strongly percolates. We answer this question completely.

Theorem 3.11. Let I C S. Then W/W7 strongly percolates if and only if |I| = |S| — 1.

Proof. Suppose first that [I| = |S| — 1 with s € S\ I. By Lemma it suffices to find a strong
percolating sequence starting with Jy = {Wj,wWi} for each w € W'\ {e}. Let w = s159---5¢
be a reduced expression for w. Then s, must be s, as otherwise it contradicts the fact that W/
consists of those w € W of minimum length in the coset wWj. Let k be the smallest index 4 such
that s; = s.

The strong percolating sequence Jy, Ji, ..., Jy which we construct has two parts. The first
part, up to J, is chosen so as to guarantee that Ji contains Uy = {W7, sW;}, a stack of length one
in W/W;. We may then assume that J; = U; and show that the second half, Ji i1, Jxio,..., N,
satisfies Jy = W/W7.

For each 0 < i < k, we make a choice between J;11 = J;7 (s;41) or J; (si+1) that maintains the
condition that each J; contains {W7, s;+18i4+2 - s¢W7} as a subset and intersects both FLC,,IZ,+1 UL£¢+1
and Fin+1 UR;H. To do this, for 0 < i <k —2, we take Jiy1 = J; (Si+1). In this case, W; € Fsli+17
while s;118;419---8Wj € R;’M, so Jiy1 contains {W7,s;io---s,Wr}. For the final step, take
=T (sk) = Ji7 (). But Wy € LI generates {Wy, sW;} in Ji, as desired.

For the second half of the sequence, starting with Jy, which contains U; = {Wp, sWr}, and
iterating Proposition for L = 1,2,... eventually gives a percolating sequence that ends with
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Jn = W/Wr and satisfies J;11 = J;r(s;) or Jiy1 = J; (s;) for some s; € S. We claim that this is a
strong percolating sequence. Indeed, by Lemma Uy, = {Wy,sWr} is contained in every J; for
i>k. If s, =s, then Wy € J;N Lg, while sW7 € J; N Rg. Otherwise, if s, € I, then Wy € J; N FSI/

Conversely, suppose |I| < |S| — 2 with two distinct simple reflections s and s’ that are not in I.
We shall prove that there is no strong percolating sequence starting from Jo = {Wy, sW}. Suppose,
for the sake of contradiction, that there is a strong percolating sequence Jy, Ji, ..., Jy = W/W7.

Among all the reflections used to construct the strong percolating sequence, let t € T be the
first reflection that contains s’ in its reduced expressions. Suppose that ¢ is used at the (k + 1)-st
step, i.e., Jyt1 = Ji (t) or Jyp1 = J, (t). We claim that the whole of J, is contained in the left
side L{ , which means that the sequence is not a strong percolating sequence.

Let wWj € Ji, noting that w € Wy, and let w = sys3--- sy be a reduced expression for w.
If {(tw) < ¢(w), then, by Theorem there is i € [¢] such that t = us;u™! for u = sys9---8;_1.
However, this contradicts Corollary since the simple reflection s’ contained in any reduced
expression for ¢ is not in that for us;u~!. Thus, we must have £(tw) > ¢(w). Moreover, by applying
the order-preserving projection P!, ¢((tw)!) > ¢(w?).

It remains to show that £((tw)!) = £(w') is also impossible. By Lemma this equality
is equivalent to twW; = wWiy, that is, t = ww'w™! for some w’ € Wj;. However, this again
contradicts Corollary m Hence, since £((tw)!) > £(w!), we have wW; € L{ by the definition of
LtI , as required. ]

We therefore see that generalised face-incidence graphs are strongly percolating, completing
the proof of Theorem It may even be that this is a complete classification of those reflection
graphs that strongly percolate, i.e., that the (I,J;W,S)-graph strongly percolates if and only
if |[I| = |J| = |S| — 1. Unfortunately, this is not implied by Theorem since the converse
to Theorem does not hold, that is, cut involutions in reflection graphs do not necessarily
correspond to reflections in the associated Coxeter group (see, for example, [8, Example 4.10]). To
say more, let us look more closely, but from our point of view, at the 2-blow-up of Cg, which was
already observed to be non-strongly-percolating in [19].

Example 3.12. Let G; and G5 be bipartite graphs with bipartitions A; U By and A U Bs, respec-
tively. The bipartite tensor product of G1 and Gs, denoted by G x G, is the bipartite graph with
bipartition (4; x As) U (By x Ba), where two vertices (a1, a2) and (by, b2) are adjacent if and only
if a; and b; are adjacent in G; for both 7 = 1 and 2. As noted in [§], the bipartite tensor product of
two reflection graphs is again a reflection graph. But the 2-blow-up of Cg can be expressed as the
bipartite tensor product of Cs and K> 2, both of which are reflection graphs, so it is also a reflection
graph.

Figure 1: The 2-blow-up of Cg
More explicitly, using that Cg is the incidence graph between the vertices and edges of an equi-

lateral triangle, we may view Cg as the ({s1}, {s2}; S, {s1, s2})-graph, where S3 is the permutation
group on three vertices, s = (1,2) and sy = (2,3). Taking s} and s} to be two commuting involu-
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tions, we can view Koo as the ({s}}, {sh}; W', {s], sh})-graph, where W' = (s, sh|(s])? = (s4)* =
1,8} sh = shs}) is the Coxeter group generated by {s], s5}.

Their bipartite tensor product, which is the 2-blow-up of Cg, may then be viewed as the
({s1, 1}, {s2, sh}; W, {s1, s2, 8], sh})-graph, where W = S3 x W' is the Coxeter group which is
the direct product of S3 and W’. Not all cut involutions in this graph correspond to reflections.
However, if we restrict ourselves so that we can only apply reflections, rather than any cut in-
volution, when creating a folding sequence, then we cannot strongly percolate. Indeed, since the
2-blow-up of Cg is an (I, J; W, S)-graph with |S| =4 and |I| = |J| = 2, Theorem implies that
it does not strongly percolate through reflections. Of course, it is easily checked by hand that it
also does not strongly percolate without this restriction.

We think that this should be a more general phenomenon, that is, that if a reflection graph is
not strongly percolating through reflections, then it is not strongly percolating. Rephrasing this in
the contrapositive, we believe that if a graph strongly percolates, then it also strongly percolates
through reflections alone. If this were true, and we leave it as an open problem to show that
it is, then, together with Theorem [3.11] it would yield the classification of strongly percolating
reflection graphs suggested above, namely, that the (I,.J; W, S)-graph strongly percolates if and
only if |[I| =|J| = |S| — 1.

On the other hand, we now give several more examples of graphs H for which Theorem [2.1
gives a new upper bound for ex(n, H), confirming Conjecture for these graphs. Theorem is
particularly powerful when the bipartition of H is balanced in the sense that the two parts in the
bipartition are of the same size. In this case, the reflection graph H becomes r-regular for some r.

Corollary 3.13. Let H be an r-regular generalised face-incidence graph. Then ex(n, H) = O(n?~°)

v(H)—2

where ¢ = S G=1)" In particular, H satisfies Conjecture unless H = K.,

To see why the ‘in particular’ part works, it is enough to observe that

vH)—2 1 _ w(H)-2r >0
v(H)(r—1) r  oH)(r—-1r =
with equality if and only if v(H) = 2r, in which case H must be K,,. Note that this already
recovers the Janzer—Sudakov result that Conjecture holds for hypercubes and bipartite Kneser
graphs.

As an application of Corollary we can give a non-trivial upper bound for the (0,3)-
incidence graph H of the 24-cell, the 4-dimensional self-dual regular polytope associated with the
exceptional finite reflection group Fy. The 24-cell has 24 vertices and 24 octahedral faces, with
each vertex contained in six faces. The 24-cell is shown in Figure with three of its 24 octahedral
faces highlighted. Its (0, 3)-incidence graph H is the 6-regular bipartite graph on 48 vertices given
in Figure For this graph H, Corollarygives ex(n, H) = O(n'0%/60), beating Fiiredi’s bound
of O(n'/%) and thereby confirming Conjecture in this case.

For the rest of this section, we will look for non-regular examples, focusing on reflection graphs
arising from the symmetric group S,,. A standard way to describe S, as a Coxeter system is to
use the set of adjacent transpositions s; = (i, + 1) for ¢ = 1,...,m — 1 as the set S of simple
reflections. Note that we may write any permutation = € S, as © = z1x2 - - - Ty, where x; = (7).
Assuming this notation, for k € [m — 1], let Sﬁ,]f) ={zx € Sp:x1 < <zxpand gy < < Ty}t
We have the following straightforward lemma.

Lemma 3.14 (Lemma 2.4.7 in [3]). Let I = S\ {sg}. Then (Sp)1 = Sk X Sk, and (Sp)! = Sk,
In particular, (Sy,)" can be identified with ([7:]), the set of all k-subsets of [m].
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(a) The 24-cell (b) The (0, 3)-incidence graph of the 24-cell

Figure 2: The 24-cell and its (0, 3)-incidence graph

The (m,a,b)-inclusion graph for 1 < a < b < m is the bipartite graph between the set of a-
element subsets and the set of b-element subsets of [m], where two subsets U € ([ZL]) and V € ([T])
are adjacent if and only if U C V. Lemma implies that the (m,a,b)-inclusion graph is
isomorphic to the (S\{sq}, S\{ss}; Sm, S)-graph. Consequently, any such graph strongly percolates
and so Theorem gives an upper bound for its extremal number. We now analyse when this

bound is stronger than Fiiredi’s classical bound.

Example 3.15. Let H be the (m,a,b)-inclusion graph with bipartition X UY, where X = ([Z‘])
- b
and ¥ = ("), Then e(H) = (7)(320) = (3) (0)-
Suppose first that a < b < m/2. Then |X| < |Y|, so the Fiiredi bound gives ex(n, H) < n?~¢
with ¢ = 1/(2) On the other hand, Theorem [2.1| gives ex(n, H) < n?>~¢ with
J (7:) -1

Q-G
Therefore, ¢ > c if and only if

1 _ (31
1— - <40
() (&)
The range of (a, b) for which this inequality is satisfied is quite narrow. For example, if b = O, (1),
the inequality is never satisfied for large enough m. Even for b = |m/2], a = b—1 is the only value
for which the inequality is satisfied and even then only for m even. The case m/2 < a < b also
follows from the same analysis, as one can take m — a and m — b instead of b and a, respectively,
by passing to the complement of each set.
Next, suppose that a < m/2 < b. We may assume that |a —m/2| < |b—m/2|, as otherwise one
can again use m — a and m — b. A similar analysis to that above gives that Theorem improves
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on Fiiredi’s bound if the inequality

— <
=) ()
holds. This again has very few solutions, though it is satisfied when b = a + 1 for a = [m/2],
which, for m even, yields a graph which is isomorphic to the graph with b = |[m/2] and a = b — 1.
It is also satisfied when b = m — a, again recovering the case of bipartite Kneser graphs.

N (Yt (1)

4 Concluding remarks

As we have seen in Corollary and Example Theorem is most efficient for bipartite
graphs with an almost balanced bipartition. This is due to the fact that one cannot generally control
the part in which the degeneracy happens. An exception is the simple proof of the classical Kévari—
S6s-Turan theorem, saying that ex(n, K, s) = O(n?=Y/7) for r < s, which proceeds by counting the
number of non-degenerate r-leaf stars, avoiding degeneracy on the r-vertex side of K, ; from the
beginning. If there were an argument that allowed us to count the number of copies of some
unbalanced incidence graph H while avoiding degeneracy on the smaller side of the bipartition,
then it would allow us to take ¢ in Theorem to be the size of the smaller side, potentially giving
a better bound for ex(n, H). However, following through on this plan seems to require additional
ideas.

It is also worth remarking that much of what we have said about strong percolation with respect
to reflection graphs carries over to reflection hypergraphs. If we define strong percolation for r-
graphs in the natural way, we see, from Theorem that the (I,...,I; W, S)-graph strongly
percolates if |I;| = |S| —1 for all 1 <4 <r. That is, generalised face-incidence hypergraphs strongly
percolate. Unfortunately, we do not have an obvious analogue of Theorem to which we can
apply this result. However, it may still be interesting to explore this direction further.
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