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Abstract

For p prime, A ⊆ Z/pZ and λ ∈ Z, the sum of dilates A+ λ ·A is defined by

A+ λ ·A = {a+ λa′ : a, a′ ∈ A}.

The basic problem on such sums of dilates asks for the minimum size of |A + λ · A| for given
λ, A of given density α and p tending to infinity. We investigate this problem for α fixed and
λ tending to infinity, proving near-optimal bounds in this case.

1 Introduction

Given subsets A and B of an abelian group G, their sumset A+B is given by

A+B = {a+ b : a ∈ A, b ∈ B}.

The difference set A−B is defined similarly with subtraction replacing addition.
If G = Z, then it is a simple exercise to show that |A+B| ≥ |A|+ |B| − 1. Indeed, if we order

the elements of A as a1 < a2 < · · · < as and B as b1 < b2 < · · · < bt, then A + B contains the
elements

a1 + b1 < a1 + b2 < · · · < a1 + bt < a2 + bt < · · · < as + bt,

so we have at least |A|+ |B|− 1 distinct elements. If we work instead over G = Z/pZ with p prime,
the corresponding inequality, known as the Cauchy–Davenport theorem [5, 10], says that

|A+B| ≥ min{|A|+ |B| − 1, p},

since one must account for the possibility that the sumset contains all the elements of Z/pZ. Several
proofs of this inequality are known (see, for example, [1]), but, unlike the integer case, none of them
is particularly simple.

Our concern in this paper will be with sumsets of a particular type. Given a subset A of an
abelian group G and λ ∈ Z, let

A+ λ ·A = {a+ λa′ : a, a′ ∈ A}.
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Such sums of dilates, as they are known, have attracted considerable attention in recent years, with
the basic problem asking for an estimate on the minimum size of |A + λ · A| given |A|. Over the
integers, this problem was essentially solved by Bukh [4], who showed that, for any finite set of
integers A,

|A+ λ ·A| ≥ (|λ|+ 1)|A| − o(|A|).
This result was later tightened by Balogh and Shakan [2], improving the o(|A|) term to a constant
Cλ depending only on λ, which is best possible up to the value of Cλ (see also [6, 7, 11, 13, 16] for
some earlier work on specific cases and [3, 9, 14, 15, 22] for extensions and variations).

The analogous problem over Z/pZ with p prime was first studied in detail by Plagne [17] and
by Fiz Pontiveros [12]. For instance, using a rectification argument, which allows one to treat small
subsets of Z/pZ as though they are sets of integers, the latter showed that for every λ ∈ Z there
exists α > 0 such that

|A+ λ ·A| ≥ (|λ|+ 1)|A| − Cλ
for all |A| ≤ αp. On the other hand, he showed that for every λ ∈ Z and ε > 0 there exists δ > 0
such that, for every sufficiently large prime p, there is a set A ⊆ Z/pZ with |A| ≥ ( 1

2 − ε)p such
that |A + λ · A| ≤ (1 − δ)p. That is, as |A| approaches p/2, one cannot do much better than the
Cauchy–Davenport theorem, which tells us that |A+ λ ·A| ≥ 2|A| − 1.

For our purposes, it will be convenient to introduce some terminology. For p prime, λ ∈ Z and
α ∈ (0, 1), we let

ex(Z/pZ, λ, α) = min {|A+ λ ·A|/p : A ⊆ Z/pZ, |A| ≥ αp}

and then define ex(λ, α) = lim supp ex(Z/pZ, λ, α). The problem of asymptotically estimating the
minimum size of sums of dilates over Z/pZ may then be rephrased as the problem of determining
ex(λ, α). This seems very difficult in full generality, though the results of Fiz Pontiveros described
above imply that

• ex(λ, α) = (|λ|+ 1)α for λ fixed and α sufficiently small in terms of λ and

• ex(λ, α) < 1 for α < 1
2 .

Here we look at the case where α is fixed and λ is allowed to grow. In rough terms, we wish to
understand how small the sum of dilates A + λ · A can be if we fix the density α of A and let λ
tend to infinity. More precisely, we set ex(α) = lim supλ→∞ ex(λ, α) and investigate the behavior
of ex(α).

By Cauchy–Davenport, if α ≥ 1
2 , then ex(α) = 1. Moreover, if α ≤ 1

2 , then, again by Cauchy–
Davenport, |A + λ · A| ≥ 2|A| − 1, so ex(α) ≥ 2α. On the other hand, since |A + λ · A| ≤ p, we
always have the trivial upper bound ex(α) ≤ 1. Our main result improves these simple bounds
significantly, giving a reasonably complete picture of the behavior of ex(α).

Theorem 1.1. There exist constants C,C ′, c > 0 such that

eC
′ logc(1/α)α ≤ ex(α) ≤ eC

√
log(1/α)α

for all α ∈ (0, 12 ). Moreover, ex(α) < 1 for all α ∈ (0, 12 ).

Unlike in the fixed λ case, we cannot improve the trivial upper bound ex(α) ≤ 1 by just taking
A to be an interval. Instead, what we do is show that ex(α) is bounded above by a continuous
variant defined over the torus T = R/Z and then provide an upper bound for that variant. We go
straight into the details of this construction, before returning to the lower bound, which makes use
of several classical tools from additive combinatorics, in Section 3.
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2 The upper bound

Let T = R/Z, n > 1 be an integer and µ be the Lebesgue measure on Tk for any positive integer
k. Let π1 : Tn → Tn−1 be the projection map ignoring the first coordinate and πn : Tn → Tn−1
the projection map ignoring the last coordinate. Consider the following problem: given 0 < α < 1,
what is the smallest possible value of µ(π1(B) + πn(B)) over all open sets B ⊆ Tn with µ(B) > α?

Equivalently, we can ask for the smallest possible value of µ(B × T + T×B) over all open sets
B ⊆ Tn with µ(B) > α. In this form, written as a problem about sums of shifts rather than sums of
projections, there is a ready analogy with the problem of estimating sums of transcendental dilates,
which can also be phrased in terms of sums of shifts and ultimately has bounds of a similar form [8].
This analogy partly motivates the methods we use here for both the upper and lower bounds.

To capture this question more succinctly, we define

exT (n, α) = inf {µ(π1(B) + πn(B)) : B ⊆ Tn open, µ(B) > α}

and set exT (α) = limn→∞ exT (n, α). This limit exists since exT (n, α) is decreasing in n. Indeed,
if B ⊆ Tn with µ(π1(B) + πn(B)) = β, consider B′ = B × T ⊆ Tn+1. Then µ(B′) = µ(B) and
µ(π1(B′)+πn+1(B′)) = µ(π1(B)×T+B) = µ(π1(B)+πn(B)) = β, so that exT (n+1, α) ≤ exT (n, α).

The main result of this section says that ex(α) ≤ exT (α), thereby allowing us to give an upper
bound on ex(α) by instead bounding exT (α). The idea of the proof is to construct an example in
Z/pZ from one in Tn by approximating each point of Tn by a number in Z/pZ written in base λ,
with each point (x1, . . . , xn) ∈ Tn roughly corresponding to b(x1 + x2

λ + · · ·+ xn
λn−1 )pc ∈ Z/pZ.

Theorem 2.1. ex(α) ≤ exT (α).

Proof. Let n > 1 and B ⊆ Tn be an open set such that µ(B) = α′ > α and µ(π1(B) + πn(B)) = β.
We will show that ex(α) ≤ β.

Let ε > 0 be arbitrary, λ be a positive integer, T = Z/λZ and discretize Tn into Tn. For
x = (x1, . . . , xn) ∈ Tn (with integers 0 ≤ xi < λ for each i), define Cx ⊆ Tn to be the cubical box

n∏
i=1

[
xi
λ
,
xi + 1

λ

)
.

Let S = {x ∈ Tn | Cx ⊆ B} and B′ =
⋃
x∈S Cx ⊆ B. As λ→∞, µ(B′) approaches µ(B) = α′ since

B is open. Therefore, for λ sufficiently large in terms of ε, we have µ(B′) ≥ α′ − ε. For x ∈ Tn,
define Ix to be the interval [y, y + λ−n), where

y =
x1
λ

+
x2
λ2

+ · · ·+ xn
λn
.

Set A =
⋃
x∈S Ix ⊆ T. Then µ(A) = |S|/λn = µ(B′) ≥ α′ − ε. We claim that

µ(A+ λ ·A) ≤ µ(π1(B′) + πn(B′)).

To see how the theorem follows from this claim, we again discretize T into Z/pZ. Set A′ ⊆ Z/pZ
to be A′ = {0 ≤ a < p :

[
a
p ,

a+1
p

)
⊆ A}. By construction, |A′|/p ≤ µ(A). Moreover, since A is a

finite union of half-closed intervals, |A′|/p approaches µ(A) as p→∞. Therefore, for p sufficiently
large in terms of ε, we have |A′| ≥ (µ(A)− ε)p. For any a+ λb ∈ A′+ λ ·A′ with a, b ∈ A′, we have
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[
a
p ,

a+1
p

)
⊆ A and b

p ∈ A. Thus,
[
a+λb
p , a+λb+1

p

)
⊆ A+ λ ·A. Hence, |A′+ λ ·A′|/p ≤ µ(A+ λ ·A).

From the claim,
|A′ + λ ·A′|

p
≤ µ(A+ λ ·A) ≤ µ(π1(B′) + πn(B′)) ≤ β.

Since |A′| ≥ (µ(A)− ε)p ≥ (α′ − 2ε)p, taking ε = α′−α
2 gives ex(α) ≤ β, as required.

To prove the claim, let S′ = π1(S) + πn(S) + {0, 1}n−1. Then S′ is the set of all z =
(z1, z2, . . . , zn−1) ∈ Tn−1 with zk = ak+1+bk+εk for some a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈
S and εk ∈ {0, 1} for all k. Since B′ is the union of boxes

⋃
x∈S Cx, we have that π1(B′) + πn(B′)

is the union of boxes
⋃
x∈S′ Cx, though now with each Cx ⊆ Tn−1. Thus,

|S′|/λn−1 = µ(π1(B′) + πn(B′)).

On the other hand, A+ λ ·A consists of all points in T of the form

b1 + a2
λ

+
b2 + a3
λ2

+ · · ·+ bn−1 + an
λn−1

+
bn
λn

+ ε,

where a, b ∈ S and ε ∈ [0, λ−n + λ−n+1). Here, we are viewing ai and bi as integers in [0, λ− 1], so
bi + ai+1 could “overflow”. Nevertheless, each element of A+ λ ·A is of the form

c1
λ

+
c2
λ2

+ · · ·+ cn−1
λn−1

+ δ,

where ci = bi + ai+1 mod λ or bi + ai+1 + 1 mod λ and δ ∈ [0, λ−n+1). Thus, A+ λ ·A ⊆
⋃
x∈S′ Ix,

so we have
µ(A+ λ ·A) ≤ |S′|/λn−1 = µ(π1(B′) + πn(B′)),

as required.

We believe that the two functions ex(α) and exT (α) should in fact be equal, but leave the task
of proving that ex(α) ≥ exT (α) as an open problem.

We now give an upper bound for exT (α), and therefore ex(α), by considering a suitable set
B ⊆ Tn.

Theorem 2.2. For any positive integer d, exT (α) ≤ 2d−1α1−1/d for all α ∈ (0, 2−d). In particular,

there is a constant C > 0 such that exT (α) ≤ eC
√

log(1/α)α for all α ∈ (0, 12 ).

Proof. If B = (0, γ1/d)d ⊆ Td, then µ(B) = γ. Furthermore, π1(B) = πd(B) = (0, γ1/d)d−1 ⊆ Td−1,
so we have µ(π1(B) + πd(B)) = (2γ1/d)d−1 = 2d−1γ1−1/d. Taking the infimum over all γ > α
then gives the required upper bound exT (α) ≤ exT (d, α) ≤ 2d−1α1−1/d. To get a general bound
independent of d, we simply optimize by setting d =

√
log(1/α) and the bound follows.

Remark. The constant term 2d−1 in Theorem 2.2 is not optimal. For example, for d = 3, instead
of picking B to be the γ1/3×γ1/3×γ1/3 box, we could optimize the side lengths of the box by picking
B to be (2γ)1/3 × (γ/4)1/3 × (2γ)1/3. This yields µ(π1(B) + π3(B)) = 9

24/3
γ2/3, where we note

that 9
24/3

< 22. We made no attempt to optimize these constants for higher values of d, as any

improvement would not change the form of the bound eC
√

log(1/α)α.
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While Theorem 2.2 proves the first upper bound in Theorem 1.1, the following result proves the
second upper bound ex(α) < 1.

Theorem 2.3. exT (α) < 1 for all α ∈ (0, 12 ).

Proof. Let n be sufficiently large and set B = {x ∈ Tn : xi > 0 for all i,
∑n
i=1 xi <

n
2 − 1}, where

xi is considered an element of [0, 1) for all i. As n → ∞, µ(B) → 1
2 , since, if x ∈ Tn is picked

uniformly randomly,
∑
xi is approximately normal with mean n

2 and variance Θ(n). Thus, for
sufficiently large n, α < µ(B) < 1

2 . Fix such an n. Now both π1(B) and πn(B) are contained in

the set C = {x ∈ Tn−1 :
∑n−1
i=1 xi <

n
2 − 1}, so

π1(B) + πn(B) ⊆ C + C = {x ∈ Tn−1 :

n−1∑
i=1

xi < n− 2} ( Tn−1.

Hence, µ(π1(B) + πn(B)) < 1, so that exT (α) ≤ exT (n, α) < 1.

3 The lower bound

We now prove the lower bound in Theorem 1.1, which we restate as follows. As prefaced in the
previous section, the proof of this result makes use of ideas similar to those used in [20] for studying
sums of transcendental dilates.

Theorem 3.1. There are constants C ′, c > 0 such that ex(α) ≥ eC
′ logc(1/α)α for all α ∈ (0, 1/2).

In particular, one may take c = 1
7 .

In what follows, as well as the notation λ · B = {λb : b ∈ B} for dilates, we will use mB to
denote the m-fold sumset

mB = B +B + · · ·+B︸ ︷︷ ︸
m times

.

Before proving Theorem 3.1, we require the following result, a variant of the Plünnecke–Ruzsa
inequality [18], which states that if A,B are finite subsets of an abelian group with |A+B| ≤ K|A|,
then |mB − nB| ≤ Km+n|A|. In particular, if |B +B| ≤ K|B|, then |mB| ≤ Km|B|. Our result is
a version of this latter inequality allowing for dilates of each term.

Lemma 3.2. Let B be a finite subset of an abelian group, λ an integer and K > 0 such that
|B + λ ·B| ≤ K|B|. Then, for any positive integer l,

|B + λ ·B + λ2 ·B + · · ·+ λl ·B| ≤ K7l−6|B|.

Proof. The sum version of Ruzsa’s triangle inequality [19] states that, for any finite subsets X,Y, Z
of an abelian group,

|X||Y + Z| ≤ |X + Y ||X + Z|.

Taking X = λ · B, Y = Z = B and noting that |λ · B| = |B|, we have |B + B| ≤ K2|B|. Hence,
by the Plünnecke–Ruzsa inequality, |B + B + B| ≤ K6|B|. Thus, another application of Ruzsa’s
triangle inequality (with X = B, Y = B +B, Z = λ ·B) yields

|B +B + λ ·B| ≤ |B +B +B||B + λ ·B|/|B| ≤ K7|B|.
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We prove the lemma by induction on l, noting that the case l = 1 follows from the given
assumption. Suppose now that we have

|B + λ ·B + λ2 ·B + · · ·+ λl ·B| ≤ K7l−6|B|

for some l and we wish to prove it for l + 1. Yet another application of Ruzsa’s triangle inequality
(with X = λl ·B, Y = B + λ ·B + · · ·+ λl−1 ·B, Z = λl ·B + λl+1 ·B) yields

|B + λ ·B + · · ·+ λl+1 ·B| ≤ |B + λ ·B + · · ·+ λl ·B||λl ·B + λl ·B + λl+1 ·B|/|B|
≤ K7l−6|λl ·B + λl ·B + λl+1 ·B|
= K7l−6|B +B + λ ·B|
≤ K7(l+1)−6|B|,

as required.

The other thing that we need for the proof of Theorem 3.1 is Sanders’ quantitative version of the
Bogolyubov–Ruzsa lemma [21, Theorem 1.1], which states that if A is a finite subset of an abelian
group with |A+ A| ≤ K|A|, then 2A− 2A contains a proper generalized arithmetic progression P
of dimension d ≤ d0(K) ≤ C log6K and size at least C1(K)|A|, where C is an absolute constant.
Here a generalized arithmetic progression P of dimension d is a set of the form

P = {a+

d∑
i=1

nivi : 0 ≤ ni ≤ ki − 1 for all i}

and such a generalized arithmetic progression is proper if all of its elements are distinct, that is, if
|P | = k1k2 · · · kd.

Proof of Theorem 3.1. Fix α ∈ (0, 1/2) and let K = 2 ex(α)/α. Let λ be sufficiently large and p be
sufficiently large in terms of λ. Let A ⊆ Z/pZ, which we may assume has size |A| = αp, be such
that |A+λ ·A| ≤ 2 ex(α)p = K|A|. By Ruzsa’s triangle inequality, we again have |A+A| ≤ K2|A|.
Hence, by Sanders’ quantitative version of the Bogolyubov–Ruzsa lemma, 2A−2A contains a proper
generalized arithmetic progression P of dimension d ≤ d0(K) ≤ C log6K and size at least C1(K)αp,
where C is an absolute constant. By the Plünnecke–Ruzsa inequality, we have |2A−2A+2A−2A| ≤
K16|A|. By Ruzsa’s triangle inequality (with X = A, Y = 2A− 2A+A− 2A, Z = λ ·A), we have

|2A− 2A+A− 2A+ λ ·A| ≤ |2A− 2A+ 2A− 2A||A+ λ ·A|/|A| ≤ K17|A|.

Repeating three more times, each time replacing an appropriate A term with λ ·A, we get

|(2A− 2A) + λ · (2A− 2A)| ≤ K20|A|.

By Lemma 3.2 applied to 2A− 2A, we then have that,

|(2A− 2A) + λ · (2A− 2A) + · · ·+ λd · (2A− 2A)| ≤ K140d|A|.

Suppose P = v0 + P0 for some v0 ∈ Z/pZ and P0 a proper Minkowski sum of d arithmetic
progressions {0, vi, 2vi, . . . , (ki − 1)vi}, i = 1, . . . , d, with |P | = |P0| = k1k2 · · · kd and k1 ≥ k2 ≥
· · · ≥ kd. Let m ≤ d be the largest integer with km ≥ λ. Since |P0| ≥ λd for sufficiently large
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p, we have m ≥ 1. Let P ′ =
∑m
i=1 {0, vi, 2vi, . . . , (ki − 1)vi}. Then this is a proper sum with

|P ′| ≥ |P0|/λd−m. Since k1 ≥ · · · ≥ km ≥ λ, we have that,

P ′ + λ · P ′ + λ2 · P ′ + · · ·+ λd · P ′ ⊇
m∑
i=1

{
0, vi, 2vi, . . . , λ

d(ki − 1)vi
}

= λdP ′.

By repeated application of the Cauchy–Davenport theorem, we have that

|λdP ′| ≥ min(λd|P ′| − λd + 1, p) ≥ min(λmC1αp− λd + 1, p) = p

for λ large enough that λC1α ≥ 2 and p sufficiently large. Thus, P ′+λ ·P ′+λ2 ·P ′+ · · ·+λd ·P ′ =
Z/pZ. On the other hand,

|P ′ + λ · P ′ + λ2 · P ′ + · · ·+ λd · P ′|
≤ |P + λ · P + λ2 · P + · · ·+ λd · P |
≤ |(2A− 2A) + λ · (2A− 2A) + λ2 · (2A− 2A) + · · ·+ λd · (2A− 2A)|
≤ K140d|A| ≤ K140d0 |A|.

This implies that K140d0α ≥ 1. From d0 ≤ C log6K, we obtain e140C log7Kα ≥ 1, which implies
that

ex(α) = Kα/2 ≥ eC
′(log 1

α )cα

for some absolute constants c and C ′, where one may take c = 1
7 .

If one could show that the Bogolyubov–Ruzsa lemma holds with d0(K) ≤ C logK, which would
be best possible, then we could take c = 1

2 , matching our upper bound.

To close, let us mention a variant of the problem we have studied, namely, that of estimating
the minimum size of |A+ · · ·+A+λ ·A| over all A ⊆ Z/pZ of given size. If there are k summands,
we can again study the asymptotic behaviour of this minimum by considering

ex(k, λ, α) = lim sup
p→∞

min

|A+ · · ·+A︸ ︷︷ ︸
k−1 times

+λ ·A|/p : A ⊆ Z/pZ, |A| ≥ αp

 .

As a possible extension of his result that ex(λ, α) < 1 for α < 1
2 , Fiz Pontiveros [12, Conjecture 1.3]

conjectured that ex(k, λ, α) < 1 for α < 1
k . However, this is easily seen to be false. Indeed, a simple

consequence of the proof of Theorem 3.1 is that, provided k is sufficiently large, |A+λ·A| ≥ 10|A| for
all A ⊆ Z/pZ with |A| = dp/(k+1)e and all λ sufficiently large in terms of k. But then, by repeated
application of the Cauchy–Davenport inequality, |A+· · ·+A+λ·A| ≥ min{(k+8)|A|−(k−2), p} = p.
In particular, ex(k, λ, α) = 1 for α ≥ 1/(k + 1) and λ sufficiently large in terms of k. This bound
on the minimum α such that ex(k, λ, α) = 1 for λ sufficiently large in terms of k can certainly be
improved, though we have made no serious attempt to do so here. Instead, we leave it as an open
problem to give more precise estimates on how this threshold changes with k.
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