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This is a companion note to the paper [1] in which we elucidate a comment made in the

concluding remarks of that paper. We say that an edge coloring of Kn is a chromatic-(p, q)-coloring

if every subgraph with chromatic number p receives at least q colors on its edges. Equivalently, an

edge coloring is a chromatic-(p, q)-coloring if the union of every q − 1 color classes has chromatic

number at most p−1. In [1] and [2], we ask whether there is a chromatic-(p, p−1)-coloring of Kn

using a subpolynomial number of colors. In [1], we showed that there is a chromatic-(4, 3)-coloring

of Kn with 2O(
√
logn) colors. The purpose of this note is to show that the same coloring, originally

found by Mubayi [3], is also a chromatic-(5, 4)-coloring.

Let m and t be positive integers and let n = mt. Identify the vertex set of Kn with [m]t

and consider the edge-coloring function cM defined over pairs of vertices v = (v1, . . . , vt) and

w = (w1, . . . , wt) as follows:

cM (v, w) =
(
{vi, wi}, a1, a2, . . . , at

)
,

where i is the minimum index j for which vj 6= wj and ai = 1 if vi 6= wi and 0 otherwise. For t

about
√

log n and m = 2t, this gives a coloring of Kn with 2O(
√
logn) colors.

We will prove that cM is a chromatic-(5, 4)-coloring. Let c1, c2 and c3 be three colors used in

the coloring cM and let G be the graph induced by these three colors. It suffices to prove that G
is 4-colorable. For each j = 1, 2, 3, let

cj =
(
{xj , yj}, aj,1, aj,2, . . . , aj,t

)
.

Furthermore, for each j = 1, 2, 3, let ij be the minimum index i for which aj,i = 1. Without loss

of generality, we may assume that i1 ≤ i2 ≤ i3. There are several different cases that we must

consider, depending on the values of i1, i2, i3 and a1,i2 , a1,i3 , and a2,i3 . In the forthcoming figures,

these cases will be represented by the following matrix: a1,i1 a1,i2 a1,i3
a2,i1 a2,i2 a2,i3
a3,i1 a3,i2 a3,i3

 .
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Case I. i1 < i2 < i3
Note that a2,i1 = a3,i1 = a3,i2 = 0. Define π1 : [m]t → {0, 1} as

π1(v) =

{
0 if vi1 = x1

1 if vi1 6= x1

and π2, π3 : [m]t → {0, 1, ∗} as

π2(v) =


0 if vi2 = x2

1 if vi2 = y2

∗ otherwise

and π3(v) =


0 if vi3 = x3

1 if vi3 = y3

∗ otherwise

.

Define a map π : [m]t → {0, 1} × {0, 1, ∗} × {0, 1, ∗} as

π(v) = (π1(v), π2(v), π3(v)),

and consider the graph π(G). Since we can always pull back a proper vertex coloring of π(G) into

a proper vertex coloring of G, it suffices to prove that π(G) has chromatic number at most 4.

Note that since a3,i1 = a3,i2 = 0, any edge xy of color c3 has π1(x) = π1(y), π2(x) = π2(y) and

{π3(x), π3(y)} = {0, 1}. We will use this fact in each of the subcases below.

Case I-A. a2,i3 = 0.

Since a2,i1 = a2,i3 = 0, we see that any edge xy of color c2 has π1(x) = π1(y), π3(x) = π3(y)

and {π2(x), π2(y)} = {0, 1}. Since all edges of color c1 go between {0} × {0, 1, ∗} × {0, 1, ∗} and

{1} × {0, 1, ∗} × {0, 1, ∗}, it is now easy to see that the subgraphs of π(G) induced on {0} ×
{0, 1, ∗} × {0, 1, ∗} and {1} × {0, 1, ∗} × {0, 1, ∗} are both bipartite. Hence π(G) is 4-colorable.

Case I-B. a2,i3 = 1.

In this case, any edge xy of color c2 has π1(x) = π1(y), {π2(x), π2(y)} = {0, 1} and either

{π3(x), π3(y)} = {0, 1} or ∗ ∈ {π3(x), π3(y)}. To analyze the edges of color c1, we will split into

some further subcases, noting that {π1(x), π1(y)} = {0, 1} in all cases.

Case I-B(i). a1,i2 = a1,i3 = 0.

Any edge xy of color c1 has π2(x) = π2(y) and π3(x) = π3(y). Taking

V1 =
(
{0} × {0, 1, ∗} × {0}

)
∪
(
{1} × {0} × {1, ∗}

)
,

V2 =
(
{0} × {0} × {1, ∗}

)
∪
(
{1} × {1, ∗} × {1, ∗}

)
,

V3 =
(
{0} × {1, ∗} × {1, ∗}

)
∪
(
{1} × {0, 1, ∗} × {0}

)
,

gives a proper coloring.

Case I-B(ii). a1,i2 = 0, a1,i3 = 1.
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Any edge xy of color c1 has π2(x) = π2(y) and either {π3(x), π3(y)} = {0, 1} or ∗ ∈
{π3(x), π3(y)}. Taking

V1 = {0, 1} × {0, 1, ∗} × {0},

V2 =
(
{0} × {0} × {1, ∗}

)
∪
(
{1} × {1, ∗} × {1, ∗}

)
,

V3 =
(
{0} × {1, ∗} × {1, ∗}

)
∪
(
{1} × {0} × {1, ∗}

)
,

gives a proper coloring.

Case I-B(iii). a1,i2 = 1, a1,i3 = 0.

Any edge xy of color c1 has π3(x) = π3(y) and either {π2(x), π2(y)} = {0, 1} or ∗ ∈
{π2(x), π2(y)}. Taking

V1 =
(
{0} × {0, 1, ∗} × {0}

)
∪
(
{1} × {1, ∗} × {1, ∗}

)
,

V2 = {0, 1} × {0} × {1, ∗},

V3 =
(
{0} × {1, ∗} × {1, ∗}

)
∪
(
{1} × {0, 1, ∗} × {0}

)
,

gives a proper coloring.

Case I-B(iv). a1,i2 = a1,i3 = 1. Any edge xy of color c1 has either {π2(x), π2(y)} = {0, 1} or

∗ ∈ {π2(x), π2(y)} and either {π3(x), π3(y)} = {0, 1} or ∗ ∈ {π3(x), π3(y)}. Taking

V1 = {0, 1} × {0, 1, ∗} × {0},
V2 = {0} × {1, ∗} × {1, ∗},
V3 = {1} × {1, ∗} × {1, ∗},
V4 = {0, 1} × {0} × {1, ∗},

gives a proper coloring.

See Figure 1 for an illustration.
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0 0 1

1 1 0
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0 0 1

1 1 1

0 1 1

0 0 1

Figure 1: Colorings for Case I
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Since the remaining cases are similar, we will give fewer explicit details.

Case II. i1 < i2 = i3
For a vector v ∈ [m]t, define

π1(v) =

{
0 if vi1 = x1

1 if vi1 6= x1
.

Let I = {x2, y2} ∩ {x3, y3}. Depending on whether |I| = 0, 1, 2, define π2(v) as

π2(v) =



0 if vi2 = x2

1 if vi2 = y2

2 if vi2 = x3

3 if vi2 = y3

∗ otherwise

π2(v) =


0 if vi2 = x2

1 if vi2 = y2

2 if vi2 = y3

∗ otherwise

π2(v) =


0 if vi2 = x2

1 if vi2 = y2

∗ otherwise

,

respectively, where for the second case, we are assuming that y3 /∈ {x2, y2}. Define π(v) =

(π1(v), π2(v)).

Case II-A. a1,i2 = 0.

One can easily check that π(G) is bipartite.

Case II-B. a1,i2 = 1

If I = ∅, then a 4-coloring of π(G) is given by

V1 = {(0, 0), (0, 2), (0, ∗)}, V2 = {(0, 1), (0, 3)},
V3 = {(1, 0), (1, 2), (1, ∗)}, V4 = {(1, 1), (1, 3)}.

If |I| = 1, then define V1 = {(0, 0), (0, 2), (0, ∗)}, V2 = {(1, 0), (1, 2), (1, ∗)} and V3 = {(0, 1), (1, 1)}.
Finally, if |I| = 2, then define V1 = {(0, 0), (0, ∗)}, V2 = {(1, 0), (1, ∗)} and V3 = {(0, 1), (1, 1)}.
Case III. i1 = i2 < i3

For this case, define π1 as a projection map from [m]t to {0, 1}, {0, 1, 2} or {0, 1, 2, 3} depending

on the cardinality of I = {x1, y1} ∩ {x2, y2} and π2 as a map from [m]t to {0, 1, ∗}, similarly to

above.

If I = ∅, then the graph has two disjoint components, one containing edges arising from c1
and c3 and the other edges arising from c2 and c3. Since both components are formed by the

union of two colors, they are 3-colorable and the result follows. The most delicate case is when

|I| = 2 and a1,i3 = 0 and a2,i3 = 1 (or vice versa). In this case, the coloring is given by

V1 = {(0, 0)}, V2 = {(1, 0)}, V3 = {(0, 1), (0, ∗)}, V4 = {(1, 1), (1, ∗)}.

The other cases can also be checked to be 4-colorable. We omit the details.

Case IV. i1 = i2 = i3.

A similar deduction shows that we only need to consider graphs with at most three edges,

which are clearly 3-colorable.

See Figure 2 for an illustration.
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i1 < i2 = i3

i1 = i2 < i3

1 0 0

0 1 1

0 1 1

1 1 1

0 1 1

0 1 1

1 1 0

1 1 0

0 0 1

1 1 1

1 1 0

0 0 1

1 1 0

1 1 1

0 0 1

1 1 1

1 1 1

0 0 1

00 01 02 0*

10 11 12 1*

00 01 02 0*

10 11 12 1*

00 01 0*

10 11 1*

Figure 2: Colorings for Case II and III
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