On chromatic-(5, 4)-colourings

David Conlon * Jacob Fox ${ }^{\dagger}$ Choongbum Lee ${ }^{\ddagger}$ Benny Sudakov ${ }^{\S}$

This is a companion note to the paper [1] in which we elucidate a comment made in the concluding remarks of that paper. We say that an edge coloring of K_{n} is a chromatic- (p, q)-coloring if every subgraph with chromatic number p receives at least q colors on its edges. Equivalently, an edge coloring is a chromatic- (p, q)-coloring if the union of every $q-1$ color classes has chromatic number at most $p-1$. In [1] and [2], we ask whether there is a chromatic- $(p, p-1)$-coloring of K_{n} using a subpolynomial number of colors. In [1], we showed that there is a chromatic-(4, 3)-coloring of K_{n} with $2^{O(\sqrt{\log n})}$ colors. The purpose of this note is to show that the same coloring, originally found by Mubayi [3], is also a chromatic- $(5,4)$-coloring.

Let m and t be positive integers and let $n=m^{t}$. Identify the vertex set of K_{n} with $[m]^{t}$ and consider the edge-coloring function c_{M} defined over pairs of vertices $v=\left(v_{1}, \ldots, v_{t}\right)$ and $w=\left(w_{1}, \ldots, w_{t}\right)$ as follows:

$$
c_{M}(v, w)=\left(\left\{v_{i}, w_{i}\right\}, a_{1}, a_{2}, \ldots, a_{t}\right)
$$

where i is the minimum index j for which $v_{j} \neq w_{j}$ and $a_{i}=1$ if $v_{i} \neq w_{i}$ and 0 otherwise. For t about $\sqrt{\log n}$ and $m=2^{t}$, this gives a coloring of K_{n} with $2^{O(\sqrt{\log n})}$ colors.

We will prove that c_{M} is a chromatic- $(5,4)$-coloring. Let c_{1}, c_{2} and c_{3} be three colors used in the coloring c_{M} and let \mathcal{G} be the graph induced by these three colors. It suffices to prove that \mathcal{G} is 4 -colorable. For each $j=1,2,3$, let

$$
c_{j}=\left(\left\{x_{j}, y_{j}\right\}, a_{j, 1}, a_{j, 2}, \ldots, a_{j, t}\right) .
$$

Furthermore, for each $j=1,2,3$, let i_{j} be the minimum index i for which $a_{j, i}=1$. Without loss of generality, we may assume that $i_{1} \leq i_{2} \leq i_{3}$. There are several different cases that we must consider, depending on the values of i_{1}, i_{2}, i_{3} and $a_{1, i_{2}}, a_{1, i_{3}}$, and $a_{2, i_{3}}$. In the forthcoming figures, these cases will be represented by the following matrix:

$$
\left(\begin{array}{ccc}
a_{1, i_{1}} & a_{1, i_{2}} & a_{1, i_{3}} \\
a_{2, i_{1}} & a_{2, i_{2}} & a_{2, i_{3}} \\
a_{3, i_{1}} & a_{3, i_{2}} & a_{3, i_{3}}
\end{array}\right) .
$$

[^0]Case I. $i_{1}<i_{2}<i_{3}$
Note that $a_{2, i_{1}}=a_{3, i_{1}}=a_{3, i_{2}}=0$. Define $\pi_{1}:[m]^{t} \rightarrow\{0,1\}$ as

$$
\pi_{1}(v)= \begin{cases}0 & \text { if } v_{i_{1}}=x_{1} \\ 1 & \text { if } v_{i_{1}} \neq x_{1}\end{cases}
$$

and $\pi_{2}, \pi_{3}:[m]^{t} \rightarrow\{0,1, *\}$ as

$$
\pi_{2}(v)=\left\{\begin{array}{ll}
0 & \text { if } v_{i_{2}}=x_{2} \\
1 & \text { if } v_{i_{2}}=y_{2} \\
* & \text { otherwise }
\end{array} \text { and } \pi_{3}(v)= \begin{cases}0 & \text { if } v_{i_{3}}=x_{3} \\
1 & \text { if } v_{i_{3}}=y_{3} \\
* & \text { otherwise }\end{cases}\right.
$$

Define a map $\pi:[m]^{t} \rightarrow\{0,1\} \times\{0,1, *\} \times\{0,1, *\}$ as

$$
\pi(v)=\left(\pi_{1}(v), \pi_{2}(v), \pi_{3}(v)\right),
$$

and consider the graph $\pi(\mathcal{G})$. Since we can always pull back a proper vertex coloring of $\pi(\mathcal{G})$ into a proper vertex coloring of \mathcal{G}, it suffices to prove that $\pi(\mathcal{G})$ has chromatic number at most 4 .

Note that since $a_{3, i_{1}}=a_{3, i_{2}}=0$, any edge $x y$ of color c_{3} has $\pi_{1}(x)=\pi_{1}(y), \pi_{2}(x)=\pi_{2}(y)$ and $\left\{\pi_{3}(x), \pi_{3}(y)\right\}=\{0,1\}$. We will use this fact in each of the subcases below.
Case I-A. $a_{2, i_{3}}=0$.
Since $a_{2, i_{1}}=a_{2, i_{3}}=0$, we see that any edge $x y$ of color c_{2} has $\pi_{1}(x)=\pi_{1}(y), \pi_{3}(x)=\pi_{3}(y)$ and $\left\{\pi_{2}(x), \pi_{2}(y)\right\}=\{0,1\}$. Since all edges of color c_{1} go between $\{0\} \times\{0,1, *\} \times\{0,1, *\}$ and $\{1\} \times\{0,1, *\} \times\{0,1, *\}$, it is now easy to see that the subgraphs of $\pi(\mathcal{G})$ induced on $\{0\} \times$ $\{0,1, *\} \times\{0,1, *\}$ and $\{1\} \times\{0,1, *\} \times\{0,1, *\}$ are both bipartite. Hence $\pi(\mathcal{G})$ is 4 -colorable.
Case I-B. $a_{2, i_{3}}=1$.
In this case, any edge $x y$ of color c_{2} has $\pi_{1}(x)=\pi_{1}(y),\left\{\pi_{2}(x), \pi_{2}(y)\right\}=\{0,1\}$ and either $\left\{\pi_{3}(x), \pi_{3}(y)\right\}=\{0,1\}$ or $* \in\left\{\pi_{3}(x), \pi_{3}(y)\right\}$. To analyze the edges of color c_{1}, we will split into some further subcases, noting that $\left\{\pi_{1}(x), \pi_{1}(y)\right\}=\{0,1\}$ in all cases.
Case I-B(i). $a_{1, i_{2}}=a_{1, i_{3}}=0$.
Any edge $x y$ of color c_{1} has $\pi_{2}(x)=\pi_{2}(y)$ and $\pi_{3}(x)=\pi_{3}(y)$. Taking

$$
\begin{aligned}
& V_{1}=(\{0\} \times\{0,1, *\} \times\{0\}) \cup(\{1\} \times\{0\} \times\{1, *\}), \\
& V_{2}=(\{0\} \times\{0\} \times\{1, *\}) \cup(\{1\} \times\{1, *\} \times\{1, *\}), \\
& V_{3}=(\{0\} \times\{1, *\} \times\{1, *\}) \cup(\{1\} \times\{0,1, *\} \times\{0\}),
\end{aligned}
$$

gives a proper coloring.
Case I-B(ii). $a_{1, i_{2}}=0, a_{1, i_{3}}=1$.

Any edge $x y$ of color c_{1} has $\pi_{2}(x)=\pi_{2}(y)$ and either $\left\{\pi_{3}(x), \pi_{3}(y)\right\}=\{0,1\}$ or $* \in$ $\left\{\pi_{3}(x), \pi_{3}(y)\right\}$. Taking

$$
\begin{aligned}
& V_{1}=\{0,1\} \times\{0,1, *\} \times\{0\}, \\
& V_{2}=(\{0\} \times\{0\} \times\{1, *\}) \cup(\{1\} \times\{1, *\} \times\{1, *\}), \\
& V_{3}=(\{0\} \times\{1, *\} \times\{1, *\}) \cup(\{1\} \times\{0\} \times\{1, *\}),
\end{aligned}
$$

gives a proper coloring.
Case I-B(iii). $a_{1, i_{2}}=1, a_{1, i_{3}}=0$.
Any edge $x y$ of color c_{1} has $\pi_{3}(x)=\pi_{3}(y)$ and either $\left\{\pi_{2}(x), \pi_{2}(y)\right\}=\{0,1\}$ or $* \in$ $\left\{\pi_{2}(x), \pi_{2}(y)\right\}$. Taking

$$
\begin{aligned}
& V_{1}=(\{0\} \times\{0,1, *\} \times\{0\}) \cup(\{1\} \times\{1, *\} \times\{1, *\}), \\
& V_{2}=\{0,1\} \times\{0\} \times\{1, *\}, \\
& V_{3}=(\{0\} \times\{1, *\} \times\{1, *\}) \cup(\{1\} \times\{0,1, *\} \times\{0\}),
\end{aligned}
$$

gives a proper coloring.
Case I-B(iv). $a_{1, i_{2}}=a_{1, i_{3}}=1$. Any edge $x y$ of color c_{1} has either $\left\{\pi_{2}(x), \pi_{2}(y)\right\}=\{0,1\}$ or $* \in\left\{\pi_{2}(x), \pi_{2}(y)\right\}$ and either $\left\{\pi_{3}(x), \pi_{3}(y)\right\}=\{0,1\}$ or $* \in\left\{\pi_{3}(x), \pi_{3}(y)\right\}$. Taking

$$
\begin{aligned}
& V_{1}=\{0,1\} \times\{0,1, *\} \times\{0\}, \\
& V_{2}=\{0\} \times\{1, *\} \times\{1, *\}, \\
& V_{3}=\{1\} \times\{1, *\} \times\{1, *\}, \\
& V_{4}=\{0,1\} \times\{0\} \times\{1, *\},
\end{aligned}
$$

gives a proper coloring.
See Figure 1 for an illustration.

Figure 1: Colorings for Case I

Since the remaining cases are similar, we will give fewer explicit details.
Case II. $i_{1}<i_{2}=i_{3}$
For a vector $v \in[m]^{t}$, define

$$
\pi_{1}(v)=\left\{\begin{array}{ll}
0 & \text { if } v_{i_{1}}=x_{1} \\
1 & \text { if } v_{i_{1}} \neq x_{1}
\end{array} .\right.
$$

Let $I=\left\{x_{2}, y_{2}\right\} \cap\left\{x_{3}, y_{3}\right\}$. Depending on whether $|I|=0,1,2$, define $\pi_{2}(v)$ as

$$
\pi_{2}(v)=\left\{\begin{array}{ll}
0 & \text { if } v_{i_{2}}=x_{2} \\
1 & \text { if } v_{i_{2}}=y_{2} \\
2 & \text { if } v_{i_{2}}=x_{3} \\
3 & \text { if } v_{i_{2}}=y_{3} \\
* & \text { otherwise }
\end{array} \quad \pi_{2}(v)=\left\{\begin{array}{ll}
0 & \text { if } v_{i_{2}}=x_{2} \\
1 & \text { if } v_{i_{2}}=y_{2} \\
2 & \text { if } v_{i_{2}}=y_{3} \\
* & \text { otherwise }
\end{array} \quad \pi_{2}(v)= \begin{cases}0 & \text { if } v_{i_{2}}=x_{2} \\
1 & \text { if } v_{i_{2}}=y_{2} \\
* & \text { otherwise }\end{cases}\right.\right.
$$

respectively, where for the second case, we are assuming that $y_{3} \notin\left\{x_{2}, y_{2}\right\}$. Define $\pi(v)=$ $\left(\pi_{1}(v), \pi_{2}(v)\right)$.
Case II-A. $a_{1, i_{2}}=0$.
One can easily check that $\pi(\mathcal{G})$ is bipartite.
Case II-B. $a_{1, i_{2}}=1$
If $I=\emptyset$, then a 4 -coloring of $\pi(\mathcal{G})$ is given by

$$
\begin{aligned}
& V_{1}=\{(0,0),(0,2),(0, *)\}, V_{2}=\{(0,1),(0,3)\}, \\
& V_{3}=\{(1,0),(1,2),(1, *)\}, V_{4}=\{(1,1),(1,3)\} .
\end{aligned}
$$

If $|I|=1$, then define $V_{1}=\{(0,0),(0,2),(0, *)\}, V_{2}=\{(1,0),(1,2),(1, *)\}$ and $V_{3}=\{(0,1),(1,1)\}$. Finally, if $|I|=2$, then define $V_{1}=\{(0,0),(0, *)\}, V_{2}=\{(1,0),(1, *)\}$ and $V_{3}=\{(0,1),(1,1)\}$.
Case III. $i_{1}=i_{2}<i_{3}$
For this case, define π_{1} as a projection map from $[m]^{t}$ to $\{0,1\},\{0,1,2\}$ or $\{0,1,2,3\}$ depending on the cardinality of $I=\left\{x_{1}, y_{1}\right\} \cap\left\{x_{2}, y_{2}\right\}$ and π_{2} as a map from $[m]^{t}$ to $\{0,1, *\}$, similarly to above.

If $I=\emptyset$, then the graph has two disjoint components, one containing edges arising from c_{1} and c_{3} and the other edges arising from c_{2} and c_{3}. Since both components are formed by the union of two colors, they are 3 -colorable and the result follows. The most delicate case is when $|I|=2$ and $a_{1, i_{3}}=0$ and $a_{2, i_{3}}=1$ (or vice versa). In this case, the coloring is given by

$$
V_{1}=\{(0,0)\}, V_{2}=\{(1,0)\}, V_{3}=\{(0,1),(0, *)\}, V_{4}=\{(1,1),(1, *)\} .
$$

The other cases can also be checked to be 4-colorable. We omit the details.
Case IV. $i_{1}=i_{2}=i_{3}$.
A similar deduction shows that we only need to consider graphs with at most three edges, which are clearly 3 -colorable.
See Figure 2 for an illustration.

$\mathrm{i}_{1}=\mathrm{i}_{2}<\mathrm{i}_{3}$

Figure 2: Colorings for Case II and III

References

[1] D. Conlon, J. Fox, C. Lee and B. Sudakov, On the grid Ramsey problem and related questions, submitted.
[2] D. Conlon, J. Fox, C. Lee and B. Sudakov, The Erdős-Gyárfás problem on generalized Ramsey numbers, submitted.
[3] D. Mubayi, Edge-coloring cliques with three colors on all 4-cliques, Combinatorica 18 (1998), 293-296.

[^0]: ${ }^{*}$ Mathematical Institute, Oxford OX2 6GG, United Kingdom. Email: david.conlon@maths.ox.ac.uk. Research supported by a Royal Society University Research Fellowship.
 ${ }^{\dagger}$ Department of Mathematics, MIT, Cambridge, MA 02139-4307. Email: fox@math.mit.edu. Research supported by a Packard Fellowship, by a Simons Fellowship, by NSF grant DMS-1069197, by an Alfred P. Sloan Fellowship and by an MIT NEC Corporation Award.
 ${ }^{\ddagger}$ Department of Mathematics, MIT, Cambridge, MA 02139-4307. Email: cb_lee@math.mit.edu.
 ${ }^{\S}$ Department of Mathematics, ETH, 8092 Zurich, Switzerland. Email: benjamin.sudakov@math.ethz.ch. Research supported in part by SNSF grant 200021-149111 and by a USA-Israel BSF grant.

