On chromatic-(5, 4)-colourings

David Conlon * Jacob Fox T Choongbum Lee * Benny Sudakov

This is a companion note to the paper [1] in which we elucidate a comment made in the
concluding remarks of that paper. We say that an edge coloring of K, is a chromatic-(p, q)-coloring
if every subgraph with chromatic number p receives at least ¢ colors on its edges. Equivalently, an
edge coloring is a chromatic-(p, ¢)-coloring if the union of every ¢ — 1 color classes has chromatic
number at most p— 1. In [1] and [2], we ask whether there is a chromatic-(p, p — 1)-coloring of K,
using a subpolynomial number of colors. In [1], we showed that there is a chromatic-(4, 3)-coloring
of K,, with 20(V187) ¢olors. The purpose of this note is to show that the same coloring, originally
found by Mubayi [3], is also a chromatic-(5,4)-coloring.

Let m and t be positive integers and let n = m!. Identify the vertex set of K, with [m]*
and consider the edge-coloring function cp; defined over pairs of vertices v = (v1,...,v;) and
w = (wi,...,w) as follows:

em(v,w) = <{v¢,wi},a1,a2,---,at>,

where 7 is the minimum index j for which v; # w; and a; = 1 if v; # w; and 0 otherwise. For ¢
about v/logn and m = 2, this gives a coloring of K,, with 20(V10g7) ¢olors.

We will prove that cps is a chromatic-(5,4)-coloring. Let ¢1, c2 and c3 be three colors used in
the coloring cj; and let G be the graph induced by these three colors. It suffices to prove that G
is 4-colorable. For each j = 1,2, 3, let

¢j = ({xj,yj},aj,l,aj,g, . -,aj,t>-

Furthermore, for each j = 1,2,3, let i; be the minimum index ¢ for which a;; = 1. Without loss
of generality, we may assume that i; < io < i3. There are several different cases that we must
consider, depending on the values of i1, 42,43 and a1 ,,a1,i,, and ag;,. In the forthcoming figures,
these cases will be represented by the following matrix:

a1, Ol4y Olyg
a2,y A2y Q2,03

34, 034y 0343
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Case Il 11 <119 < 13
Note that as;, = as;, = ag;, = 0. Define 71 : [m]* — {0,1} as

( ) 0 if Vi = 21
m™\v) =
1 if Vi 7é 1

and o, w3 : [m]t — {0,1,%} as

0 if v, =z 0 if vy, = z3
m(v) =<1 if v, =y and m3(v) =41 if v;; =ys3 -
x otherwise * otherwise

Define a map 7 : [m]* — {0,1} x {0,1,%} x {0,1,*} as

m(v) = (m1(v), m2(v), 73(v)),

and consider the graph 7(G). Since we can always pull back a proper vertex coloring of 7(G) into
a proper vertex coloring of G, it suffices to prove that m(G) has chromatic number at most 4.

Note that since a3z ;, = a3, = 0, any edge zy of color ¢3 has 7 (z) = m1(y), m2(z) = m2(y) and
{ms(z), m3(y)} = {0,1}. We will use this fact in each of the subcases below.

Case I-A. ay;, = 0.

Since ag;, = as;, = 0, we see that any edge xy of color ¢z has m(z) = m1(y), m3(x) = m3(y)
and {ma(x), m2(y)} = {0,1}. Since all edges of color ¢; go between {0} x {0,1,*} x {0,1,*} and
{1} x {0,1,%} x {0,1,x}, it is now easy to see that the subgraphs of m(G) induced on {0} x
{0,1,%} x {0,1,+} and {1} x {0,1,*} x {0,1,*} are both bipartite. Hence m(G) is 4-colorable.
Case I-B. az;, = 1.

In this case, any edge xy of color co has mi(x) = mi(y), {ma(z), m2(y)} = {0,1} and either
{m3(z),m3(y)} = {0,1} or x € {m3(x), m3(y)}. To analyze the edges of color ¢1, we will split into
some further subcases, noting that {m(x),m1(y)} = {0,1} in all cases.

Case I-B(i). a1, = a1, =0.
Any edge zy of color ¢; has ma(z) = ma(y) and 73(x) = m3(y). Taking

Vi = ({0} % {0, 1,53 x {0}) U ({1} x {0} x {1,+}),
Va = ({0} > {0} x {1} ) U ({1} x {L#} x {1,%})
Vo = ({0} x {1} x {1,4}) U ({1} x {0, 1,4} x {0}),

gives a proper coloring.
Case I-B(il) a1,y = O, a1,z = 1.



Any edge zy of color ¢; has ma(x) = ma(y) and either {m3(x),m3(y)} = {0,1} or x €
{m3(z), m3(y)}. Taking
Vi= {07 1} X {07 17*} X {0},
Vo= ({0} x {0} x {1, }) U ({1} x {14} x {1,4}),
Va = ({0} x {1} x {1,x}) U ({1} x {0} x {1,4}),
gives a proper coloring.
Case I-B(iii). a14, =1, a1, = 0.

Any edge zy of color ¢; has m3(x) = mw3(y) and either {ma(x),m(y)} = {0,1} or x €
{ma(z), m2(y)}. Taking

V= ({0} % {0,1, %} x {0}) U ({1} x {1, %} x {1,*}>,
Vo= {0,1} x {0} x {1,4},
Vs = ({0} x {1} x {1,4}) U ({1} x {0, 1,4} x {0}),

gives a proper coloring.
Case I-B(iv). a14, = a14, = 1. Any edge zy of color ¢; has either {my(z), m(y)} = {0,1} or
* € {mo(x), m2(y)} and either {m3(z), m3(y)} = {0,1} or * € {m3(x), m3(y)}. Taking

Vi ={0,1} x {0,1,*} x {0},
Vo = {0} x {1,%} x {1,x*},
Vs = {1} x {1,*} x {1, %},
Va = {0,1} x {0} x {1},

gives a proper coloring.

See Figure 1 for an illustration.
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Figure 1: Colorings for Case 1
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Since the remaining cases are similar, we will give fewer explicit details.
Case II. i1 < iy = 13
For a vector v € [m]?, define

0 if Vi, = I1
m(v) = _ :
1 if Uiy 7& 1
Let I = {x2,y2} N {z3,y3}. Depending on whether |I| = 0,1, 2, define m2(v) as

0 if’UiQZSUQ .
0 if vy, = 29

1 if Vi, = Y2 1 i 0 if Viy = T2
if v, = yo
7T2<’U) =<9 if Vi, = T3 72(1)) = ' i = Y 7T2(U) =<1 if Viy, = Y2 >
. 2 if Vi, = Y3 .
3 ifwv, =y3 x otherwise

) * otherwise
* otherwise

\

respectively, where for the second case, we are assuming that y3 ¢ {x2,y2}. Define 7(v) =

(m1(v), m2(v)).
Case II-A. a1, = 0.
One can easily check that 7(G) is bipartite.

Case II-B. a1 ;, =1
If T = (), then a 4-coloring of 7(G) is given by

Vi ={(0,0),(0,2),( ={(

Vs ={(1,0),(1 72)7(1,*)} Vi ={(

If |I| = 1, then define V; = {(0,0), (0,2), (0,%)}, Vo = {(1,0),(1,2), (1,*)} and V3 = {(0, 1), (

Finally, if |I| = 2, then define V4 = {(0,0), (0,%)}, V2 = {(1,0), (1,%)} and V3 = {(0,1), (1,1
Case III. 11 = iy < i3

For this case, define 71 as a projection map from [m]? to {0, 1}, {0,1, 2} or {0, 1,2, 3} depending

1,1)}.
)}

on the cardinality of I = {z1,y1} N {z2,92} and 7 as a map from [m]* to {0,1, x}, similarly to
above.

If I = (), then the graph has two disjoint components, one containing edges arising from c;
and c3 and the other edges arising from ¢y and c3. Since both components are formed by the
union of two colors, they are 3-colorable and the result follows. The most delicate case is when
|I| =2 and a; 4, = 0 and ag;, = 1 (or vice versa). In this case, the coloring is given by

Vi= {(Oa())}’ Vo= {(170)}7 V3 = {(07 1)7 (07 *)}a Vy= {(17 1)a (13 *)}

The other cases can also be checked to be 4-colorable. We omit the details.
Case IV. i1 =iy = i3.

A similar deduction shows that we only need to consider graphs with at most three edges,
which are clearly 3-colorable.

See Figure 2 for an illustration.
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Figure 2: Colorings for Case II and III
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