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Abstract. For which graphs F is there a sparse F -counting lemma in C4-free graphs? We are
interested in identifying graphs F with the property that, roughly speaking, if G is an n-vertex C4-
free graph with on the order of n3/2 edges, then the density of F in G, after a suitable normalization,
is approximately at least the density of F in an ε-regular approximation of G. In recent work,
motivated by applications in extremal and additive combinatorics, we showed that C5 has this
property. Here we construct a family of graphs with the property.

1. Introduction

When applying the regularity method in extremal graph theory, proofs can often be divided into
two steps: first applying Szemerédi’s regularity lemma to partition a large graph so that most pairs
of parts are regular and then using a counting (or embedding) lemma to find copies of a particular
subgraph in this regular partition. For dense graphs, these steps are generally well-behaved and
essentially completely understood. For sparse graphs, however, both steps can break down without
additional hypotheses. Here we will focus on the second step of finding appropriate counting lemmas
in the sparse regime, since the regularity step is now reasonably well understood [14, 22] (although
difficulties in maintaining the so-called no-dense-spots condition can arise even here).

Similar issues arise in the study of quasirandom graphs, a fundamental theme developed and
popularized by Chung, Graham and Wilson [4], building on earlier work of Thomason [23]. In
their work, they showed, somewhat surprisingly, that several distinct notions of quasirandomness
in dense graphs are essentially equivalent. In particular, in an n-vertex graph G with edge density
p, where p is a fixed constant, having C4-density p4 + o(1) is equivalent to a certain discrepancy

condition and this in turn implies that the F -density in G is p|E(F )| + o(1) for all fixed graphs F .
However, as already observed by Chung and Graham in [5], these equivalences do not automatically
carry over to graphs with o(n2) edges without additional assumptions. Indeed, even rather modest
variants of the Chung–Graham–Wilson equivalences can fail to hold [20]. One viewpoint on our
work here is that some aspect of the Chung–Graham–Wilson equivalences may be recovered if we
assume that our graph is C4-free.

Previous work on developing counting lemmas for sparse graphs has largely focused on con-
trolling relatively dense subgraphs of sparse random or pseudorandom graphs. For instance, a
counting lemma in sparse random graphs was proved by Conlon, Gowers, Samotij, and Schacht [6]
in connection with the celebrated K LR conjecture [15] (see also [2, 21]), while a counting lemma
in sparse pseudorandom graphs was proved by Conlon, Fox, and Zhao [8] and later extended to
hypergraphs [10], allowing them to simplify the proof of the Green–Tao theorem [13] (see also [9]
for a detailed exposition incorporating many further simplifications of the original proof).

In recent work [7], motivated by applications in extremal and additive combinatorics, we pursued
the study of sparse regularity in a very different setting, without any explicit pseudorandomness
hypothesis. Instead, the only hypothesis on the host graph was that it be C4-free. Under this
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assumption, we proved a C5-counting lemma, which, when combined with an appropriate sparse
regularity lemma, led to various new results, including a C5-removal lemma in C4-free graphs. As
an example of an additive combinatorics application, we showed that every Sidon subset of [N ]

without nontrivial solutions to w + x + y + z = 4u has at most o(
√
N) elements. Here a Sidon

set is a set without nontrivial solutions to the equation x + y = z + w and it is known that the
maximum size of a Sidon subset of [N ] is (1 + o(1))

√
N . We refer the interested reader to [7] for

further discussion of applications.
In this article, we continue the study of counting lemmas in C4-free graphs, our main interest

being the problem of determining which graphs F , besides C5, satisfy an F -counting lemma in
C4-free graphs. We will make this question more precise in Definition 1.3 below, when we say
formally what it means for a graph F to be countable.

Question 1.1 (Main question, informal). For which graphs F is there an F -counting lemma in
C4-free graphs?

By extending the proof of [7, Theorem 1.1, see Section 4] (which was written for F = C5, but
easily extends), we can deduce an F -removal lemma in C4-free graphs whenever F is countable.

Corollary 1.2 (Sparse removal lemma in C4-free graphs). For any countable graph F and any ε >

0, there exists δ = δ(F, ε) > 0 such that every n-vertex C4-free graph with at most δn|V (F )|−|E(F )|/2

copies of F can be made F -homomorphism-free by removing at most εn3/2 edges.

Here “copies of F” refer to subgraphs isomorphic to F , whereas “F -homomorphism-free” means
that there is no graph homomorphism from F into the resulting graph after edge removal. In
particular, if F is bipartite and the number of copies of F in a C4-free graph on n vertices is
o(n|V (F )|−|E(F )|/2), then G has o(n3/2) edges.

Let us sketch the main ideas of the proof of Corollary 1.2, referring the reader to [7, Section 4] for
further details. We first apply a sparse weak regularity lemma to approximate the C4-free graph G
by some “dense” graph H (allowing edge-weights in [0, 1] for H). The counting lemma then implies
that H has small F -homomorphism density. By the dense F -removal lemma, applied as a black
box, one can therefore remove a collection of edges from H with small total weight so that the
remaining graph contains no subgraphs to which F is homomorphic. Removing the corresponding
edges from G then makes it F -homomorphism-free.

The notion of having an F -counting lemma is made precise in the following definition. Note
that the conclusion we seek is one-sided, that is, we only ask for a lower bound. In practice, this is
usually all that is needed in applications.

Definition 1.3. A graph F is countable if, for every ε > 0, there exists δ = δ(F, ε) > 0 such that
if G is an n-vertex C4-free graph on vertex set V and H ∈ [0, 1]V×V is a symmetric matrix (i.e., an
edge-weighted graph) satisfying∣∣∣∣eG(A,B)

n3/2
− eH(A,B)

n2

∣∣∣∣ ≤ δ for all A,B ⊆ V, (1.1)

(here eG(A,B) = {(x, y) ∈ A×B : xy ∈ E(G)} and eH(A,B) =
∑

x∈A,y∈BH(x, y)), then, for every

A = (Av)v∈V (F ) with Av ⊆ V for each v ∈ V (F ), one has

homA(F,G)

n|V (F )|−|E(F )|/2 ≥
homA(F,H)

n|V (F )| − ε, (1.2)

where homA(F,G) is the number of homomorphisms from F to G where each v ∈ V (F ) is mapped
to a vertex in Av and homA(F,H) is the weighted analogue defined by the formula

homA(F,H) :=
∑

xv∈Av ∀v∈V (F )

∏
uv∈E(F )

H(xu, xv).



WHICH GRAPHS CAN BE COUNTED IN C4-FREE GRAPHS? 3

The scaling in the denominators of the definition above is natural because the maximum number
of edges in an n-vertex C4-free graph is (1/2 + o(1))n3/2 (see Remark 1.5 below). It may be

instructive to consider what happens when G is the random graph G(n, n−1/2) and H is the all-1
matrix, in which case, provided |E(F ′)| < 2|V (F ′)| for all subgraphs F ′ of F , (1.1) and (1.2) with
δ, ε→ 0 hold with high probability as n→∞.

Remark 1.4. In Definition 1.3, it suffices to only consider unweighted graphs H, since we can always
randomly sample a weighted graph to get an unweighted graph with similar density properties.
However, in applications, H is usually the normalized edge-density matrix of some (weak) regular
partition of G, so it is more intuitive to allow edge-weights for H.

Remark 1.5. The polarity graph [3, 11, 12] is an n-vertex C4-free graph G with (1/2+o(1))n3/2 edges
(which is essentially best possible by the Kővári–Sós–Turán theorem [16]). In addition, it has the
property that every edge lies in exactly one triangle and it satisfies the discrepancy condition (1.1)

with δ = O(n−1/4) and H being the all-1 matrix.
More specifically, let q be a prime power and let G0 be the graph with q2 + q + 1 vertices, each

corresponding to a point of the projective plane over Fq, i.e., elements of F3
q \ {(0, 0, 0)} where

(x, y, z) is identified with (λx, λy, λz) for every nonzero λ ∈ Fq, with an edge between (x, y, z)
and (x′, y′, z′) if and only if xx′ + yy′ + zz′ = 0. This graph has exactly q + 1 loops. It is also
(q + 1)-regular and has the property that each pair of distinct vertices has exactly one common
neighbor, which in particular implies that G0 is C4-free. The square of its adjacency matrix is thus
qI + J (with J being the all-1 matrix) and, hence, all of its eigenvalues, besides the top eigenvalue
q + 1, are ±√q. The discrepancy claim in the previous paragraph then follows from the expander
mixing lemma (see, e.g., [17]). In practice, we will actually use the induced subgraph G of this
graph where we remove all vertices with loops. This inherits the discrepancy property from G0,
but has the additional property mentioned above that every edge is contained in a unique triangle
(see [18] for a more detailed discussion of this point).

We now use the polarity graph to deduce a simple necessary condition for F to be countable.

Remark 1.6. If F is countable, then it has girth at least 5.
Indeed, suppose that F contains a 4-cycle v1v2v3v4. Let G be an n-vertex polarity graph and H

the all-1 matrix. The discrepancy property (1.1) is satisfied for δ = o(1) by the previous remark.
Set Av1 , Av2 , Av3 , Av4 to be disjoint vertex sets of V (G), each of order bn/4c, and Av = V (G) for

all v ∈ V (F ) \ {v1, v2, v3, v4}. Then homA(F,G) = 0 since G is C4-free, but homA(F,H) & n|V (F )|,
so F is not countable.

Now suppose that F contains a triangle. Consider the graph G′ obtained from the polarity graph
G by deleting one edge from each triangle of G chosen uniformly and independently at random
(recall that G is a disjoint union of triangles). With probability 1− o(1), the discrepancy property
(1.1) remains valid with δ = o(1) and H the all-2/3 matrix. However, (1.2) fails when Av = V (G)
for all v, since the fact that G′ is triangle-free implies that hom(F,G′) = 0. So again F is not
countable. (The same construction also appears in [1, Lemma 2.6].)

In the next section, we describe our main result, which gives a sufficient condition for countability,
presented as a recursive construction.

2. Countable graphs

We begin with a simple proposition, whose proof may be found in Section 5.

Proposition 2.1. Adding a pendant edge to a countable graph produces a countable graph.

In particular, we have the following important corollary.

Corollary 2.2. All trees are countable.
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It will be shown in the next section that it suffices to verify countability within n-vertex C4-free
graphs G with maximum degree at most 2

√
n. This makes the following definition relevant.

Definition 2.3. A graph F is tame if there exists a constant C = C(F ) such that hom(F,G) ≤
Cn|V (F )|−|E(F )|/2 for every n-vertex C4-free graph G with maximum degree at most 2

√
n.

An edgeless graph is clearly tame. Here is a sufficient recursive condition for tameness.

Proposition 2.4. Let F be a tame graph. Let F ′ be obtained from F by either

(a) adding a pendant edge to F (creating a single new leaf vertex) or
(b) joining two (not necessarily distinct) vertices of F by a 3-edge path whose two intermediate

vertices are new. (If the two vertices of F are the same, then the path is a triangle.)

Then F ′ is tame.

Proof. Let G be an n-vertex C4-free graph with maximum degree at most 2
√
n. It suffices to show

that hom(F ′, G) ≤ 4
√
n hom(F,G). In case (a), this is clear, since G has maximum degree at most

2
√
n. In case (b), we verify that the number of 3-edge walks between any pair of vertices (not

necessarily distinct) in G is at most 4
√
n. Indeed, given x, y ∈ V (G), let w be a neighbor of x. If

w 6= y (at most 2
√
n such w), then, since G is C4-free, there is at most one 2-edge walk from w to

y. On the other hand, if w = y (at most one such w), the number of 2-edge walks from w = y back
to itself is deg(y) ≤ 2

√
n. �

Example 2.5. All cycles are tame, since, for each ` ≥ 3, one can first build an (` − 3)-edge path
using (a) and then complete it to an `-cycle using (b).

Example 2.6. The graphs in the sequence depicted below are also tame. To see this, observe that,
at each step, we add a new path with ` ≥ 3 edges whose intermediate vertices are new (by again
applying step (a) `− 3 times and then applying step (b) once).

Example 2.7. K2,3 is not tame. Indeed, the n-vertex polarity graph G has hom(K2,3, G) ≥
hom(K1,3, G) =

∑
x∈V (G) degG(x)3 & n5/2, which is much larger than the Cn2 upper bound re-

quired for tameness.

Example 2.8. Let K ′k denote the 1-subdivision of Kk. Then K ′k is tame if and only if k ≤ 4.
Indeed, let G be the n-vertex polarity graph. Then, since there is a homomorphism K ′k → K

1,(k2)
mapping all k vertices of the original Kk to the same vertex, we have that

hom(K ′k, G) ≥ hom(K
1,(k2)

, G) & n1+(k2)/2.

But 1 +
(
k
2

)
/2 > k = |V (K ′k)| − |E(K ′k)|/2 for k ≥ 5, so K ′k is not tame. On the other hand, for

k ≤ 3, K ′k is tame due to Proposition 2.4, while, despite the fact that Proposition 2.4 does not
apply to K ′4, it is still tame, as may be verified by performing a case check based on which subsets
of the original four vertices of K4 are mapped to the same vertex.

It will follow from our results below that every K ′k is countable. Therefore, K ′5 (or K ′k for any
k ≥ 5) is an example of a non-tame countable graph. Moreover, since, for H the all-1 matrix, the
polarity graph G satisfies the discrepancy property (1.1) with δ = o(1), we see that K ′5 does not
satisfy an “upper-bound counting lemma”, i.e., (1.2) with ≥ · · · − ε replaced by ≤ · · ·+ ε. That is,
the K ′5-counting lemma in C4-free graphs is truly one-sided.

We now describe an important building block in our recursive construction of countable graphs.
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Definition 2.9. Let F be a graph and I ⊆ V (F ) an independent set. We say that F is a connector
with ends I (or simply that (F, I) is a connector) if

(a) F is countable and
(b) the graph F ∨I F formed by gluing two copies of F along I is tame.

Here is the simplest interesting connector.

Example 2.10. The 2-edge path v0v1v2 is a connector with ends {v0, v2}. This is illustrated below,
where the ends of the connector are marked by red triangles.

F = F ∨I F =

More generally, any path is a connector with ends being any independent set. However, the same
statement does not extend to all trees. For instance, K1,3 does not give rise to a triple-ended
connector, since K2,3 is not tame by Example 2.7.

Our main result is the following recursive construction of countable graphs. It can be visualized
in terms of “islands” and “bridges.” We start with several disjoint tame countable components (the
islands) and join them using connectors (the bridges). The theorem then says that the resulting
graph is countable.

Theorem 2.11. Let F be a graph that is an edge-disjoint union of its subgraphs F1, . . . , Fk, J1, . . . , J`,
satisfying all of the following conditions:

(a) F1, . . . , Fk are countable and vertex-disjoint;
(b) F1, . . . , Fk−1 are tame (Fk may be tame or not);
(c) for each j ∈ [`], Jj is a connector with ends Ij = V (Jj) ∩ V (F1 ∪ · · · ∪ Fk) and Ij has at

most one vertex in common with each Fi;
(d) each pair of connectors Ji and Jj share at most one vertex and the vertex they share (if

any) lies in Ii ∩ Ij.
Then F is countable.

Example 2.12. The 5-cycle is countable. The “islands and bridges” decomposition is illustrated
below, where each contiguous shaded region is an island. Both connectors are 2-edge paths.

Similarly, `-cycles, for ` ≥ 5, can be shown to be countable by starting with two islands, one
an isolated vertex, as above, and the other a path of length ` − 4, with 2-edge-path connectors
joining the endpoints of this path to the isolated vertex. As mentioned in [7, Footnotes 1 and 3],
knowing that longer cycles can be counted allows us to extend our results [7, Section 1.3] about
finding solutions of translation-invariant equations in Sidon sets to equations with more than five
variables.

Example 2.13. Since the 5-cycle is both countable and tame, we can use it as an island to build up
further countable graphs. For example, connecting a pair of 5-cycles using 2-edge-path connectors,
as shown below, yields a new countable graph.
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Example 2.14. Using that the 5-cycle is countable and tame, we see that the following graph is
also countable, again with the islands shaded:

This graph is also tame by Proposition 2.4, so we can repeat the process to show that the following
graph (and any longer chain of 5-cycles) is tame and countable.

Example 2.15. The following graph is a connector (with the ends again marked by red triangles):

(2.1)

Indeed, we saw in the last example that this graph is countable, while the graph formed by gluing
two copies along the ends, as shown below, is tame by Example 2.6.

Similarly, we can check that the following graph (and any longer chain of 5-cycles) is a multi-ended
connector:

Example 2.16. The following graph is countable (one of the connectors is a 2-edge path, while
the other is (2.1)):

We can extend this example further. Since the above graph is countable, we can use Proposition 2.4
to verify that, with the ends as marked, it is also a connector:

Using this connector, we deduce that the following graph is countable:

Similar inductive arguments allow us to prove the countability of many other graphs of girth at
least 5. However, as we shall explain in more detail in the concluding remarks, we are far from a
classification. For instance, our methods seem insufficient for showing that 3-regular graphs such
as those below are countable.
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Open Problem 2.17. Are the dodecahedral and Petersen graphs, shown below, countable?

In the remainder of the article, we prove Proposition 2.1 and Theorem 2.11.

3. Trimming high-degree vertices

In this brief section, we show that in the definition of countability, Definition 1.3, we can restrict
to considering n-vertex C4-free graphs G satisfying an additional maximum degree assumption,
namely, that G has maximum degree at most 2

√
n, without affecting the family of graphs which

are countable.

Lemma 3.1. Let G be a graph on a vertex set V of size n and let H ∈ [0, 1]V×V be a symmetric
matrix such that ∣∣∣∣eG(A,B)

n3/2
− eH(A,B)

n2

∣∣∣∣ ≤ δ for all A,B ⊆ V. (3.1)

Let S = {v ∈ V : degG(v) ≤ 2
√
n} and let G′ be the subgraph of G with the same vertex set V but

only keeping edges with both endpoints in S. Then∣∣∣∣eG′(A,B)

n3/2
− eH(A,B)

n2

∣∣∣∣ ≤ 3δ for all A,B ⊆ V.

Proof. Write S = V \ S. Applying (3.1) to (A,B) = (S, V ), we have

δn2 ≥
√
neG(S, V )− eH(S, V ) ≥

√
n · 2
√
n|S| − |S||V | = n|S|,

so |S| ≤ δn. For any A,B ⊆ V , writing A′ = A∩S and B′ = B∩S, we have eG′(A,B) = eG(A′, B′),
so ∣∣√neG′(A,B)− eH(A,B)

∣∣ =
∣∣√neG(A′, B′)− eH(A′, B′) + eH(A′, B′)− eH(A,B)

∣∣
≤
∣∣√neG(A′, B′)− eH(A′, B′)

∣∣+ (|A \A′|+ |B \B′|)n
≤ δn2 + 2|S|n ≤ 3δn2. �

4. Notation and setup

Given a graph F , a vertex weight function on F (sometimes we say “on V (F )”, as graphs and
their vertex sets are interchangeable for this purpose) is a collection α = (αv)v∈V (F ) of functions
αv : V → [0, 1] indexed by v. It will be important for our arguments that each αv takes values in
[0, 1] and not in some wider range.

Let x = (xv)v∈V (F ) ∈ V V (F ) with xv ∈ V . For each S ⊆ V (F ), we write xS = (xv)v∈S for its
projection onto the coordinates indexed by S. To avoid notational clutter, we will sometimes write
a subgraph as the subscript rather than its vertex set. For example, if F ′ is a subgraph of F and
S ⊆ V (F ), then we write xF ′ = xV (F ′), xF\F ′ = xV (F )\V (F ′), and xF\S = xV (F )\S .

Given a function f : V S → R, we write∫
f(xS)dxS = |V |−|S|

∑
xS∈V S

f(xS).

Furthermore, given a vertex weight function α = (αv)v∈S on S, we write∫
f(xS)dαxS =

∫
f(xS)

∏
v∈S

αv(xv) dxS .
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Given a symmetric function g : V × V → R and x ∈ V V (F ), we define gF : V V (F ) → R by

gF (x) =
∏
uv∈F

g(xu, xv).

Given S ⊆ V (F ) and a vertex weight function α on F \ S, we define gF,S : V S → R by

gαF,S(xS) =

∫
gF (xF ) dαxF\S ,

which (up to normalization) corresponds to counting homomorphisms from F to the weighted graph
corresponding to g where the image of S is xS and the remaining vertices of F are weighted by
α. Such quantities also arise naturally when using flag algebras. Finally, given a vertex weight
function α on F , we write

tα(F, g) = gαF,∅ =

∫ ∏
uv∈F

g(xu, xv)
∏

v∈V (F )

(αv(xv)dxv) ,

which is the α-weighted homomorphism density of F in g.
It will also be convenient to allow our weight function notation to be a little more flexible, in

the sense that we automatically ignore uninvolved vertices. For example, if α is a vertex weight
function on F and F ′ is a subgraph on a proper vertex subset, then we still write tα(F ′, g) and
dαxF ′ with the understanding that α is now restricted to the vertex set of F ′. This way we do not
always have to specify the set of vertices that the weight function is defined on.

Both the discrepancy condition (1.1) and the counting lemma conclusion (1.2) can be equivalently
rephrased in terms of weight functions α rather than product sets A. The extra flexibility allowed
by considering [0, 1]-valued weight functions will be helpful in our proofs. To see the equivalence,
note that, with the function g =

√
nG (here we view G : V × V → {0, 1} as the edge-indicator

function of the graph G), we have

homA(F,G)

n|V (F )|−|E(F )|/2 = tα(F, g)

for the vertex weight function α on F which is equal to the indicator function of A (i.e., αv(x) = 1
if x ∈ Av and 0 otherwise). Likewise, for h = H,

homA(F,H)

n|V (F )| = tα(F, h).

Hence, the counting lemma conclusion (1.2), that

homA(F,G)

n|V (F )|−|E(F )|/2 ≥
homA(F,H)

n|V (F )| − ε,

is equivalent to the statement that

tα(F, g) ≥ tα(F, h)− ε (4.1)

for any {0, 1}-valued vertex weight function α. Since tα(F, g) − tα(F, h) is a multilinear function
of the values (αv(x))v∈F,x∈V , the extrema of the function are attained when αv(x) ∈ {0, 1} for
all v ∈ F and x ∈ V . This shows that the counting lemma conclusion (1.2) is equivalent to the
statement that (4.1) holds for all vertex weight functions.

By the same argument, the discrepancy condition (1.1), that∣∣∣∣eG(A,B)

n3/2
− eH(A,B)

n2

∣∣∣∣ ≤ δ for all A,B ⊆ V,

is equivalent to ∣∣∣∣∫ (g − h)(x, y)α1(x)α2(y)dxdy

∣∣∣∣ ≤ δ for all α1, α2 : V → [0, 1].
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In fact, (thanks to the trimming step in the previous section) from now on we will only need the
one-sided discrepancy hypothesis∫

g(x, y)α1(x)α2(y)dxdy ≥
∫
h(x, y)α1(x)α2(y)dxdy − δ for all α1, α2 : V → [0, 1]. (4.2)

Summary of what needs to be proved. To prove that F is countable, it suffices to show that there
is a constant c > 0 such that for every ε > 0 there exists δ > 0 satisfying the following. Let G
be an n-vertex C4-free graph on vertex set V with maximum degree at most 2

√
n. Let g = c

√
nG

and let h : V × V → [0, 1] be a symmetric function satisfying (4.2). Then, for every vertex weight
function α on F , one has (4.1).

The reason that we scale by a factor of c in defining g is so that the various tameness hypotheses
on subgraphs of G can be made to have the form t(F ′, g) ≤ 1. Furthermore, as long as c ≤ 1/2,
the hypothesis that G has maximum degree at most 2

√
n implies that∫

g(x, y) dy ≤ 1 for all x ∈ V. (4.3)

5. Counting lemma proofs

We follow without further comment the framework discussed in the previous section.

Proof of Proposition 2.1 (adding a pendant edge preserves countability). Let F be a graph with a
leaf vertex u. Let F ′ be F with u removed and assume that F ′ is countable. Suppose that∫

g(x, y)α1(x)α2(y)dxdy ≥
∫
h(x, y)α1(x)α2(y)dxdy − ε (5.1)

for all α1, α2 : V → [0, 1]. Since F ′ is countable, we may also assume that

tα
′
(F ′, g) ≥ tα′(F ′, h)− ε (5.2)

for every vertex weight function α′ on F ′.
It suffices to show that these two inequalities imply that

tα(F, g) ≥ tα(F, h)− 2ε (5.3)

for every vertex weight function α on F . For this, define a vertex weight function α′ on F ′ by
α′v = αv unless v is the neighbor of u, in which case α′v(xv) = αv(xv)

∫
g(xv, xu)αu(xu)dxu ∈ [0, 1]

by (4.3). Then, by (5.2) applied with this α′,

tα(F, g) = tα
′
(F ′, g) ≥ tα′(F ′, h)− ε.

Furthermore, we have

tα
′
(F ′, h) =

∫
hαF ′,v(xv)g(xv, xu)αu(xu)αv(xv) dxudxv

≥
∫
hαF ′,v(xv)h(xv, xu)αu(xu)αv(xv) dxudxv − ε

= tα(F, h)− ε,

where the inequality step uses (5.1). Combining the last two displayed inequalities yields (5.3), as
desired. �

Proof of Theorem 2.11 (islands and bridges). By the tameness assumptions, we can choose a suf-
ficiently small constant c ∈ (0, 1] (depending only on F ) such that, setting g = c

√
nG : V × V →

[0,∞), we have

t(Fi, g) ≤ 1 for all i ∈ [k − 1] and t(Jj ∨Ij Jj , g) ≤ 1 for all j ∈ [`]. (5.4)
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Let ε ∈ (0, 1] and let

ηi = ε2
i

for each i ∈ [`] and η = ε2
`+1
. (5.5)

By the countability assumption on F1, . . . , Fk, J1, . . . , J`, it suffices to show that if h : V ×V → [0, 1]
satisfies

tα(L, g) ≥ tα(L, h)− η (5.6)

for each L ∈ {F1, . . . , Fk, J1, . . . , J`} and vertex weight function α on L, then

tα(F, g) ≥ tα(F, h)− (2`+ k)ε (5.7)

for every vertex weight function α on F .
Write

f≤t(x) =

{
f(x) if f(x) ≤ t,
0 otherwise

and f>t(x) =

{
f(x) if f(x) > t,

0 otherwise.

For each connector (J, I) = (Jj , Ij) (temporarily dropping the subscript j to avoid notational
clutter), writing

gαJ,I,>δ−1 = (gαJ,I)>δ−1 ,

we have, using t(J ∨I J, g) ≤ 1 from (5.4), that∫
gαJ,I,>δ−1(xI) d

αxI ≤ δ
∫
g2J,I(xI) d

αxI ≤ δt(J ∨I J, g) ≤ δ.

Thus, using (5.6),∫
gαJ,I,≤δ−1(xI) d

αxI ≥
(∫

gαJ,I(xI) d
αxI

)
− δ ≥

(∫
hαJ,I(xI) d

αxI

)
− η − δ. (5.8)

Step I. Swapping out the islands one at a time.

Write F ′ = ∪iFi (islands without connectors). We have

tα(F, g) =

∫
gF (xF ) dαxF

=

∫ k∏
i=1

gFi(xFi)
∏̀
j=1

gαJj ,Ij (xIj ) d
αxF ′

≥
∫ k∏

i=1

gFi(xFi)
∏̀
j=1

gα
Jj ,Ij ,≤η−1

j
(xIj ) d

αxF ′

=

∫ ∫ gFk
(xFk

)
∏̀
j=1

gα
Jj ,Ij ,≤η−1

j
(xIj )d

αxFk

 k−1∏
i=1

(gFi(xFi)d
αxFi) .

Now, using (5.6) for Fk and noting that the inner integral inside the parenthesis has the form∫
gFk

(xFk
)dα

′
xFk
·
∏`
j=1 η

−1
j for some other vertex weight function α′ (absorbing the connector

factors by using the fact that each connector uses at most one vertex from the island Fk), we have,
continuing from above, that the last expression is

≥
∫ ∫ hFk

(xFk
)
∏̀
j=1

gα
Jj ,Ij ,≤η−1

j
(xIj )d

αxFk
− η

∏̀
j=1

η−1j

 k−1∏
i=1

(gFi(xFi)d
αxFi) .
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Since η
∏`
j=1 η

−1
j ≤ ε by (5.5) and

∫
gFi(xFi)d

αxFi ≤ t(Fi, g) ≤ 1 for each i ∈ [k − 1] by (5.4), we
can continue the above as

≥
∫
hFk

(xFk
)

k−1∏
i=1

gFi(xFi)
∏̀
j=1

gα
Jj ,Ij ,≤η−1

j
(xIj ) d

αxF ′ − ε.

We can now repeat this process to successively replace each remaining gFi factor by hFi , losing at
most an additive error of ε at each step. (Note that even though we do not assume that t(Fk, g) ≤ 1,
it is no longer needed, since what matters from now on is that t(Fk, h) ≤ 1 and this is automatically
true for h, which takes values in [0, 1]). We may therefore continue the above as

≥
∫ k∏

i=1

hFi(xFi)
∏̀
j=1

gα
Jj ,Ij ,≤η−1

j
(xIj ) d

αxF ′ − kε.

Step II. Swapping out the connectors one at a time.

Continuing, we have, applying (5.8) to replace gα
J`,I`,≤η−1

`

(xI`) by hαJ`,I`(xJ`) (here we are applying

(5.8) for each fixed xF\J` and with a different α which absorbs additional factors; this step works
only because each J` intersects each of F1, . . . , Fk, J1, . . . , J`−1 in at most one vertex and all these
intersections are contained in I`), that the last expression above is

≥
∫ k∏

i=1

hFi(xFi) · hαJ`,I`(xI`)
`−1∏
j=1

gα
Jj ,Ij ,≤η−1

j
(xIj ) d

αxF ′ − (η + η`)
`−1∏
j=1

η−1j − kε.

We have (η+ η`)
∏`−1
j=1 η

−1
j ≤ 2ε by (5.5). Continuing, we can replace gα

Jj ,Ij ,≤η−1
j

(xIj ) by hαJj ,Ij (xIj )

one at a time in decreasing order of j, so that the additive error at j is at most (η+ηj)η
−1
1 · · · η

−1
j−1 ≤

2ε (this is why we need η1, . . . , η` to be rapidly decreasing). Finally, we can continue the above as

≥
∫ k∏

i=1

hFi(xFi)
∏̀
j=1

hαJj ,Ij (xIj ) d
αxF ′ − (k + 2`)ε

= tα(F, h)− (k + 2`)ε,

thereby proving (5.7). �

6. Concluding remarks

We conclude by exploring some of the problems that arose from our study of countability.

Classifying countable graphs. We have made partial progress on our Question 1.1 by producing
a family of graphs F for which there is an F -counting lemma in C4-free graphs. However, our results
are likely far from a complete classification. We saw one necessary condition on any such F in
Remark 1.6, namely, that F should have girth at least 5. It also seems necessary that the 2-density
of F should be less than 2, that is, that any subgraph F ′ of F should satisfy |E(F ′)| ≤ 2|V (F ′)|−4.
In particular, this would imply that any d-regular countable graph has d ≤ 3.

Though not a formal proof, the intuition here is that the number of copies of F ′ in our C4-free
graph should not be smaller than the number of edges (otherwise, we can delete all copies of F ′,
and hence F , by removing an edge from each copy) and, for a random graph of the same density

n−1/2, the condition that the 2-density be less than 2 is necessary for this to hold. Most likely,
the true conditions for countability are even more stringent than this argument suggests. Perhaps
resolving the cases highlighted in Open Problem 2.17 would be a good starting point for further
progress.
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We remark in passing that we expect any progress on Question 1.1 to also impinge on the closely
related question where we assume that there are O(n2) copies of C4 in our n-vertex graph rather
than none. Indeed, the arguments in [7] showing that C5 is countable apply in this more general
situation and the proofs here may also be adapted to this context. We suspect that the same will
be true of any countable graph.

Variations on countability. There are several variants of our basic question which may be
interesting. For instance, for which graphs F is there a two-sided counting lemma in C4-free
graphs? Our results are fundamentally one-sided, so new ideas are probably necessary to make
progress on this question. However, we do know that for F to satisfy a two-sided counting lemma,
it must, at the very least, be tame. As observed in Example 2.8, this already rules out two-sided
counting for the family of subdivisions K ′t with t ≥ 5.

Another natural variant is to ask which graphs F have an F -counting lemma in H-free graphs
when H is a bipartite graph other than C4? Our arguments apply just as well to K2,t-free graphs
as they do to C4-free graphs, but further extensions are less obvious. We do expect our methods
to extend to prove counting lemmas in C2k-free graphs for any k ≥ 3, but here the real difficulty
passes back to the regularity side. Indeed, in order to apply a C2k+1-counting lemma in C2k-free
graphs to prove a corresponding removal lemma, we also need to show that any regular partition of
a C2k-free graph has few edges between irregular pairs. However, we do not at present know how to
do this for any k ≥ 3. As in [7], resolving this issue would have several consequences. To give just
one example, it would allow us to show that any 3-uniform hypergraph with n vertices and girth
greater than 2k + 1 has o(n1+1/k) edges, extending both the classic Ruza–Szemerédi theorem [19],
which is equivalent to the case k = 1, and a recent result of the authors [7, Corollary 1.10] resolving
the case k = 2.
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