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Abstract

We show that if λ1, . . . , λk are algebraic numbers, then

|A+ λ1 ·A+ · · ·+ λk ·A| ≥ H(λ1, . . . , λk)|A| − o(|A|)

for all finite subsets A of C, where H(λ1, . . . , λk) is an explicit constant that is best possible.
The proof combines several ingredients, including a lower bound estimate on the measure of
sums of linear transformations of compact sets in Rd, a variant of Freiman’s theorem tuned
specifically to sums of dilates and the analysis of what we call lattice density, which succinctly
captures how a subset of Zd is arranged relative to a given flag of lattices. As an application,
we revisit the study of sums of linear transformations of finite sets, in particular proving an
asymptotically best possible lower bound for sums of two linear transformations.

1 Introduction

For any subset A of C and λ1, . . . , λk ∈ C, the sum of dilates A+ λ1 ·A+ · · ·+ λk ·A is given by

A+ λ1 ·A+ · · ·+ λk ·A := {a0 + λ1a1 + · · ·+ λkak : a0, a1, . . . , ak ∈ A}.

Our concern in this paper will be with estimating the minimum size of |A + λ1 · A + · · · + λk · A|
in terms of |A|. For λ1, . . . , λk ∈ Q, this problem was essentially solved by Bukh [4], from whose
results it follows that if λi = pi/q for q as small as possible for such a common denominator, then

|A+ λ1 ·A+ · · ·+ λk ·A| ≥ (|p1|+ · · ·+ |pk|+ |q|)|A| − o(|A|)

for all finite subsets A of C, which is best possible up to the lower-order term. This result was later
sharpened by Balog and Shakan [1] when k = 1 and then Shakan [18] in the general case, improving
the o(|A|) term to a constant depending only on λ1, . . . , λk.

When at least one of the λi is transcendental, it was shown by Konyagin and  Laba [11] that

|A+ λ1 ·A+ · · ·+ λk ·A| = ω(|A|).

The problem of giving more precise lower bounds for |A+λ·A| when λ is transcendental was studied
in some depth by Sanders [15, 16] and Schoen [17], with progress tied to advances in quantitative

∗Department of Mathematics, Caltech, Pasadena, CA 91125, USA. Email: dconlon@caltech.edu. Research
supported by NSF Awards DMS-2054452 and DMS-2348859.
†Department of Mathematics, Caltech, Pasadena, CA 91125, USA. Email: jlim@caltech.edu. Research partially

supported by an NUS Overseas Graduate Scholarship.

1



estimates for Freiman’s theorem on sets of small doubling. Using quite different techniques, Conlon
and Lim [6] recently resolved this problem, showing that there is a constant c such that

|A+ λ ·A| ≥ ec
√

log |A||A|,

which, by a construction of Konyagin and  Laba, is best possible up to the value of c.
Our focus here will be on the complementary case, where each of λ1, . . . , λk is algebraic. Early

results in this direction were proved by Breuillard and Green [2] and Chen and Fang [5], with the
latter showing that, for any fixed λ ≥ 1, |A+ λ ·A| ≥ (1 + λ)|A| − o(|A|) for all finite subsets A of
R. The problem of giving more precise lower bounds for |A+ λ ·A| when λ is algebraic was raised
explicitly by Shakan [18] and by Krachun and Petrov [12], with the latter authors conducting the
first systematic study and making the first concrete conjectures.

To state their conjecture, suppose that f(x) ∈ Z[x] is the minimal polynomial of λ, assumed to

have coprime coefficients, and f(x) =
∏d
i=1(aix+ bi) is a full complex factorisation of f . If we set

H(λ) :=
∏d
i=1(|ai|+ |bi|), the conjecture of Krachun and Petrov [12] is then as follows.

Conjecture 1.1. For any algebraic number λ,

|A+ λ ·A| ≥ H(λ)|A| − o(|A|)

for all finite subsets A of C.

Krachun and Petrov [12] gave some evidence for their conjecture by proving it in the special case
where λ =

√
2. Subsequently, as a consequence of their work [7] on a conjecture of Bukh regarding

sums of linear transformations, Conlon and Lim verified the conjecture for all λ of the form (p/q)1/d

with p, q, d ∈ N. Assuming all of p, q and d are as small as possible for such a representation, their
result, which includes that of Krachun and Petrov, says that

|A+ λ ·A| ≥ (p1/d + q1/d)d|A| − o(|A|)

for all finite subsets A of C. Their results also imply a general lower bound for sums of algebraic
dilates, though this bound only matches the conjectured one in some special cases.

More recently, Krachun and Petrov [13] have revisited the problem, proving their conjecture in
full whenever λ is an algebraic integer. This is somewhat incomparable to the result of Conlon and
Lim, since (p/q)1/d, when written in lowest terms, is only an algebraic integer when q = 1. Here we
again revisit the problem, proving Conjecture 1.1 in full for all algebraic numbers. Our method also
extends to longer sums of algebraic dilates, so we will state our results in that level of generality.

To state the result, given algebraic numbers λ1, . . . , λk, recall that if the field extension K :=
Q(λ1, . . . , λk) of Q is of degree d = deg(K/Q), then there are exactly d different complex embeddings
σ1, . . . , σd : K → C. We also need to define the denominator ideal (see, for example, [19]), which is
the ideal in the ring of integers OK given by

Dλ1,...,λk;K := {x ∈ OK | xλl ∈ OK for l = 1, . . . , k} .

The key quantity H(λ1, . . . , λk) that plays the role of H(λ) for sums of many algebraic dilates is
then

H(λ1, . . . , λk) := NK/Q(Dλ1,...,λk;K)

d∏
i=1

(1 + |σi(λ1)|+ |σi(λ2)|+ · · ·+ |σi(λk)|),
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where NK/Q(Dλ1,...,λk;K) is the ideal norm of Dλ1,...,λk;K , equal to [OK : Dλ1,...,λk;K ]. To see that
this indeed generalises H(λ), observe that we can write the minimal polynomial f(x) ∈ Z[x] of λ
as f(x) = D(x − λ1)(x − λ2) · · · (x − λd) for some integer D and λ1, . . . , λd the conjugates of λ.
Then H(λ) = |D|(1 + |λ1|) · · · (1 + |λd|) and it can be shown that |D| = NK/Q(Dλ;K). With this
definition in place, our main result, which is best possible up to the behaviour of the lower-order
term, is as follows.

Theorem 1.2. For any algebraic numbers λ1, . . . , λk,

|A+ λ1 ·A+ · · ·+ λk ·A| ≥ H(λ1, . . . , λk)|A| − o(|A|)

for all finite subsets A of C.

In practice, we will view the problem of estimating sums of algebraic dilates as one about
estimating sums of linear transformations. More precisely, if we consider the number field K =
Q(λ1, . . . , λk) as a vector space over Q, that is, as Qd with d = deg(K/Q), then multiplication by
λi becomes a linear mapMi from Qd to itself, so the problem of giving a lower bound for |A+λ1 ·
A+ · · ·+λk ·A| for A ⊂ R becomes equivalent to the analogous problem for |A+M1A+ · · ·+MkA|
for A ⊂ Qd. A further reduction (see Section 2 for details) then recasts the problem in terms of
estimating |L0A+ L1A+ · · ·+ LkA| for L0,L1, . . . ,Lk ∈ Matd(Z) and A ⊂ Zd.

Such sums of linear transformations have been studied before [3, 7, 14], with much of the
motivation coming from a conjecture of Bukh asking whether a discrete Brunn–Minkowski-type
inequality holds for sums of linear transformations. A corrected version of his original conjecture,
first stated in [7], is as follows.

Conjecture 1.3. Suppose that L0, . . . ,Lk ∈ Matd(Z) are irreducible and coprime. Then

|L0A+ · · ·+ LkA| ≥
(
|det(L0)|1/d + · · ·+ |det(Lk)|1/d

)d
|A| − o(|A|)

for all finite subsets A of Zd.

The conditions on L0, . . . ,Lk, that they be irreducible and coprime, are necessary, with irre-
ducibility guaranteeing that the problem does not reduce to one of lower dimension and coprimeness
that it cannot be restated in terms of matrices with smaller determinants. The formal definitions
are as follows, though we refer the reader to [7] for a more complete discussion and some illustrative
examples.

Definition 1.4. We say that L0, . . . ,Lk ∈ Matd(Z) are irreducible if there are no non-trivial
subspaces U , V of Qd of the same dimension such that LiU ⊆ V for all i.

Definition 1.5. We say that L0, . . . ,Lk ∈ Matd(Z) are coprime if there are no P,Q ∈ GLd(Q)
with 0 < |det(P) det(Q)| < 1 such that

PL0Q,PL1Q, . . . ,PLkQ ∈ Matd(Z).

In particular, L0Zd + · · ·+ LkZd = Zd.

For k = 1, Conjecture 1.3 was fully resolved in [7] and the lower bound for |A + λ · A| when
λ is of the form (p/q)1/d followed as a corollary. Here we work in the opposite direction, showing
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that our main result, Theorem 1.2, on sums of algebraic dilates implies a lower bound for sums
of certain linear transformations. To state this result requires some further definitions, the first of
which is an additional condition beyond irreducibility and coprimeness that a collection of linear
transformations must satisfy for our methods to apply.

Definition 1.6. We say that L0, . . . ,Lk ∈ Matd(Q) are pre-commuting if there is some P ∈ GLd(Q)
such that PL0, . . . ,PLk pairwise commute.

Suppose now that L0, . . . ,Lk ∈ Matd(Z) are non-zero, pre-commuting, irreducible and coprime.
Let G be the polynomial

G(x0, . . . , xk) := det(x0L0 + · · ·+ xkLk).

If P ∈ GLd(Q) is such that PL0, . . . ,PLk are pairwise commuting, then, by a folklore result, these
matrices are simultaneously upper-triangularisable over C, so G factorises into linear terms

G(x0, . . . , xk) =

d∏
i=1

(a0ix0 + · · ·+ akixk).

We may then define H(L0, . . . ,Lk) to be the quantity

H(L0, . . . ,Lk) :=

d∏
i=1

(|a0i|+ · · ·+ |aki|).

With this definition in place, our main result about sums of linear transformations, which is again
best possible up to the lower-order term, is as follows.

Theorem 1.7. Suppose that L0, . . . ,Lk ∈ Matd(Z) are pre-commuting, irreducible and coprime.
Then

|L0A+ · · ·+ LkA| ≥ H(L0, . . . ,Lk)|A| − o(|A|)
for all finite subsets A of Zd.

The first step in establishing our results is to prove a continuous analogue of this statement,
a sharpening of the estimate coming from the Brunn–Minkowski inequality standing in the same
relation to our results as that inequality does to Conjecture 1.3. For k = 1, such a continuous
result was proved by Krachun and Petrov [12]. We extend it here to sums of several pre-commuting
linear transformations. Our main contribution, Theorem 1.2, whose proof occupies the bulk of this
paper, says that a discrete version of this continuous estimate holds for sums of pre-commuting
linear transformations corresponding to sums of algebraic dilates. The proof of Theorem 1.7 then
involves showing that this seemingly special case really encapsulates all pre-commuting families.

Before moving on to a more in-depth discussion of our proof and what is novel about it, we note
that for k = 1 the condition that the matrices L0 and L1 be pre-commuting is always true, since
the irreducibility condition implies that L0 and L1 are invertible, so we may take P = L−1

0 . As
such, we have the following corollary of Theorem 1.7, resolving another conjecture of Krachun and
Petrov [12] (see also [7]) and, unlike the k = 1 case of Conjecture 1.3 verified in [7], best possible
up to the lower-order term for all L0 and L1.

Corollary 1.8. Suppose that L0,L1 ∈ Matd(Z) are irreducible and coprime. Then

|L0A+ L1A| ≥ H(L0,L1)|A| − o(|A|)

for all finite subsets A of Zd.
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1.1 A sketch of the proof

Our overall strategy is similar to that used by Krachun and Petrov [13] to treat the case of algebraic
integers. After rephrasing the problem in terms of sums of linear transformations, their approach
can be summarised as having the following three steps:

1. Establishing a continuous version of the required estimate.

2. Reducing to the case where A is a dense subset of a box.

3. Representing the discrete set A by a continuous set A.

The idea is that Step 2 guarantees that the A obtained in Step 3 is well-behaved. One can then
apply the continuous variant from Step 1 to A and the required result in the discrete world follows.
However, despite having the same general outline, our proof is significantly more complex. We now
discuss each step in turn, though we refer the reader to the relevant sections for more details and
precise definitions.

Step 1 is the part which is most similar to that of Krachun and Petrov. After lifting the problem
to one about sums of certain pre-commuting linear transformations, we prove a tight lower bound
for the continuous analogue of this problem by partitioning the underlying space into eigenspaces
and then symmetrising our set along these eigenspaces.

For their Step 2, Krachun and Petrov make use of Freiman’s theorem on sets of small doubling,
one version of which says that any finite set of reals A with |A+A| ≤ C|A| is contained in a small
generalised arithmetic progression (or GAP, for brevity). For our result, we need to prove a novel
variant of Freiman’s theorem for sets A with a small sum of dilates, that is, with

|A+ λ1 ·A+ · · ·+ λk ·A| ≤ C|A|.

It is not hard to show that any such A also has small doubling, so, by the usual version of Freiman’s
theorem, it must be contained in a small GAP. However, a GAP does not necessarily have a small
sum of dilates. Our variant of Freiman’s theorem, stated below, says instead that A is contained
in what we call an OK-GAP, which shares with A the property that it has a small sum of dilates.

Theorem 1.9. For every C > 0 and p ∈ N, there are constants n and F such that for any A ⊂ K
satisfying

|A+ λ1 ·A+ · · ·+ λk ·A| ≤ C|A|,

there exists a p-proper OK-GAP P ⊂ K containing A of dimension at most n and size at most
F |A|.

To prove this result, we first need to extend several results in additive geometry, a term we
borrow from Tao and Vu [20, Chapter 3], to the ring of integers OK . Once the theorem is in place,
we can map A to a dense subset of the box [0, N)d via a Freiman isomorphism of the surrounding
OK-GAP, reducing the problem, as promised, to the case of a dense set.

Step 3 is the main and most difficult step. To say something about it, we first describe the
method used by Krachun and Petrov [13] to estimate |A + λ · A| when λ is an algebraic integer.
As indicated earlier, they viewed this problem in terms of estimating the size of |A + LA| where
A is a dense subset of the box [N ]d and L ∈ Matd(Z) is a linear transformation corresponding to
multiplication by λ and we will discuss it in these terms here.
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A naive way of representing A by a continuous set A is to divide the box [N ]d into small cubes
and set A ⊂ Rd to be the union of the cubes which intersect A. However, this is not a good
representation, since the volume of A can be very different from |A|. Indeed, if A consists of all the
points in [N ]d with even coordinates, its representation A would be the same as if A contained all
the points of [N ]d.

Krachun and Petrov’s solution is to introduce a new dimension to encode the “local density” of
A at a point x, which is, roughly speaking, the relative density of A within a small box containing
x. More precisely, their continuous representation is a (compact) set A ⊂ Rd+1, which can be seen
as having a base in Rd resembling A, as described in the naive way above, and fibres in R, with
the fibre at the point x ∈ Rd being the interval [0, r], where r is the local density of A at x. In
particular, the volume of A matches the size |A|. The key to their approach is the following simple
observation.

Observation 1.10. The local density of B = A + LA at x + Ly is at least the local density of A
at x.

If B is the continuous representation of B, then this observation is equivalent to saying that B
contains A + L′(A), where L′ : Rd+1 → Rd+1 is given by L′(x, y) = (Lx, 0) for x ∈ Rd and y ∈ R.
Therefore, Vol(B) ≥ Vol(A+L′(A)). One can then apply the continuous version of sums of dilates
to obtain a tight lower bound for Vol(A+ L′(A)) in terms of Vol(A) and translate the result back
to the discrete world using the fact that Vol(A) = |A|.

The problem with extending this approach to general algebraic λ is that Observation 1.10 is too
weak. Indeed, if λ is not integral, estimating |A + λ · A| is equivalent to estimating |L1A + L2A|
for some L1,L2 ∈ Matd(Z) and A a dense subset of [N ]d. The analogue of the observation in this
situation is that the local density of L1A + L2A at L1x + L2y is at least 1

| detL1| times the local

density of A at x. However, this is not tight, since if A contains all the lattice points in some convex
region, then the local density of A is 1 uniformly and, by coprimeness, we also expect the local
density of L1A+L2A to be 1 uniformly. But the observation only guarantees that the local density
of L1A+ L2A is at least 1

| detL1| , which is less than 1 if λ is not integral.

Since the local structure of L1A+ L2A at L1x+ L2y depends on the local structure of A at x
and y, which can look completely different, we need to consider asymmetric sums L1A1 +L2A2. As
an example, consider the periodic sets A1, A2 ⊂ Z given by A1 = {0, 3}+ 6Z and A2 = {0, 4}+ 6Z
and the sums 2 ·A1 +3 ·A2 and 2 ·A2 +3 ·A1 (for technical reasons we work with periodic sets when
defining our notion of local density). Both A1, A2 have density 1/3, whereas 2 ·A1 +3 ·A2 = 6Z has
density 1/6 and 2 ·A2 +3 ·A1 = {0, 2, 3, 5}+6Z has density 2/3. Notice that although 2 ·A1 +3 ·A2

is less dense than A1 and A2, the swapped sum 2 ·A2 +3 ·A1 is more dense. In fact, this observation
holds more generally.

Observation 1.11. Suppose A1 has local density σ1 at x and A2 has local density σ2 at y. If
L1A1 +L2A2 has local density η at L1x+L2y and L1A2 +L2A1 has local density η′ at L1y+L2x,
then ηη′ ≥ σ1σ2.

This somewhat resolves the previous issue: although B = L1A+ L2A can be locally less dense
than A in some places, it must be more dense in others. To justify this observation, consider the
sets A1, A2 as before. Draw the elements of Z/6Z as a 2×3 grid according to their residues modulo
2 and 3 and scale the grid to be a square of side length 1. Denote by LD(A1) the union of the cells
representing the residues modulo 6 contained in A1 and similarly for LD(A2) (see Figure 1). Note
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1 (mod 2)

0 (mod 2)

0 1 2 (mod 3)

1 (mod 2)

0 (mod 2)

0 1 2 (mod 3)

Figure 1: The shaded regions are LD(A1) and LD(A2).

1 (mod 2)

0 (mod 2)

0 1 2 (mod 3)

1 (mod 2)

0 (mod 2)

0 1 2 (mod 3)

Figure 2: The shaded regions are LD(2 ·A1 + 3 ·A2) and LD(2 ·A2 + 3 ·A1).

that the density of Ai is equal to the volume of LD(Ai). Then do the same for 2 · A1 + 3 · A2 and
2 ·A2 + 3 ·A1 (see Figure 2).

Writing π1 and π2 for the projections onto the mod 3 and mod 2 axes, respectively, we see that
LD(2 ·A1 + 3 ·A2) is a π1(LD(A1))×π2(LD(A2)) rectangle, while, if we allow a permutation of the
columns, LD(2·A2 +3·A1) is a π1(LD(A2))×π2(LD(A1)) rectangle. This justifies Observation 1.11,
that Vol(LD(2 · A1 + 3 · A2)) · Vol(LD(2 · A2 + 3 · A1)) ≥ Vol(LD(A1)) · Vol(LD(A2)), in this case.
We also note that |π1(LD(Ai))| is preserved under L1 = 2×, while |π2(LD(Ai))| is preserved under
L2 = 3×.

The set LD(A), which records how A is arranged relative to certain lattices, is roughly what
we call the “lattice density”. More precisely, for a (periodic) set A ⊆ Zd and a flag of lattices
F = {L0 ⊆ L1 ⊆ · · · ⊆ Lk}, the lattice density LD(A;F) is a compact downset in [0, 1]k+1 which
encodes information about the density of A relative to the lattices Ll. Our continuous representation
A is then a compact subset of Rd+k+1 with a base in Rd resembling A and fibres in Rk+1 equal to
the local lattice density at each point of A.

Once again, estimating |A+λ1 ·A+ · · ·+λk ·A| is equivalent to estimating |L0A+ · · ·+LkA| for
some L0, . . . ,Lk ∈ Matd(Z). The key now, proved through a refinement argument, is that one can
find two flags F ,G such that πi+1(LD(LiA;G)) ≈ πi+1(LD(A;F)) for each i = 0, . . . , k. In turn,
this allows us to show that if A0, . . . , Ak ⊂ A are (periodic) sets, then LD(L0A0 + · · · + LkAk;G)
roughly contains the cuboid with side lengths

|π1(LD(A0;F))|, . . . , |πk+1(LD(Ak;F))|.

By making appropriate choices of A0, . . . , Ak ⊂ A locally, this implies that if B = L0A+ · · ·+LkA,
then B ⊂ Rd+k+1 contains the sumset L′0A+ · · ·+ L′kA, where L′i : Rd+k+1 → Rd+k+1 is given by
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L′i(x, y) = (Lix, πi+1(y)) for x ∈ Rd and y ∈ Rk+1. In line with the application of Observation 1.10
in the algebraic integer case, we can then apply our continuous estimate to L′0A+ · · ·+L′kA, which
in turn yields the desired result in the discrete case.

1.2 Notation

Throughout the paper, we will use the following notation:

• λ0, λ1, . . . , λk are algebraic numbers with λ0 = 1.

• K := Q(λ1, . . . , λk) is the number field generated by λ1, . . . , λk.

• The degree of K over Q is d := deg(K/Q), so K ∼= Qd.

• The ring of integers over K is denoted by OK , so OK ∼= Zd.

• We write KR := K ⊗Q R = OK ⊗Z R ∼= Rd and KC := K ⊗Q C ∼= Cd.

• We will generally use i to index 1, . . . , d, j to index 1, . . . , n and l to index 1, . . . , k (possibly
starting at 0). However, this is not strict and the usage can depend on context.

1.3 Organisation of the paper

The remainder of the paper is laid out as follows. We begin, in Section 2, by formally describing
how to rephrase the problem of estimating sums of algebraic dilates in terms of estimating sums
of linear transformations, in particular observing that the linear transformations corresponding
to taking various algebraic dilates are simultaneously diagonalisable. In Section 3, we prove the
continuous analogue of our estimate, extending a result of Krachun and Petrov to sums of arbitrarily
many simultaneously diagonalisable linear transformations of compact sets. It is also here, in
Section 3.1, that we show that Theorem 1.2 is best possible. We extend several results from
additive geometry, including Minkowski’s second theorem and John’s theorem, to rings of integers
in Section 4, culminating in our Freiman-type structure theorem for small sums of dilates. We then
use this result in Section 5 to reduce the proof of Theorem 1.2 to the special case where A is a
dense subset of a box. In Section 6, we introduce lattice densities and prove some of their basic
properties, while in Section 7 we introduce two key families of flags of lattices and establish some
relations between lattice densities taken relative to these flags. Using these results, we conclude
the proof of Theorem 1.2 in Section 8 by verifying it in the dense case. In Section 9, we discuss
the general problem of estimating sums of pre-commuting linear transformations, showing how it
reduces to Theorem 1.2. Finally, in Section 10, we point towards some further possible research
directions.
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2 Mapping to Zd

In this section, we show how the problem of estimating sums of algebraic dilates can be recast in
terms of estimating sums of linear transformations. Our first lemma, generalising [13, Lemma 3.1],
will allow us to assume that A is a subset of K.

Lemma 2.1. Suppose that λ1, . . . , λk ∈ C and A ⊂ C is finite. Then there exists a finite set
B ⊂ K = Q(λ1, . . . , λk) such that |B| = |A| and |B+λ1 ·B+ · · ·+λk ·B| ≤ |A+λ1 ·A+ · · ·+λk ·A|.

Proof. Let L be the field extension of K generated by A. Pick any K-linear map f : L→ K which
is injective on A. Such a map exists since A is finite. Set B = f(A). Then |B| = |A| and, for any
a0, . . . , ak ∈ A,

f(a0 + λ1a1 + · · ·+ λkak) = f(a0) + λ1f(a1) + · · ·+ λkf(ak).

Hence, |B + λ1 ·B + · · ·+ λk ·B| = |f(A+ λ1 ·A+ · · ·+ λk ·A)| ≤ |A+ λ1 ·A+ · · ·+ λk ·A|.

In light of this result, we will henceforth assume that A ⊂ K. For any a ∈ K, there exists a
positive integer n such that na ∈ OK . In fact, this is true for any fractional ideal I ⊆ OK – for
any a ∈ K, there exists a positive integer n such that na ∈ I. Thus, since A is finite, by rescaling
A to n · A for an appropriately large n, we may assume that A ⊂ I if we wish to without any loss
of generality.

To pass to linear transformations, we fix a Z-basis e1 = 1, e2, . . . , ed of OK and let Φ : OK → Zd
be the isomorphism mapping the ei to the standard basis of Zd. This map extends linearly to an
isomorphism Φ : K → Qd. Under this isomorphism, multiplication by λl corresponds to the linear
map Ml ∈ Matd(Q) defined by

Ml(x) = Φ(λl · Φ−1(x)).

The problem of estimating |A + λ1 · A + · · · + λk · A| for A ⊂ K is then equivalent to estimating
|A+M1A+ · · ·+MkA| for A ⊂ Qd.

One further step allows us to convert the problem into one about sums of linear transformations
with integer entries. Recall, from the introduction, that the denominator ideal of λ1, . . . , λk is the
non-zero ideal D = OK∩λ−1

1 OK∩· · ·∩λ
−1
k OK with the property that λlD ⊆ OK for all l = 0, . . . , k.

If we fix an isomorphism Φ′ : D→ Zd, then multiplication of the elements of D by λl corresponds
to the linear map Ll : Zd → Zd defined by

Ll(x) = Φ(λl · Φ′−1(x)).

By rescaling, we may assume that A ⊂ D, so that Theorem 1.2 becomes equivalent to the following
result, whose proof will now be our principal goal.

Theorem 2.2. For all finite subsets A of Zd,

|L0A+ · · ·+ LkA| ≥ H(λ1, . . . , λk)|A| − o(|A|).

The next lemma determines all the (simultaneous) eigenvalues of the λl, when they are viewed
as Q-linear maps on K. In the statement and proof, we will use the fact that there are exactly d
different complex embeddings (that is, injective field homomorphisms) of K in C, which we denote
by σ1, . . . , σd with σ1 the identity.
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Lemma 2.3. Viewing K ∼= Qd, multiplication by λl induces a Q-linear map Ml : Qd → Qd.
Then the maps M0, . . . ,Mk are simultaneously diagonalisable over C into the diagonal matrices
D0, . . . ,Dk, where Dl has diagonal entries (σ1(λl), . . . , σd(λl)) for l = 0, . . . , k.

Proof. Let KC = K ⊗Q C and define σ : KC → Cd to be the C-linear map defined by σ(α ⊗ c) =
(cσ1(α), . . . , cσd(α)). We claim that σ is an isomorphism. Indeed, let α ∈ K be a generator of
K, i.e., K = Q(α). Then (1, α, . . . , αd−1) is a Q-basis for K and σ1(α), . . . , σd(α) are all distinct.
Under this basis, which is also a basis for KC, σ is represented by the matrix

1 σ1(α) σ1(α)2 · · · σ1(α)d−1

1 σ2(α) σ2(α)2 · · · σ2(α)d−1

...
...

...
. . .

...
1 σd(α) σd(α)2 · · · σd(α)d−1

 ,

which is non-singular, since it is a Vandemonde matrix. Let e1, . . . , ed ∈ Cd be the standard basis
of Cd and vi = σ−1(ei). Then v1, . . . , vd form a basis for KC. We claim that, in this basis, Ml

diagonalises into the desired form. It suffices to check that Ml(vi) = σi(λl)vi.
Let x1, . . . , xd ∈ K be a Q-basis for K. Then vi can be written in the form vi = x1⊗ ci1 + · · ·+

xk ⊗ cik for some cil ∈ C, so that σ(vi) = ei says that

k∑
l=1

cilσj(xl) = δij .

But then

σj(Ml(vi)) = σj

(
Ml

(
k∑

m=1

xm ⊗ cim

))
= σj

(
k∑

m=1

(λlxm)⊗ cim

)

=

k∑
m=1

cimσj(λlxm) = σj(λl)

k∑
m=1

cimσj(xm)

= σj(λl)δij = σi(λl)δij .

It follows that Ml(vi) = σi(λl)vi, as required.

3 The continuous version

We now come to the first part of our argument, which is to extend an estimate of Krachun and
Petrov [13, Theorem 2] on sums of linear transformations of compact sets to more than two variables.
We will need to assume that the linear transformations are simultaneously diagonalisable. But, as
we have seen in Lemma 2.3 above, this is exactly the situation we are concerned with.

Throughout this section, we will fix an identification KR ∼= Rd and take µ to be the Lebesgue
measure on Rd and, hence, on KR. Our main result may then be stated as follows.

Theorem 3.1. Suppose L1, . . . ,Lk ∈ Matd(R) are simultaneously diagonalisable over C into the
diagonal matrices D1, . . . ,Dk, where Dl = diag(λl1, . . . , λld) with each λli ∈ C. Then, for any
compact A ⊂ Rd,

µ(L1A+ L2A+ · · ·+ LkA) ≥

(
d∏
i=1

k∑
l=1

|λli|

)
µ(A).
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Moreover, equality holds for some A with µ(A) > 0.

Proof. Let Λ = {(λ1i, λ2i, . . . , λki)}di=1. Since complex conjugation preserves each Ll, it permutes
the elements of Λ. Thus, we can split Λ into two parts Λ1 and Λ2, where Λ1 ⊂ Rk consists of those
tuples fixed by conjugation and Λ2 consists of conjugate pairs of tuples. Then we may decompose
Rd into the eigenspaces

Rd =
⊕
λ∈Λ1

Eλ ⊕
⊕

(λ,λ)∈Λ2

Eλ,λ,

where each Eλ is 1-dimensional and each Eλ,λ is 2-dimensional. For λ = (λ1, . . . , λk) ∈ Λ1, each

Ll acts on Eλ by λl. For (λ, λ) ∈ Λ2, each Ll acts on Eλ,λ by |λl|Rarg(λl), where Rθ is the rotation

map on R2 by θ.
We prove the theorem in the following more general form. Suppose we have a decomposition

Rd =

n⊕
j=1

Ej ,

where dimEj = dj and Ll acts on Ej by rljPlj , where rlj ≥ 0 and Plj is an orthogonal matrix
acting on Ej . In other words, for any vector v ∈ Rd, if we decompose it into v = v1 + · · ·+ vn with
vj ∈ Ej for all 1 ≤ j ≤ n, then Llv = rl1Pl1v1 + · · ·+ rlnPlnvn. We will show that

µ(L1A+ L2A+ · · ·+ LkA) ≥

 n∏
j=1

(
k∑
l=1

rlj

)djµ(A).

We perform Steiner symmetrisation, a continuous analogue of compression introduced by Steiner
in his classical work on the isoperimetric problem, along each of the eigenspaces Ej as follows.
Write Rd = Ej ⊕ E, where E is the direct sum of the remaining spaces. Let π1 : Rd → Ej and
π2 : Rd → E be the projections onto Ej and E, respectively. For a compact A ⊂ Rd and x ∈ E,
write Ax := π1(π−1

2 (x)) ⊂ Ej for the fibre of A at x. Then µ(A) =
∫
x
µ(Ax)dµ(x). The Steiner

symmetrisation of A along Ej is the set Sj(A) ⊂ Rd with the same support as A on E and such
that, for each x ∈ π2(A), Sj(A)x is the closed ball centered at 0 with the same volume as Ax.

Claim 3.2. The Steiner symmetrisation has the following properties:

1. µ(Sj(A)) = µ(A).

2. Sj(A) is invariant under any orthogonal transformation of Ej.

3. Sj(LlA) ⊇ Ll(Sj(A)) for all l.

4. Sj(A) is compact.

5. If B is compact, then Sj(A+B) ⊇ Sj(A) + Sj(B).

6. If F ∈ GL(E) and F ′ ∈ GLd(R) is given by IEj
⊕F and F ′(A) = A, then F ′(Sj(A)) = Sj(A).

Proof. 1. This is true since µ(Sj(A)x) = µ(Ax) for all x ∈ E.

2. This is true since Sj(A)x is a ball for all x ∈ E.
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3. Let x ∈ π2(A) and B = Sj(A)x, a ball. Then Ll(Sj(A)) =
⋃
x∈π2(A) Ll|Ej (B) ⊕ Llx. Note

that Ll|Ej
(B) is also a ball of volume µ(Ll|Ej

(Ax)) ≤ µ((LlA)Llx). Thus, Ll|Ej
(B)⊕ Llx ⊆

Sj(LlA) and the result follows.

4. Since A is bounded, so is Sj(A). To show that Sj(A) is closed, it is sufficient to show that for
any sequence x1, x2, . . . ∈ E converging to x ∈ E, we have µ(Ax) ≥ lim supn µ(Axn

). Since A
is closed, Ax ⊇ lim supiAxi

, so it suffices to show that µ(lim supiAxi
) ≥ lim supi µ(Axi

). But
this is true since the Axi

are uniformly bounded.

5. For x ∈ π2(A) and y ∈ π2(B), let r, r′ be the radii of the balls Sj(A)x and Sj(B)y, with
volumes V, V ′. Then (Sj(A) + Sj(B))x+y is a ball of radius r + r′, maximised over all x, y
with the same fixed sum. But, by the Brunn–Minkowski inequality,

µ(Sj(A+B)x+y) ≥ µ(Sj(A)x + Sj(B)y)

≥ (µ(Sj(A)x)1/dj + µ(Sj(B)y)1/dj )dj

= (V 1/dj + V ′1/dj )dj

= µ((Sj(A) + Sj(B))x+y).

Thus, Sj(A+B)x+y ⊇ (Sj(A) + Sj(B))x+y and the result follows.

6. Let x ∈ E. Since F ′(A) = A, we have AF (x) = Ax. Therefore, Sj(A)F (x) = Sj(A)x, so we
have F ′(Sj(A)) = Sj(A).

Perform Steiner symmetrisation on A successively along E1, . . . , En to obtain, by Claim 3.2(4),
the compact set B = S1(S2(· · ·Sn(A) · · · )). By Claim 3.2(1), (5) and (3),

µ(L1A+ · · ·+ LkA) = µ(Sj(L1A+ · · ·+ LkA))

≥ µ(Sj(L1A) + · · ·+ Sj(LkA))

≥ µ(L1(Sj(A)) + · · ·+ Lk(Sj(A))).

Iterating, we see that µ(L1A+ · · ·+LkA) ≥ µ(L1B+ · · ·+LkB), where we also have µ(B) = µ(A).
Let L′l be the linear map that just scales by rlj on each Ej , i.e., L′l(v1 + · · ·+ vn) = rl1v1 + · · ·+

rlnvn for any vj ∈ Ej . By repeated applications of Claim 3.2(2) and (6), we may check that B is
rotationally invariant on each Ej , so we have L′lB = LlB. Thus,

µ(L1B + · · ·+ LkB) = µ(L′1B + · · ·+ L′kB)

≥ µ((L′1 + · · ·+ L′k)(B))

= |det(L′1 + · · ·+ L′k)|µ(B)

=

 l∏
j=1

(
k∑
l=1

rlj

)djµ(B).

Finally, to see that equality may hold, observe that we can take A to be the product of the unit
balls in each Ej .

In particular, this yields the smallest possible value of µ(A+λ1 ·A+· · ·+λk ·A) in terms of µ(A).
To see this, let Ml ∈ Matd(Q) be the matrix representing multiplication by λl for l = 0, . . . , k,
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as defined in Section 2. Then, by Lemma 2.3, the Ml are simultaneously diagonalisable into
the diagonal matrices Dl with entries (σ1(λl), . . . , σd(λl)), where σ1, . . . , σd are all the complex
embeddings of K. By Theorem 3.1, we therefore have

µ(A+ λ1 ·A+ · · ·+ λk ·A) = µ(M0A+ · · ·+MkA)

≥

(
d∏
i=1

(1 + |σi(λ1)|+ · · ·+ |σi(λk)|)

)
µ(A).

Comparing this to our main result, Theorem 1.2, we see that the discrete version differs from the
continuous one only in the factor NK/Q(Dλ1,...,λk;K), which is a measure of the non-integrality of
λ1, . . . , λk. We say more below.

3.1 Lower bound construction

In this short subsection, we give a lower bound construction for the discrete case, showing that the
constant H(λ1, . . . , λk) in Theorem 1.2 is best possible. In brief, the construction is a discretised
version of the equality case in Theorem 3.1.

Proposition 3.3. Let λ1, . . . , λk ∈ K = Q[λ1, . . . , λk] be algebraic numbers. Then there exist
arbitrarily large A ⊂ C such that

|A+ λ1 ·A+ · · ·+ λk ·A| ≤ H(λ1, . . . , λk)|A|+O(|A|
d−1
d ),

where d = deg(K/Q).

Proof. Let σ1, . . . , σd : K → C be the complex embeddings of K and set D = Dλ1,...,λk;K . View-
ing multiplication by λl as a Q-linear map Ml : K → K for each l, take A′ ⊂ KR satisfy-
ing the equality case in Theorem 3.1 with µ(A′) = 1. Then µ(A′ + λ1 · A′ + · · · + λk · A′) =(∏d

i=1(1 + |σi(λ1)|+ · · ·+ |σi(λk)|)
)
µ(A′).

Let n be an arbitrarily large positive integer and let A = nA′ ∩D, so that

|A| = µ(nA′)/Vol(KR/D) +O(nd−1) = nd/Vol(KR/D) +O(nd−1).

On the other hand, for each l, λl ·A ⊂ λl ·D ⊆ OK , so we have

A+ λ1 ·A+ · · ·+ λk ·A ⊆ n(A′ + λ1 ·A′ + · · ·+ λk ·A′) ∩ OK .

Therefore,

|A+ λ1 ·A+ · · ·+ λk ·A| ≤ µ(n(A′ + λ1 ·A′ + · · ·+ λk ·A′))/Vol(KR/OK) +O(nd−1)

= nd

(
d∏
i=1

(1 + |σi(λ1)|+ · · ·+ |σi(λk)|)

)
/Vol(KR/OK) +O(nd−1).

Since Vol(KR/D)/Vol(KR/OK) = [OK : D] = NK/Q(D), we obtain that

|A+ λ1 ·A+ · · ·+ λk ·A| ≤ NK/Q(D)

(
d∏
i=1

(1 + |σi(λ1)|+ · · ·+ |σi(λk)|)

)
|A|+O(nd−1)

= H(λ1, . . . , λk)|A|+O(|A|
d−1
d ).
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4 Algebraic additive geometry

In this section, we extend several results from additive geometry to rings of integers, culminating
in the version of Freiman’s theorem for sums of dilates mentioned in the introduction. Along the
way, we prove several results that may be of independent interest, including versions of Minkowski’s
second theorem and John’s theorem for lattices over rings of integers.

4.1 A norm on OK and KR

In this subsection, we define a norm on OK and KR and note some of its basic properties (this is not
to be confused with the field norm NK/Q(·) on K, which we also use). Recall from Section 2 that

we have an isomorphism Φ : OK → Zd given by sending a basis e1, . . . , ed of OK to the standard
basis. By pulling back Φ, the ∞-norm on Zd defines a norm ‖·‖ on OK , namely, for l1, . . . , ld ∈ Z,

‖l1e1 + · · ·+ lded‖ := max
i
|li|.

The open ball B(L) of radius L > 0 under this norm is then given by

B(L) := {l1e1 + · · ·+ lded ∈ OK | |li| < L for all i} .

‖·‖ extends linearly and continuously to a norm on KR, which we also denote by ‖·‖. The open ball
BR(R) of radius R > 0 in KR is then

BR(R) := {e1 ⊗ r1 + · · ·+ ed ⊗ rd ∈ KR | |ri| < R for all i} .

The following lemma may be seen as defining some constants associated to the norm ‖·‖.

Lemma 4.1. There exist constants C1, C2, C3 ∈ N such that the following hold:

1. For all x, y ∈ KR, ‖xy‖ ≤ C1 ‖x‖ ‖y‖.

2. For all l = 0, . . . , k, C2λl ∈ OK .

3. For all l = 0, . . . , k and x ∈ OK , λlx ∈ 1
C2
·B(C3 ‖x‖).

Proof. 1. Let M > 0 be the maximum of ‖eiej‖ over all pairs i, j ∈ [d]. Now, for any x =
e1⊗ x1 + · · ·+ ed⊗ xd and y = e1⊗ y1 + · · ·+ ed⊗ yd with xi, yi ∈ R, we have |xi| ≤ ‖x‖ and
|yi| ≤ ‖y‖. Therefore,

‖xy‖ = ‖
∑
i,j

eiej ⊗ xiyi‖ ≤
∑
i,j

‖eiej ⊗ xiyi‖ =
∑
i,j

‖eiej‖ |xiyi| ≤ d2M ‖x‖ ‖y‖ ,

so we may pick C1 = d2M .

2. Since OK is of full rank, for any λ ∈ K, there is some integer C > 0 such that Cλ ∈ OK .
Thus, we may pick C2 to be the lowest common multiple of the C’s corresponding to each λl.

3. Pick an integer C3 such that C3 > C1C2 maxl ‖λl‖. Then we have C2λlx ∈ OK and ‖C2λlx‖ ≤
C1C2 ‖λl‖ ‖x‖ < C3 ‖x‖. Therefore, λlx ∈ 1

C2
·B(C3 ‖x‖).

Throughout the rest of this section, we will use the constants C1, C2, C3 as given by this lemma.
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4.2 An algebraic Minkowski’s second theorem

In this subsection, we prove a variant of Minkowski’s second theorem for lattices over rings of
integers. Before we state this result, let us recall the original theorem of Minkowski. We first need
a definition, noting that here a convex body is assumed to be convex, open, non-empty and bounded.

Definition 4.2. Let Γ ⊂ Rn be a lattice of rank m and B ⊂ Rn a convex body containing 0. We
define the successive minima `j = `j(B,Γ) of B with respect to Γ by

`j := inf {` > 0 | ` ·B contains j linearly independent elements of Γ}

for each 1 ≤ j ≤ m. Note that 0 < `1 ≤ · · · ≤ `m <∞.

Minkowski’s second theorem (see, for example, [20, Theorem 3.30]) is then as follows.

Theorem 4.3 (Minkowski’s second theorem). Let Γ ⊂ Rn be a lattice of full rank and let B be a
centrally symmetric convex body in Rn with successive minima 0 < `1 ≤ · · · ≤ `n. Then there exist
n linearly independent vectors v1, . . . , vn ∈ Γ with the following properties:

• for each 1 ≤ j ≤ n, vj lies in the boundary of `j · B, but `j · B itself does not contain any
vectors in Γ outside the span of v1, . . . , vj−1;

• the octahedron with vertices ±vj for 1 ≤ j ≤ n contains no elements of Γ in its interior other
than the origin;

• one has
2n[Γ : 〈v1, . . . , vn〉Z]

n!
≤ `1 · · · `n Vol(B)

Vol(Rn/Γ)
≤ 2n.

To state our variant of this theorem, we need to first clarify what we mean by a lattice over a
ring of integers.

Definition 4.4. An OK-lattice is a lattice Γ in Kn ∼= Qdn that is closed under multiplication by
OK . That is, for any v ∈ Γ and a ∈ OK , av ∈ Γ. Equivalently, Γ is a discrete OK-submodule of
Kn. Observe that Q · Γ = K · Γ is a K-subspace of Kn. The OK-rank of Γ is the dimension m of
this subspace. Note that, when viewed as an ordinary lattice, the rank of Γ is md.

For the next definition, we recall, from Section 2, that we view OK as having a fixed Z-basis
e1, . . . , ed.

Definition 4.5. For a real number r ≥ 1, a subset B ⊆ Kn
R is said to be r-thick if ei · B ⊆ r · B

for all i ∈ [d].

For example, by Lemma 4.1, ‖eix‖ ≤ C1 ‖ei‖ ‖x‖ = C1 ‖x‖ for all x ∈ KR, so that BR(L) is
C1-thick for any L > 0.

We now redefine successive minima, but with respect to OK-lattices.

Definition 4.6. Let Γ be an OK-lattice of OK-rank m and B a convex body in Kn
R containing 0.

We define the successive minima `j = `j(B,Γ) of B with respect to Γ by

`j := inf {` > 0 | ` ·B contains j K-linearly independent elements of Γ}

for each 1 ≤ j ≤ m. Note that we again have 0 < `1 ≤ · · · ≤ `m <∞, since Γ has OK-rank m and
so contains m K-linearly independent elements of Kn.
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We may now state and prove our version of Minkowski’s second theorem for OK-lattices.

Lemma 4.7. Let r ≥ 1 be a real number, let Γ ⊂ Kn be an OK-lattice of full rank and let B be
an r-thick centrally symmetric convex body in Kn

R with successive minima 0 < `1 ≤ · · · ≤ `n. Then
there exist n K-linearly independent vectors v1, . . . , vn ∈ Γ with the following properties:

• for each 1 ≤ j ≤ n, vj lies in the boundary of `j · B, but `j · B does not contain any vectors
in Γ outside the K-span of v1, . . . , vj−1;

• the octahedron with vertices ± 1
r eivj for i ∈ [d], j ∈ [n] contains no elements of Γ in its interior

other than the origin;

• if Γ′ is the OK-lattice generated by v1, . . . , vn, then

(2/r)nd[Γ : Γ′]

(nd)!
≤ (`1 · · · `n)d Vol(B)

Vol(Kn
R/Γ)

≤ 2nd. (1)

We note that here the volume of a set B ⊂ Kn
R is defined by fixing some isomorphism Kn

R
∼= Rnd

and using the standard Lebesgue measure on Rnd. Crucially, the statement of the lemma does not
depend on the particular identification Kn

R
∼= Rnd, since any two volume forms differ by a scalar.

Proof of Lemma 4.7. The proof is essentially identical to that of the original theorem given in [20,
Theorem 3.30], though some care is required to differentiate between the Q-span and K-span.

By the definition of `1, we may find v1 ∈ Γ on the boundary of `1 · B, where `1 · B does not
contain any non-zero elements of Γ. By the definition of λ2, we may then find v2 ∈ Γ on the
boundary of `2 · B which is K-linearly independent of v1, where `2 · B contains no elements of Γ
outside the K-span of v1. Continuing, we have a K-basis v1, . . . , vn such that vj is on the boundary
of `j · B, where `j · B does not contain any element of Γ outside the K-span of v1, . . . , vj−1, as
required by the first property.

Since v1, . . . , vn are K-linearly independent, the vectors eivj are Q-linearly independent. There-
fore, the octahedron S with vertices ± 1

r eivj is non-degenerate and spans Kn over Q. Suppose the
interior of S contains a non-zero point v ∈ Γ. Let m be the smallest positive integer such that v
lies in the K-span of v1, . . . , vm. Then v does not lie in the K-span of v1, . . . , vm−1. Since `m · B
contains v1, . . . , vm and B is r-thick, r`m ·B contains eivj for all i ∈ [d] and j ≤ m. Therefore, `m ·B
contains ± 1

r eivj for all i ∈ [d] and j ≤ m, so its interior `m · B contains v. But this contradicts
the definition of `m, since `m · B cannot contain any vector outside the K-span of v1, . . . , vm−1,
including v. Hence, the interior of S contains no vector in Γ, verifying the second property.

Since eivj ∈ r`j ·B, we have that B contains the vectors 1
r`j
eivj and, hence, the octahedron S′

with vertices ± 1
r`j
eivj for i ∈ [d], j ∈ [n]. The volume of the simplex with vertices 0 and eivj for

all i ∈ [d], j ∈ [n] is 1
(nd)! Vol(Kn

R/Γ
′). Since S′ is the union of 2nd scaled copies of this simplex, the

volume of S′ is

Vol(S′) =
1

rnd`d1 · · · `dn
2nd

(nd)!
Vol(Kn

R/Γ
′).
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Therefore, since B contains S′, we have

Vol(B) ≥ Vol(S′) =
1

rnd`d1 · · · `dn
2nd

(nd)!
Vol(Kn

R/Γ
′)

=

(
(2/r)n

`1 · · · `n

)d
[Γ : Γ′]

(nd)!
Vol(Kn

R/Γ),

establishing the lower bound in (1).
For the upper bound, we require the following lemma.

Lemma 4.8 (Squeezing lemma [20, Lemma 3.31]). Let S be a centrally symmetric convex body in
Rn, A be an open subset of S, V be an m-dimensional subspace of Rn and 0 < θ ≤ 1. Then there
exists an open subset A′ of S such that Vol(A′) = θm Vol(A) and (A′ −A′) ∩ V ⊆ θ · (A−A) ∩ V .

Let Vj be the R-span of the K-span of v1, . . . , vj , so that Vj is a jd-dimensional real subspace
of Kn

R . We apply the squeezing lemma iteratively, starting with A0 := `n
2 · B, to create open sets

A1, . . . , An−1 ⊆ A0 such that

Vol(Aj) =

(
`j
`j+1

)jd
Vol(Aj−1)

and

(Aj −Aj) ∩ Vj ⊆
`j
`j+1

· (Aj−1 −Aj−1) ∩ Vj

for j = 1, . . . , n− 1. Then Vol(An−1) = (`1 · · · `n2−n)d Vol(B) and one can show by induction that

(An−1 −An−1) ∩ Vj ⊆
`j
`n
· (Aj−1 −Aj−1) ∩ Vj .

On the other hand, Aj−1 ⊆ A0 = `n
2 ·B and B is centrally symmetric, so Aj−1−Aj−1 ⊆ `n ·B.

It follows that
(An−1 −An−1) ∩ Vj ⊆ λj ·B ∩ Vj

for j = 1, . . . , n. By the definition of successive minima, λj · B ∩ Vj does not contain any point in
Γ except for those in Vj−1. This implies that An−1 − An−1 does not contain any point in Γ other
than the origin. If Vol(An−1) > Vol(Kn

R/Γ), then, by Blichfeldt’s principle, one can find a translate
An−1 + t of An−1 containing two distinct points of Γ. Thus, An−1−An−1 contains a non-zero point
of Γ, a contradiction. Therefore, we have Vol(An−1) ≤ Vol(Kn

R/Γ). Hence, we have

(`1 · · · `n2−n)d Vol(B) ≤ Vol(Kn
R/Γ),

giving the upper bound in (1).

4.3 OK-GAPs and an algebraic John’s theorem

Recall that a generalised arithmetic progression (or GAP) P ⊂ Zd is a set of the form

P = {v0 + l1v1 + · · ·+ lnvn | 0 ≤ lj < Lj for all j}
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for some v0, . . . , vn ∈ Zd and L1, . . . , Ln ∈ N. The dimension of P is n. We say that P is proper if
all elements on the RHS are distinct and k-proper if

{l1v1 + · · ·+ lnvn | 0 ≤ lj < kLj for all j}

has all elements distinct.
Our object of study for the remainder of this section is the following algebraic analogue of a

GAP, which we call an OK-GAP.

Definition 4.9. An OK-GAP is a set P ⊂ K of the form

P = {v0 + l1v1 + · · ·+ lnvn | lj ∈ B(Lj) for all j} (2)

for some v0, . . . , vn ∈ K and L1, . . . , Ln ∈ N. The dimension of P is n. For p ∈ N, define

p ? P := {pv0 + l1v1 + · · ·+ lnvn | lj ∈ B(pLj) for all j} . (3)

We say that P is proper if all the elements on the RHS of (2) are distinct and p-proper if all the
elements on the RHS of (3) are distinct. Note that p ? P is similar, but, because B(Lj) is an open
ball, not exactly equal, to the p-fold sumset pP .

The classical John’s theorem (see [10] or [20, Theorem 3.13]) says that any centrally symmetric
convex body A in Rn can be approximated by an open centrally symmetric ellipsoid E in the sense
that E ⊆ A ⊆

√
n · E. A discrete version of this result, due to Tao and Vu [21], says that the

intersection of a centrally symmetric convex body with a lattice in Rn can be approximated by a
GAP. Here we prove the following algebraic analogue of this result.

Lemma 4.10. For any real number r ≥ 1, there are integer constants D1, D2 > 0 such that the
following holds. Let Γ ⊆ Kn be an OK-lattice of full rank and B ⊂ Kn

R be an r-thick convex
centrally symmetric body. Then there exist v1, . . . , vn ∈ K and positive integers L1, . . . , Ln such
that the OK-GAPs given by

P1 := {l1v1 + · · ·+ lnvn | lj ∈ B(Lj) for all j} ,
P2 := {l1v1 + · · ·+ lnvn | lj ∈ B(D1Lj) for all j}

satisfy

P1 ⊆ B ∩ Γ ⊆ 1

D2
· P2. (4)

Unlike for the discrete John’s theorem for ordinary lattices, the constant D2 is necessary here.
Indeed, if K has non-trivial ideal class group, then, for Γ ⊂ OK a non-principal ideal, we cannot
hope for a one-dimensional OK-GAP to span the same lattice as Γ, since any such OK-GAP is
generated by a single element.

Proof of Lemma 4.10. Applying John’s theorem to B ⊂ Kn
R
∼= Rdn, we obtain an open centrally

symmetric ellipsoid E ⊂ Kn
R such that E ⊆ B ⊆

√
dn ·E. For any x ∈ E and i ∈ [d], eix ∈ ei ·B ⊆

r ·B ⊆ r
√
dn ·E, so E is r1-thick with r1 := r

√
dn. Consider the norm ‖·‖E on Kn

R whose unit ball
is E, that is,

‖x‖E := inf {` > 0 | x ∈ ` · E} .
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Since E is r1-thick, for any ` > 0 and x ∈ Kn
R , x ∈ ` · E implies that eix ∈ r1` · E. Therefore, for

any x ∈ Kn
R ,

‖eix‖E ≤ r1 ‖x‖E . (5)

Since |ai| ≤ ‖l‖ for any l = a1e1 + · · ·+ aded ∈ OK , we also have, for any x ∈ Kn
R , that

‖lx‖E ≤
d∑
i=1

‖aieix‖E ≤ dr1 ‖l‖ ‖x‖E . (6)

Let v1, . . . , vn ∈ K be as in Lemma 4.7, when applied to the centrally symmetric convex body
E. For each j, let

Lj :=

⌈
1

ndr1 ‖vj‖E

⌉
.

Then, for any lj ∈ B(Lj), ‖lj‖ < 1
ndr1‖vj‖E

. Thus, by (6),

‖ljvj‖E ≤ dr1 ‖lj‖ ‖vj‖E <
1

n
.

Therefore, if lj ∈ B(Lj) for all j,

‖l1v1 + · · ·+ lnvn‖E ≤
n∑
j=1

‖ljvj‖E < 1.

In other words, P1 ⊆ E ∩ Γ ⊆ B ∩ Γ, giving the first inclusion in (4).
Let Γ′ ⊆ Γ be the OK-span of v1, . . . , vn. Then, from Lemma 4.7, [Γ : Γ′] ≤ D :=

⌊
rnd(nd)!

⌋
. As

a finite abelian group, Γ/Γ′ has order at most D, so every element has order dividing D!. Therefore,
D! · Γ ⊆ Γ′ or, equivalently, Γ ⊆ 1

D!Γ
′.

Since E is a centrally symmetric ellipsoid, the norm ‖·‖E arises from an inner product on Kn
R .

Define a volume form on Kn
R based on this inner product. Then Vol(E) = Vnd, the volume of the

unit ball in Rnd. For u1, . . . , und ∈ Kn
R , write u1 ∧ · · · ∧ und for the parallelotope in Kn

R spanned by
u1, . . . und. Then Vol(u1 ∧ · · · ∧ und) ≤ ‖u1‖E · · · ‖und‖E .

Let the successive minima of E with respect to Γ be `1, . . . , `n, so we have ‖vj‖E = `j . Let

x ∈ B ∩ Γ ⊆
√
dn ·E, so that ‖x‖E ≤

√
dn. Since x ∈ Γ ⊆ 1

D!Γ
′, we can find unique integers lij for

i = 1, . . . , d and j = 1, . . . , n such that

x =
1

D!
(l11e1v1 + · · ·+ ldnedvn).

19



Using Cramer’s rule, we can solve for |lij |. This gives

|lij | = D!
Vol(e1v1 ∧ · · · ∧ x ∧ · · · ∧ edvn)

Vol(e1v1 ∧ · · · ∧ edvn)
here x is in place of eivj

= D!
Vol(e1v1 ∧ · · · ∧ x ∧ · · · ∧ edvn)

Vol(Kn
R/Γ

′)

≤ D!
‖x‖E

∏
(i′,j′)6=(i,j) ‖ei′vj′‖E
Vol(Kn

R/Γ
′)

≤ D!
rnd−1
1 ‖x‖E

∏
(i′,j′)6=(i,j) ‖vj′‖E

Vol(Kn
R/Γ

′)
by (5)

= D!rnd−1
1

(`1 · · · `n)d ‖x‖E
`j Vol(Kn

R/Γ
′)
.

From Lemma 4.7, we have

Vol(Kn
R/Γ

′) ≥ Vol(Kn
R/Γ) ≥

(
`1 · · · `n

2n

)d
Vol(E) =

(
`1 · · · `n

2n

)d
Vnd.

Therefore, using that ‖x‖E ≤
√
dn and Lj ≥ 1

ndr1‖vj‖E
, we have

|lij | ≤
D!rnd−1

1 2nd ‖x‖E
`jVnd

<
D!rnd1 2nd+1nd

√
nd

Vnd
Lj .

We obtain the second inclusion in (4) by setting D2 = D! and D1 =
⌈
D!rnd1 2nd+1nd

√
nd/Vnd

⌉
.

We now come to a key lemma, for which we need our algebraic version of John’s lemma, saying
that if P is an OK-GAP that is not p-proper, then there is an OK-GAP of smaller dimension which
contains and is not too much larger than P .

Lemma 4.11. If P is an OK-GAP of dimension n that is not p-proper, then there is an OK-GAP
Q of dimension n− 1 containing P with |Q| �n,p |P |.

Proof. Assume that P is centered and of the form

P = {l1v1 + · · ·+ lnvn | lj ∈ B(Lj)}

with Lj > 1 for all j. Since P is not p-proper, there exist lj , l
′
j ∈ B(pLj) for all j such that lj 6= l′j

for some j and
l1v1 + · · ·+ lnvn = l′1v1 + · · ·+ l′nvn.

Setting aj = lj − l′j ∈ B(2pLj), we have that the aj are not all 0 and a1v1 + · · · + anvn = 0. We
may assume without loss of generality that an 6= 0. Then we have the relation

vn = −a1v1

an
− · · · − an−1vn−1

an
. (7)
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Let w = (− a1
an
, . . . ,−an−1

an
) ∈ Kn−1. Let Γ := On−1

K + OK · w ⊂ Kn−1. Then Γ is a discrete
lattice which is invariant under multiplication by OK and so is an OK-lattice. Γ is also of full rank,
since it contains On−1

K . Consider the homomorphism f : Γ→ K given by

f((x1, . . . , xn−1) + xnw) := x1v1 + · · ·+ xnvn.

Then f is well-defined because of the relation (7). Note also that f is OK-linear, that is, f is linear
and f(ax) = af(x) for any a ∈ OK , x ∈ Γ. We may also extend f OK-linearly to a K-linear map
f : Kn−1 → K.

Let B0 ⊂ Kn−1
R be the convex centrally symmetric body

B0 :=
{

(x1, . . . , xn−1) ∈ Kn−1
R

∣∣ xi ∈ BR(Li)
}
.

Let B = B0 +BR(Ln) ·w, which is also a convex centrally symmetric body. Since B0 and BR(Ln) ·w
are C1-thick, so is B. Indeed, if x ∈ B0 and y ∈ BR(Ln) · w, then ei · (x + y) = ei · x + ei · y ∈
C1 ·B0 + C1 · (BR(Ln) · w) = C1 · (B0 +BR(Ln) · w).

Claim 4.12. One has the inclusions

P ⊆ f(B ∩ Γ) ⊆ (2pC1 + 1) ? P.

Proof. For the first inclusion, let v = l1v1 + · · · + lnvn ∈ P with lj ∈ B(Lj). Then v =
f((l1, . . . , ln−1) + lnw) with ‖lj‖ < Lj , so that (l1, . . . , ln−1) + lnw ∈ B ∩ Γ.

For the second inclusion, let (l1, . . . , ln−1)+lnw ∈ B∩Γ with lj ∈ OK . Since (l1, . . . , ln−1)+lnw ∈
B, there exist x1, . . . , xn ∈ KR with ‖xj‖ < Lj such that (l1, . . . , ln−1)+lnw = (x1, . . . , xn−1)+xnw.

In other words, lj − aj ln
an

= xj − ajxn

an
for j = 1, . . . , n− 1. Let z = ln−xn

an
∈ KR, so we have

lj − xj = ajz (8)

for all j = 1, . . . , n. Let x ∈ OK be the closest element to z according to the metric ‖·‖. Recall
that this is the ∞-norm, so we have ‖x− z‖ ≤ 1. Let l′j = lj − ajx ∈ OK . Then l1v1 + · · ·+ lnvn =
l′1v1 + · · · + l′nvn, so we have f((l1, . . . , ln−1) + lnw) = l′1v1 + · · · + l′nvn. It suffices to show that∥∥l′j∥∥ < (2pC1 + 1)Lj for all j. But we have∥∥l′j∥∥ = ‖lj − ajx‖

≤ ‖lj − ajx− xj‖+ ‖xj‖
< ‖aj(z − x)‖+ Lj by (8)

≤ C1 ‖aj‖ ‖z − x‖+ Lj by Lemma 4.1

≤ (2pC1 + 1)Lj ,

as required.

By Lemma 4.10, we can find constants D1, D2 = On(1) and OK-GAPs P1, P2 of dimension n−1
such that P2 = D1 ? P1 and P1 ⊆ B ∩ Γ ⊆ 1

D2
· P2. In particular, P2 can be covered by Dn−1

1

translates of P1.
Applying the homomorphism f , we obtain

f(P1) ⊆ f(B ∩ Γ) ⊆ 1

D2
f(P2).
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Since f is OK-linear, f(P1) and f(P2) are also OK-GAPs of dimension n−1. Setting Q = 1
D2
f(P2),

which is again an OK-GAP of dimension n−1, we have, by the claim above, that P ⊆ f(B∩Γ) ⊆ Q,
so it suffices to show that Q is small. Since P2 can be covered by Dn−1

1 = On(1)-many translates
of P1, f(P2) can also be covered by On(1)-many translates of f(P1). But then

|f(P2)| �n |f(P1)| ≤ |f(B ∩ Γ)| ≤ |(2pC1 + 1) ? P | �n,p |P |,

as required.

4.4 Freiman’s theorem for sums of dilates

One version of Freiman’s fundamental theorem on sets of small doubling is as follows.

Theorem 4.13 (Freiman [8]). For every C > 0, there are constants n and F such that for any
A ⊂ Zd satisfying |A + A| ≤ C|A|, there exists a proper GAP P ⊂ Zd containing A of dimension
at most n and size at most F |A|.

We have now built up sufficient background to prove the promised Freiman-type structure
theorem for sets with small sums of dilates, which we restate for the reader’s convenience.

Theorem 4.14. For every C > 0 and p ∈ N, there are constants n and F such that for any A ⊂ K
satisfying

|A+ λ1 ·A+ · · ·+ λk ·A| ≤ C|A|,

there exists a p-proper OK-GAP P ⊂ K containing A of dimension at most n and size at most
F |A|.

Recall, from Lemma 4.1, that we have constants C2, C3 ∈ N with the property that λlx ∈
1
C2
·B(C3 ‖x‖) for all l = 0, . . . , k and x ∈ OK . Thus, if P is anOK-GAP, then λl·P lies in a translate

of 1
C2
·(C3 ?P ). Indeed, if x = v0 + l1v1 + · · ·+ lmvm ∈ P , then λlx = λlv0 +(λll1)v1 + · · ·+(λllm)vm

with λlli ∈ 1
C2
B(C3 ‖li‖). Therefore,

|P + λ1 · P + · · ·+ λk · P | ≤ |(k + 1)C3 ? P |
≤ ((k + 1)C3)nd|P |.

In other words, P has a small sum of dilates. That is, Theorem 4.14 embeds a set A with a small
sum of dilates into another, more structured set which, unlike an ordinary GAP, also has a small
set of dilates. We now proceed to the proof of this statement.

Proof of Theorem 4.14. By translating, we may assume that 0 ∈ A. By the Ruzsa triangle inequal-
ity,

|A+A||λ1 ·A+ · · ·+ λk ·A| ≤ |A+ λ1 ·A+ · · ·+ λk ·A|2 ≤ C2|A|2.

Using the trivial bound |λ1 ·A+ · · ·+λk ·A| ≥ |A|, we obtain |A+A| ≤ C2|A|. By the Plünnecke–
Ruzsa inequality, |A+A+A| ≤ C6|A|. By the Ruzsa triangle inequality again,

|(A+A) + λ1 ·A+ · · ·+ λk ·A||A| ≤ |A+A+A||A+ λ1 ·A+ · · ·+ λk ·A| ≤ C7|A|2,

so |(A+A) + λ1 ·A+ · · ·+ λk ·A| ≤ C7|A|. Similar repeated applications of the triangle inequality
gives |(A+A) + λ1 · (A+A) + · · ·+ λk · (A+A)| ≤ C7+6k|A|. Thus, A+ λ1 ·A+ · · ·+ λk ·A has
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small doubling constant. Therefore, by Freiman’s theorem, A+ λ1 ·A+ · · ·+ λk ·A is contained in
a proper GAP

P0 = {l1v1 + · · ·+ ln0
vn0
| −Li < li < Li}

of dimension n0 with |P0| � |A|. Note that since 0 ∈ A ⊆ P0, we are free to assume that P0 is
centered.

Now let P1 be the OK-GAP given by

P1 = {l1v1 + · · ·+ ln0
vn0
| li ∈ B(Li)} .

Then P1 contains P0. At first glance, it might seem that the size of P1 could be as large as |P0|d.
However, we now show that this is not the case.

Claim 4.15. |P1| � |P0|.

Proof. For a subset X ⊆ K and c > 0, we say that X is (c, P0)-small if X can be covered by c-
many translates of P0. For brevity, we will simply say that X is P0-small if c is a bounded constant
independent of X,P0. Thus, if X,Y are P0-small, so is their sumset X + Y . Indeed, if X,Y can
be covered by x, y-many translates of P0, respectively, then X + Y can be covered by xy-many
translates of P0 + P0, which itself can be covered by 2n0 -many translates of P0.

We shall show that for each i ∈ [d], j ∈ [n0], the set Sij := {eivj , 2eivj , . . . , Ljeivj} is P0-small.
Then we would have proved the claim, since the sets {−Ljeivj , . . . , Ljeivj} are then P0-small, P1

is the sum of these sets and there are only a bounded number of them.
Since λ1, . . . , λk generate K, there exist (fixed) integers b, a1, . . . , ak with b > 0 such that

bei = a1λ1 + · · · + akλk. It will suffice to show that the set S := {beivj , 2beivj , . . . , Ljbeivj}
is P0-small, since Sij can be covered by b translates of it. But then it suffices to show that
S′l := {alλlvj , 2alλlvj , . . . , Ljalλlvj} is P0-small for each l, since S is contained in S′1 + · · · + S′k.
But then, finally, it suffices to show that Sl := {λlvj , 2λlvj , . . . , Ljλlvj} is P0-small for each l, since
S′l is covered by |al|-many translates of Sl.

Suppose |P0 + P0| < c|A|, where c = O(1) is a positive integer. Let s be an arbitrary positive
integer with s < Lj/c. Consider the sets

A,A+ svj , A+ 2svj , . . . , A+ csvj .

All these sets have size |A| and are contained in P0 +P0. But |P0 +P0| < c|A|, so two of these sets
intersect, say (A + msvj) ∩ (A + m′svj) 6= ∅ for 0 ≤ m < m′ ≤ c. Thus, (m′ −m)svj ∈ A − A.
Therefore, c!sλlvj ∈ c!(λl ·A)− c!(λl ·A) ⊆ c!P0 − c!P0. Since 1 ≤ s < Lj/c was arbitrary, we have
that the set

{c!λlvj , 2c!λlvj , . . . , bLj/cc c!λlvj} ⊆ c!P0 − c!P0

is P0-small. Thus, the set T := {c!λlvj , 2c!λlvj , . . . , Ljc!λlvj} is P0-small. Finally, Sl is P0-small
since it can be covered by c!-many translates of T .

If P1 is p-proper, then we are done. Otherwise, by Lemma 4.11, we can find an OK-GAP P2

of one dimension smaller containing P1 with |P2| � |P1|. If P2 is also not p-proper, we invoke
Lemma 4.11 again to obtain P3 and so on. Note that we can only do this at most n0 times, since
any OK-GAP of dimension 1 is necessarily p-proper. Thus, we will eventually find a p-proper
OK-GAP P containing A of dimension O(1) with |P | � |A|.
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5 Reduction to a dense subset of the box

With the results of the last section in hand, we are now able to complete the second part of our
plan, reducing the proof of our main result, in the form of Theorem 2.2, to the case where A is a
dense subset of the box [0, N)d.

Lemma 5.1. For any ε > 0, there exists N0 such that if N ≥ N0 and A ⊆ [0, N)d with |A| ≥ εNd,
then

|L0A+ · · ·+ LkA| ≥ H(λ1, . . . , λk)|A| − oε(|A|).

The proof of Lemma 5.1, which is the heart of this paper, will occupy us for the next few sections.
Before moving on to this, we first show that, together with our version of Freiman’s theorem for
sums of dilates, Lemma 5.1 completes the proof of Theorem 2.2.

Proof of Theorem 2.2 assuming Lemma 5.1. Let A ⊂ Zd be finite and suppose that

|L0A+ · · ·+ LkA| ≤ H|A|,

where H = H(λ1, . . . , λk). Let Φ,Φ′,D be as in Section 2. Setting A′ = Φ′−1(A) ⊆ D ⊆ OK , we
have

|A′ + λ1 ·A′ + · · ·+ λk ·A′| ≤ H|A′|.
Let C3 be as in Lemma 4.1. By Theorem 4.14, our version of Freiman’s theorem for sums of dilates
applied with p = (k + 1)C3, A′ is contained in a (k + 1)C3-proper OK-GAP P ⊂ K of dimension
n = O(1) and size |P | = O(|A′|). Suppose P is of the form

{v0 + l1v1 + · · ·+ lnvn | lj ∈ B(Lj)} .

Then |P | ∼ (
∏n
j=1 Lj)

d, where the notation A ∼ B indicates that the quantities A and B are
equal up to a constant multiplicative factor depending only on λ1, . . . , λk. By translating A′, we
may assume that v0 = 0. By Lemma 4.1, we have λl · B(Lj) ⊆ 1

C2
· B(C3Lj) for all j, l. Thus,

λl ·A′ ⊆ λl · P ⊆ 1
C2
· (C3 ? P ) for all l.

We will now map P to a dense subset of a box via a Freiman isomorphism. Let v∗1 = 1 and
v∗l = 3(k + 1)C3Ll−1v

∗
l−1 for l = 2, . . . , n. Let P ∗ be the OK-GAP

P ∗ := {l1v∗1 + l2v
∗
2 + · · ·+ lnv

∗
n | lj ∈ B(Lj)} .

Then P ∗ is (k+ 1)C3-proper. Indeed, if l1v
∗
1 + l2v

∗
2 + · · ·+ lnv

∗
n = l′1v

∗
1 + l′2v

∗
2 + · · ·+ l′nv

∗
n for some

lj , l
′
j ∈ B((k + 1)C3Lj), then we have

(l1 − l′1)v∗1 + · · ·+ (ln − l′n)v∗n = 0.

Suppose lt 6= l′t for some t ∈ [n]. Let t be the largest such index, so we have

(l′t − lt)v∗t = (l1 − l′1)v∗1 + · · ·+ (lt−1 − l′t−1)v∗t−1.

However, ‖(l′t − lt)v∗t ‖ ≥ v∗t = 3(k + 1)C3Lt−1v
∗
t−1, whereas∥∥(l1 − l′1)v∗1 + · · ·+ (lt−1 − l′t−1)v∗t−1

∥∥ ≤ ‖(l1 − l′1)v∗1‖+ · · ·+
∥∥(lt−1 − l′t−1)v∗t−1

∥∥
≤ (‖l1‖+ ‖l′1‖)v∗1 + · · ·+ (‖lt−1‖+

∥∥l′t−1

∥∥)v∗t−1

< 2(k + 1)C3L1v
∗
1 + · · ·+ 2(k + 1)C3Lt−1v

∗
t−1

≤ 3(k + 1)C3Lt−1v
∗
t−1,
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a contradiction. This proves that P ∗ is (k + 1)C3-proper.
Consider Ψ : (k + 1)C3 ? P → (k + 1)C3 ? P

∗, the natural bijection given by

l1v1 + · · ·+ lnvn ←→ l1v
∗
1 + l2v

∗
2 + · · ·+ lnv

∗
n.

Let A∗ = Ψ(A′), so that |A∗| = |A′|. We claim that for l = 0, . . . , k, we have Ψ(C2λl · A′) =
C2λl ·A∗. Indeed, first observe that the LHS is well-defined, since λl ·P ⊆ 1

C2
· (C3 ?P ), so we have

C2λl ·P ⊆ C3 ?P , which is in the domain of Ψ. For any a = l1v1 + · · ·+ lnvn ∈ A′, set l′jl = C2λl · lj ,
which belongs to B(C3Lj) by Lemma 4.1. Then

Ψ(C2λl · a) = Ψ(l′1lv1 + · · ·+ l′nlvn) = l′1lv
∗
1 + · · ·+ l′nlv

∗
n

= C2λl · (l1v∗1 + · · ·+ lnv
∗
n) = C2λlΨ(a).

This proves the stated claim that Ψ(C2λl ·A′) = C2λl ·A∗.
Since P is (k+1)C3-proper, C3 ?P is (k+1)-proper. Hence, Ψ is a (k+1)-Freiman isomorphism

on C3 ? P and, therefore, since C3 > C2,

Ψ(C2 · (A′ + λ1 ·A′ + · · ·+ λk ·A′)) = Ψ(C2λ0 ·A′ + C2λ1 ·A′ + · · ·+ C2λk ·A′)
= Ψ(C2λ0 ·A′) + Ψ(C2λ1 ·A′) + · · ·+ Ψ(C2λk ·A′)
= C2λ0 ·A∗ + C2λ1 ·A∗ + · · ·+ C2λk ·A∗

= C2 · (A∗ + λ1 ·A∗ + · · ·+ λk ·A∗).

It follows that
|A∗ + λ1 ·A∗ + · · ·+ λk ·A∗| = |A′ + λ1 ·A′ + · · ·+ λk ·A′|.

Note that P ∗ ⊆ B(L) for some L ∼
∏n
j=1 Lj . Recall that C2 is an integer satisyfing C2λl ∈ OK

for all l. In particular, C2 ∈ D and, since P ∗ ⊂ OK , C2 · P ∗ ⊂ D. Since C2 · P ∗ ⊆ B(C2L),
Φ′(C2 · P ∗) is contained in a box [−N,N ]d with N ∼ L. But Nd ∼ |P | ∼ |A| and so Φ′(C2 ·A∗) is
a dense subset of the box [−N,N ]d. By Lemma 5.1 (after translating into the box [0, 2N + 1)d),
we have

|L0A+ · · ·+ LkA| = |A′ + λ1 ·A′ + · · ·+ λk ·A′|
= |A∗ + λ1 ·A∗ + · · ·+ λk ·A∗|
= |L0(Φ′(C2 ·A∗)) + · · ·+ Lk(Φ′(C2 ·A∗))|
≥ H|A∗| − o(|A∗|)
= H|A| − o(|A|),

as required.

6 Lattice densities

As already mentioned in the introduction, the key to proving Lemma 5.1 is to represent each discrete
set A by a continuous set A, which we call a lattice density, to which we can apply the continuous
estimate given by Theorem 3.1. In this section, we introduce these lattice densities and prove some
general facts about them. Very roughly, the lattice density of a set A ⊆ Zd will encode the density
of A with respect to certain lattices.

25



6.1 Lattice densities for periodic sets

Let L be a lattice of rank d, that is, L ∼= Zd. We say that A ⊆ L is d-periodic if its group of
translational symmetries has rank d. Let F = {L1 ⊆ L2 ⊆ · · · ⊆ Lk} be a flag of sublattices of L,
each of which has rank d. In this section, we will define the lattice density of any d-periodic set
A ⊆ L with respect to the flag F , denoted by LD(A;F), which will be a subset of [0, 1]k that is a
finite union of closed axis-aligned boxes.

For any affine lattice M ⊆ L of rank d, we write ρM (A) for the density of A∩M in M . Since A
is d-periodic, this density is always well-defined. In particular, 0 ≤ ρM (A) ≤ 1. This already allows
us to define the lattice density for k = 1. Indeed, if F = {L1} and A ∩ L1 6= ∅, we set LD(A;F) to
be the interval [0, ρL1

(A)] ⊂ R, while if A ∩ L1 = ∅, we set LD(A;F) = ∅.
For k > 1, let a1, . . . , am ∈ Lk be any set of coset representatives of Lk/Lk−1, where m = [Lk :

Lk−1]. Let Dj = LD(A+ aj ;F \ Lk) ⊆ [0, 1]k−1 for each j ∈ [m] and

D =

m⋃
j=1

(
Dj ×

[
j − 1

m
,
j

m

])
⊆ [0, 1]k.

Finally, set LD(A;F) = Ck(D), where Ck is the compression in the k-th direction, defined as
follows.

In our case, we will only be compressing sets which are finite unions of axis-aligned closed boxes.
Let X ⊂ Rd be such a set and 1 ≤ i ≤ d. Let πi : Rd → Rd−1 be the projection along the i-th
axis. For x ∈ Rd−1, let Xx = π−1

i (x), viewed as a subset of R, and write |Xx| for the measure of
Xx. Now define C ′i(X) to be the set Y such that πi(X) = πi(Y ) and, for each x ∈ πi(X), Yx is
the interval [0, |Xx|]. However, because of boundary issues, this is not quite the compression we
want. For example, if X = [0, 1]2 ∪ [1, 2]2 ⊂ R2, then C ′2(X) = [0, 2] × [0, 1] ∪ {1} × [1, 2]. The
artifact {1} × [1, 2] is undesirable and only arises because the boundaries of the two squares [0, 1]2

and [1, 2]2 overlap in the projection. To remove this artifact, we formally define Ci(X) to be the
closure of the interior of C ′i(X). Since we will only be compressing sets which are finite unions of
axis-aligned closed boxes, we still enjoy the main properties of compressions, such as preservation
of the measure of X and that Ci(X) is also a finite union of axis-aligned closed boxes. We will say
that X is Ci-compressed if Ci(X) = X and compressed if it is Ci-compressed for all i.

Observe that, because of the compression, LD(A;F) is independent of the ordering a1, . . . , am.

Example 6.1. Suppose d = 1, k = 2, L = Z, F = {3Z ⊂ Z} and A = 12Z ∪ (12Z + 1) ∪ (6Z + 3).
Pick ai = −i for i = 1, 2, 3 to be the coset representatives of Z/3Z. Let Ai = (A − i) ∩ 3Z for
i = 1, 2, 3. Thus, A1, A2, A3 are the parts of A in the residue classes mod 3, translated so they all
lie in 3Z. We can easily check that

• A1 = 12Z,

• A2 = ∅,

• A3 = 12Z + {0, 6, 9}.

From the definition, Di = LD(Ai; {3Z}) = [0, ρ3Z(Ai)], so we have D1 = [0, 1/4], D2 = ∅ and
D3 = [0, 3/4]. Stacking these intervals vertically and compressing, we get LD(A;F) ⊂ [0, 1]2 as
shown in Figure 3.
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D1

D3

1 (mod 3)

2 (mod 3)

0 (mod 3)

1

1

1

1

Figure 3: On the left, the Di are stacked, while on the right they are compressed to give the final
lattice density.

Throughout the rest of this section, F = {L1 ⊆ · · · ⊆ Lk} will be a flag of full-rank sublattices
of a lattice L ∼= Zd and A ⊆ L a d-periodic subset of L, our aim being to understand the properties
of the lattice density LD(A;F). We begin with some basic observations.

Lemma 6.2. The following are true:

1. For any a ∈ Lk, LD(A;F) = LD(A+ a;F).

2. LD(A;F) is compressed.

3. If B ⊆ A is d-periodic, then LD(B;F) ⊆ LD(A;F).

4. ρLk
(A) = Vol(LD(A;F)).

5. LD(A;F) is a finite union of boxes of the form

[0, r]×
[
0,

m2

[L2 : L1]

]
× · · · ×

[
0,

mk

[Lk : Lk−1]

]
,

where r ∈ (0, 1] and m2, . . . ,mk are positive integers.

Proof. We proceed by induction on k. In the base case k = 1, we have LD(A;F) = [0, ρL1(A)] and
it is easy to check that all of the required properties hold.

Assume therefore that k > 1. Let D1, . . . , Dk, D be as defined above. We verify each property
in turn:

1. Addition by a permutes the cosets Lk/Lk−1, so let a′1, . . . , a
′
m be a permutation of a1, . . . , am

such that aj + a = a′j + bj for some bj ∈ Lk−1. Let D′j = LD(A + a + aj ;F \ Lk). By the
induction hypothesis, D′j = LD(A+ a′j + bj ;F \ Lk) = LD(A+ a′j ;F \ Lk), so D′1, . . . , D

′
m is

a permutation of D1, . . . , Dm. After compression, it follows that LD(A;F) = LD(A+ a;F).

2. Each of the Dj are Cl-compressed for l = 1, . . . , k − 1. Thus, D is Cl-compressed for l =
1, . . . , k − 1 and, therefore, LD(A;F) = Ck(D) is Cl-compressed for l = 1, . . . , k.
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3. Let D′j = LD(B + aj ;F \ Lk). By the induction hypothesis, D′j ⊆ Dj , so the corresponding
D′ satisfies D′ ⊆ D. Therefore, LD(B;F) ⊆ LD(A;F).

4. By definition, Dj = LD(A+ aj ;F \Lk) and, by the induction hypothesis, we have ρLk−1
(A+

aj) = Vol(Dj). Therefore,

Vol(LD(A;F)) = Vol(D) =
1

m

m∑
j=1

Vol(Dj) =
1

m

m∑
j=1

ρLk−1
(A+ aj)

=
[Lk : Lk−1]

m

m∑
j=1

ρLk
((A+ aj) ∩ Lk−1)

=

m∑
j=1

ρLk
(A ∩ (Lk−1 − aj)) = ρLk

(A).

5. We show by induction that LD(A;F) is an interior-disjoint union of boxes of the form

v + [0, r]×
[
0,

1

[L2 : L1]

]
× · · · ×

[
0,

1

[Lk : Lk−1]

]
,

where v is of the form (
0,

m2

[L2 : L1]
, . . . ,

mk

[Lk : Lk−1]

)
with m2, . . . ,mk non-negative integers. The base case is trivial since LD(A;F) is an interval.

By the induction hypothesis, each Dj is an interior-disjoint union of boxes of the form

v + [0, r]×
[
0,

1

[L2 : L1]

]
× · · · ×

[
0,

1

[Lk−1 : Lk−2]

]
.

Thus, D is also the interior-disjoint union of boxes of the same kind and compressing preserves
this property.

Finally, since LD(A;F) is compressed, it is the finite union of boxes of the required form.

The next lemma fully determines LD(A;F) by giving a precise condition for when the lattice
density contains any given point.

Lemma 6.3. Suppose k ≥ 2, r ∈ (0, 1] is real and m2, . . . ,mk are positive integers. Then the
following are equivalent:

1. LD(A;F) contains the point(
r,

m2

[L2 : L1]
,

m3

[L3 : L2]
, . . . ,

mk

[Lk : Lk−1]

)
.

2. For each l = 2, . . . , k and (il, il+1, . . . , ik) ∈ [ml]× [ml+1]×· · ·× [mk], there exist bil,...,ik ∈ Lk
such that:

(a) For l < k, bil,il+1,...,ik ∈ bil+1,...,ik + Ll.
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(b) bi,il+1,...,ik − bj,il+1,...,ik 6∈ Ll−1 for each i 6= j with i, j ∈ [ml].

(c) ρL1
(A+ bi2,...,ik) ≥ r for each i2, . . . , ik.

Proof. We proceed by induction on k. Let a1, . . . , am be any coset representatives of Lk/Lk−1 with
m = [Lk : Lk−1] and Di = LD(A+ ai;F \ Lk).

1⇒ 2: From the construction of LD(A;F), mk of the Di contain the point(
r,

m2

[L2 : L1]
,

m3

[L3 : L2]
, . . . ,

mk−1

[Lk−1 : Lk−2]

)
.

Without loss of generality, assume that they are D1, . . . , Dmk
. Set bi = ai ∈ Lk for i = 1, . . . ,mk.

Then bi − bj 6∈ Lk−1 for i 6= j.
If k = 2, then each Di with i ∈ [mk] contains r, meaning that ρL1

(A + ai) ≥ r. Thus,
ρL1(A+ bi) ≥ r for each i ∈ [mk], completing the proof of the base case.

Now suppose that k > 2. By the induction hypothesis applied to each Dik , there exist b′il,...,ik ∈
Lk−1 for each (il, il+1, . . . , ik) ∈ [ml]× [ml+1]× · · · × [mk] such that

(a) For l < k − 1, b′il,...,ik ∈ b
′
il+1,...,ik

+ Ll.

(b) For l < k, b′i,il+1,...,ik
− b′j,il+1,...,ik

6∈ Ll−1 for each i 6= j with i, j ∈ [ml].

(c) ρL1
(A+ bik + b′i2,...,ik) ≥ r for each i2, . . . , ik.

Set bil,...,ik = b′il,...,ik + bik . Then property (a) holds for l < k − 1; property (b) holds for l < k and
property (c) holds. It remains to check that bik−1,ik ∈ bik +Lk−1 and bi− bj 6∈ Lk−1 for each i 6= j.
The former holds since bik−1,ik = b′ik−1,ik

+ bik ∈ bik + Lk−1 and the latter was observed earlier.

2⇐ 1: Since a1, . . . , am are any coset representatives, we may pick ai = bi for i = 1, . . . ,mk.
For k = 2, since ρL1(A+ bi) ≥ r, Di contains r for i = 1, . . . ,m2. Thus, LD(A;F) contains the

point (r, m2

|L2/L1| ).

Now assume k > 2. Let b′il,...,ik = bil,...,ik−bik . Then we have the following properties, inherited
from the b:

(a) For l < k − 1, b′il,...,ik ∈ b
′
il+1,...,ik

+ Ll.

(b) For l < k, b′i,il+1,...,ik
− b′j,il+1,...,ik

6∈ Ll−1 for each i 6= j with i, j ∈ [ml].

(c) ρL1
(A+ bik + b′i2,...,ik) ≥ r for each i2, . . . , ik.

By the induction hypothesis, for i = 1, . . . ,mk, Di contains the point(
r,

m2

[L2 : L1]
,

m3

[L3 : L2]
, . . . ,

mk−1

[Lk−1 : Lk−2]

)
.

Therefore, by the definition of LD(A;F), it contains the point(
r,

m2

[L2 : L1]
,

m3

[L3 : L2]
, . . . ,

mk

[Lk : Lk−1]

)
,

as required.
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As an application of this lemma, we now show how to compute the projections of lattice densities.

Lemma 6.4. The following are true:

1. π1(LD(A;F)) is the interval [0, r], where

r = max
a∈Lk

{ρL1
(A+ a)} .

In particular, π1(LD(A;F)) depends only on A, L1 and Lk.

2. For 2 ≤ l ≤ k, πl(LD(A;F)) is the interval[
0,

m

[Ll : Ll−1]

]
,

where m ∈ Z is the maximum number of elements a1, . . . , am ∈ A ∩ Lk such that ai − aj ∈
Ll \ Ll−1 for any i 6= j. In particular, πl(LD(A;F)) depends only on A, Ll−1, Ll and Lk.

Proof. We first observe that the maxima are well-defined. Indeed, ρL1
is invariant under translations

by elements of L1, so, for (1), we may take the maximum over the finitely many coset representatives
of Lk/L1. For (2), we see that each ai must belong to a different coset of Ll/Ll−1, so m ≤ [Ll : Ll−1].

1. If π1(LD(A;F)) = [0, r], then LD(A;F) contains the point(
r,

1

[L2 : L1]
,

1

[L3 : L2]
, . . . ,

1

[Lk : Lk−1]

)
and r is the maximum such real number. By Lemma 6.3, this is equivalent to the existence
of some b ∈ Lk such that ρL1(A+ b) ≥ r. Thus,

r = max
b∈Lk

{ρL1(A+ b)} .

2. Suppose LD(A;F) contains the point(
r,

1

[L2 : L1]
, . . . ,

m

[Ll+1 : Ll]
, . . . ,

1

[Lk : Lk−1]

)
for some r > 0 and m is the maximum such integer. By Lemma 6.3, this is equivalent to
the existence of b ∈ Lk and b1, . . . , bm ∈ b + Ll such that bi − bj 6∈ Ll−1 for each i 6= j and
ρL1

(A+ bi) ≥ r for each i. Since we may take r to be the minimum of ρL1
(A+ bi) over all i,

we are just requiring that ρL1
(A+ bi) > 0, that is, (A+ bi) ∩ L1 6= ∅ for each i.

Suppose such b, bi exist. Let ai ∈ A be such that ai + bi ∈ L1, which exists since (A +
bi) ∩ L1 6= ∅. Note that ai ∈ Lk since ai ∈ −bi + L1 ⊆ Lk. Moreover, for any i 6= j,
ai − aj ∈ bj − bi + L1 ⊆ Ll \ Ll−1, as required.

On the other hand, suppose we have a1, . . . , am ∈ A ∩ Lk such that ai − aj ∈ Ll \ Ll−1

for all i 6= j. Set b = −a1 and bi = −ai for each i. Then bi = b + a1 − ai ∈ b + Ll and
bi − bj = aj − ai 6∈ Ll−1 for i 6= j. Finally, note that (A + bi) ∩ L1 6= ∅ for each i, since it
contains 0.
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The next result, which again makes use of Lemma 6.3, describes lattice densities of sumsets.

Theorem 6.5. Suppose B ⊆ L is d-periodic. If p = (p1, . . . , pk) ∈ LD(A;F) and q = (q1, . . . , qk) ∈
LD(B;F), then

max(p, q) ∈ LD(A+B;F),

where max(p, q) = (max(p1, q1), . . . ,max(pk, qk)).

Proof. Since LD(A;F) and LD(B;F) are both unions of boxes of the form

[0, r]×
[
0,

m2

[L2 : L1]

]
× · · · ×

[
0,

mk

[Lk : Lk−1]

]
for r ∈ (0, 1] and m2, . . . ,mk positive integers, we may assume that p, q are of the form

p =

(
r,

m2

[L2 : L1]
,

m3

[L3 : L2]
, . . . ,

mk

[Lk : Lk−1]

)
,

q =

(
r′,

m′2
[L2 : L1]

,
m′3

[L3 : L2]
, . . . ,

m′k
[Lk : Lk−1]

)
.

Without loss of generality, we assume that r ≥ r′. By Lemma 6.3, we obtain bil,...,ik , b
′
il,...,ik

∈ Lk
with the properties given in the lemma. Let I = {i ∈ [2, k] | mi ≥ m′i} and J = [2, k] \ I. Set
cil,...,ik = bi′l,...,i′k + b′i′′l ,...,i′′k

, where

i′j =

{
ij if j ∈ I
1 otherwise

and i′′j =

{
ij if j ∈ J
1 otherwise

for (il, . . . , ik) ∈ [max(ml,m
′
l)] × · · · × [max(mk,m

′
k)]. We wish to show that the cil,...,ik sat-

isfy properties (a)–(c) in Lemma 6.3 for LD(A + B;F). Note that we have cil,...,ik ∈ Lk since
bi′l,...,i′k , b

′
i′′l ,...,i

′′
k
∈ Lk. We now prove each of (a)–(c) in turn:

(a) For l < k, we have bi′l,i′l+1,...,i
′
k
∈ bi′l+1,...,i

′
k

+ Ll and b′i′′l ,i′′l+1,...,i
′′
k
∈ b′i′′l+1,...,i

′′
k

+ Ll. Thus,

cil,il+1,...,ik ∈ cil+1,...,ik + Ll.

(b) Suppose l ∈ I. Then, for i 6= j, ci,il+1,...,ik − cj,il+1,...,ik = bi,i′l+1,...,i
′
k
− bj,i′l+1,...,i

′
k
6∈ Ll−1. The

case l ∈ J is similar.

(c) We have ρL1
(B + b′i′′2 ,...,i′′k

) ≥ r′ > 0. In particular, B + b′i′′2 ,...,i′′k
contains some element

x ∈ L1. Thus, A + B + ci2,...,ik ⊇ A + bi′2,...,i′k + x, so we have ρL1
(A + B + ci2,...,ik) ≥

ρL1
(A+ bi′2,...,i′k + x) = ρL1

(A+ bi′2,...,i′k) ≥ r.

The final result of this subsection relates projections of lattice densities with respect to different
flags.

Lemma 6.6. Suppose F ′ =
{
L′1 ⊆ · · · ⊆ L′k−1 ⊆ Lk

}
is a flag of full-rank sublattices of L. Then

the following are true:

1. If L′1 ⊆ L1, then
|π1(LD(A;F))| ≤ |π1(LD(A;F ′))|.
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2. For 2 ≤ l ≤ k, if L′l = Ll and L′l−1 ⊆ Ll−1, then

|πl(LD(A;F))| ≥ |πl(LD(A;F ′))|.

Proof. 1. Let
r = max

a∈Lk

{ρL1(A+ a)} and r′ = max
a∈Lk

{
ρL′1(A+ a)

}
.

By Lemma 6.4, it suffices to show that r ≤ r′. Suppose r is attained by a ∈ Lk. Let
s = [L1 : L′1] and c1, . . . , cs be coset representatives of L1/L

′
1. We can split (A+ a) ∩ L1 into

the disjoint union
⋃s
i=1(A+ a+ ci) ∩ L′1, so that

ρL1
(A+ a) =

1

s

s∑
i=1

ρL′1(A+ a+ ci).

Therefore, there is some i such that ρL′1(A+ a+ ci) ≥ r, so r′ ≥ r.

2. Suppose |πl(LD(A;F ′))| = n
[L′l:L

′
l−1] . By Lemma 6.4, there are b1, . . . , bn ∈ A ∩ Lk such

that bi − bj ∈ L′l \ L′l−1. Let s = [Ll−1 : L′l−1]. Define an equivalence relation by setting
bi ∼ bj if bi − bj ∈ Ll−1. Then each equivalence class has at most s elements, since no two
elements belong to the same coset of Ll−1/L

′
l−1. Let a1, . . . , am be any representatives of the

equivalence classes of b1, . . . , bn, so that ms ≥ n. Since the ai are in different equivalence
classes, we have ai − aj 6∈ Ll−1 for i 6= j. By Lemma 6.4 again, we have

|πl(LD(A;F))| ≥ m

[Ll : Ll−1]
=

ms

[Ll : L′l−1]
≥ n

[Ll : L′l−1]
= |πl(LD(A;F ′))|,

as required.

6.2 Local lattice densities

In practice, we will make use of a local variant of lattice density. Intuitively, the local lattice density
of A at some point x is the lattice density of a tiny region of A around x. However, A is a discrete
set, so we cannot simply take an infinitesimally small ball around x. Instead, we define the local
lattice density of A in some small region S ⊂ Rd to be the lattice density of a collection of copies
of A∩S, placed so as to be d-periodic. To make this work, we require that S be tileable, which we
now define. Note that we will continue to use notation from the previous subsection. In particular,
F = {L1 ⊆ · · · ⊆ Lk} is a flag of full-rank sublattices of a lattice L ∼= Zd.

Let LR = L⊗R ∼= Rd. We say that S ⊂ LR is tileable if there is a sublattice P ⊆ L1 of full rank
such that S ⊕ P = LR. In this case, we say that S is tiled by P . For example, if L = Zd, the box
[0,M)d ⊂ Rd is tileable as long as MZd ⊆ L1. In all of our applications, S will be a half-open box
of the form [0,M)d or an affine transformation of it.

Let P ⊆ L1 and S ⊂ LR be such that S is tiled by P . For any A ⊆ L, define the local lattice
density

LDS(A;F) := LD((A ∩ S) + P ;F),

noting that (A ∩ S) + P is d-periodic. Using Lemma 6.3, it is not hard to check that LDS(A;F) is
independent of the choice of P as long as P ⊆ L1.

Before moving on, we note some basic properties of these local lattice densities.
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Lemma 6.7. Let S, T ⊂ LR be tileable and A ⊆ S ∩ T ∩ L. Then

LDS(A;F) = Ψ(LDT (A;F)),

where Ψ : Rd → Rd is given by

(x1, . . . , xk) 7→
(

Vol(T )

Vol(S)
x1, x2, . . . , xk

)
.

Proof. Suppose T is tiled by P ⊆ L1. Let x =
(
r, m2

[L2:L1] , . . . ,
mk

[Lk:Lk−1]

)
∈ LDT (A;F). By

Lemma 6.3, there exist bil,...,ik ∈ Lk satisfying the conditions in the lemma, one of which is that
ρL1(A+ P + bi2,...,ik) ≥ r.

Suppose S is tiled by Q ⊆ L1. Since T ⊕ P = LR, det(P ) = Vol(T ) and, similarly, det(Q) =
Vol(S). Since A + Q + bi2,...,ik is a union of translates of A + bi2,...,ik , one for each point of Q,
its density within L1, ρL1

(A + Q + bi2,...,ik), is inversely proportional to det(Q). In particular,
ρL1

(A+Q+ bi2,...,ik) det(Q) = ρL1
(A+ P + bi2,...,ik) det(P ). Hence,

ρL1
(A+Q+ bi2,...,ik) =

det(P )

det(Q)
ρL1

(A+ P + bi2,...,ik) ≥ Vol(T )

Vol(S)
r.

Therefore, by Lemma 6.3, Ψ(x) ∈ LDS(A;F), so we have LDS(A;F) ⊇ Ψ(LDT (A;F)). The
converse follows similarly.

Lemma 6.8. Let S, T ⊂ LR be tileable with T ⊆ S. Then, for 2 ≤ l ≤ k,

|πl(LDT (A;F))| ≤ |πl(LDS(A;F))|.

Proof. By Lemma 6.7,

|πl(LDT (A;F))| = |πl(LDT (A ∩ T ;F))|
= |πl(LDS(A ∩ T ;F))|
≤ |πl(LDS(A;F))|,

as required.

Lemma 6.9. Let S ⊂ LR be tileable and A ⊆ Lk. Then

|A ∩ S|
|Lk ∩ S|

= Vol(LDS(A;F)).

Proof. Suppose S is tiled by P ⊆ L1. Then

Vol(LDS(A;F)) = Vol(LD((A ∩ S) + P ;F)) = ρLk
((A ∩ S) + P ) =

|A ∩ S|
|Lk ∩ S|

,

as required.
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7 Families of flags

In this section, we construct flags such that “the projection πl+1 of the lattice density is preserved
under multiplication by λl”. More precisely, we want to find a flag F in Dλ1,...,λk;K and a flag G in
OK such that, for any d-periodic A ⊆ Dλ1,...,λk;K ,

πl+1(LD(A;F)) ⊆ πl+1(LD(λl ·A;G)) (9)

for l = 0, 1, . . . , k. We can find such flags for each l, but, unfortunately, it may not be possible to
find F ,G that work simultaneously for all l. To overcome this, we construct families of flags F~n,G~n
and show that for ~n “sufficiently large” these pairs satisfy (9) approximately for all l.

7.1 Algebraic families of flags

Recall that λ1, . . . , λk ∈ K = Q(λ1, . . . , λk) and d = deg(K/Q). Let al be the ideal OK ∩ λ−1
1 OK ∩

· · · ∩ λ−1
l OK for l = 0, 1, . . . , k. In particular, ak = Dλ1,...,λk;K . Then a−1

l is the fractional ideal
OK + λ1OK + · · · + λlOK . We also have OK = a0 | a1 | · · · | ak. Let bl ⊆ OK be the ideal such
that al = blal−1 for each l = 1, . . . , k. For each ~n = (n1, . . . , nk) ∈ Zk≥0 and l = 0, 1, . . . , k, let

c~n,l = b
nl+1

l+1 · · · b
nk

k . Define two flags of lattices by

FK~n := {akc~n,0 ⊆ akc~n,1 ⊆ · · · ⊆ akc~n,k−1 ⊆ ak} ,
GK~n := {c~n,0 ⊆ c~n,1 ⊆ · · · ⊆ c~n,k−1 ⊆ OK} .

These families of flags will serve as candidates for satisfying (9). The following two lemmas
make this precise. Note that for any two vectors ~n, ~m ∈ Zk, we write ~n ≥ ~m if ni ≥ mi for all i.
We also write ~n+ c to denote the vector (n1 + c, . . . , nk + c).

Lemma 7.1. Let A ⊆ ak be d-periodic. Then, for any ~n ≥ 0,

π1(LD(A;FK~n )) = π1(LD(A;GK~n+1)).

Proof. Let
r = max

a∈ak

{
ρakc~n,0

(A+ a)
}

and r′ = max
a∈OK

{
ρakc~n,0

(A+ a)
}
.

Note that b1 · · · bk = ak, so that c~n+1,0 = akc~n,0. By Lemma 6.4(1), it suffices to show that
r = r′. Since ak ⊆ OK , we clearly have r′ ≥ r. To see that r ≥ r′, observe that, since A ⊆ ak,
(A+ a) ∩ ak = ∅ for any a ∈ OK \ ak. In particular, ρakc~n,0

(A+ a) = 0.

For the next lemma, recall thatMl : K → K is the Q-linear map corresponding to multiplication
by λl and each Ml restricts to the map ak → OK .

Lemma 7.2. Let A ⊆ ak be d-periodic and l ∈ [k]. Then, for ~n, ~m ≥ 0 with mi = ni + 1 for
i = l + 1, l + 2, . . . , k and ml = nl,

|πl+1(LD(A;FK~n ))| ≤ |πl+1(LD(MlA;GK~m ))|.

Proof. Let r be the maximum number of elements a1, . . . , ar ∈ A such that ai−aj ∈ akc~n,l\akc~n,l−1

for i 6= j. Then, by Lemma 6.4(2), |πl+1(LD(A;FK~n ))| = r/[akc~n,l : akc~n,l−1]. Since ml = nl, we
have [akc~n,l : akc~n,l−1] = [c~n,l : c~n,l−1] = NK/Q(bnl

l ) = [c~m,l : c~m,l−1]. By Lemma 6.4(2) applied to
|πl+1(LD(MlA;GK~m ))|, it suffices to find b1, . . . , br ∈MlA = λl ·A such that bi − bj ∈ c~m,l \ c~m,l−1

for i 6= j.
Set bi = λlai, so it is clear that bi ∈ λl ·A. It suffices to show that:
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(a) bi − bj ∈ c~m,l,

(b) bi − bj 6∈ c~m,l−1 for i 6= j.

For (a), observe that λlakc~n,l ⊆ a−1
l akc~n,l = bl+1 · · · bkc~n,l = c~m,l. Thus, bi − bj = λl(ai − aj) ∈

λlakc~n,l ⊆ c~m,l.
For (b), suppose that bi − bj ∈ c~m,l−1 for some i 6= j. Then ai − aj ∈ λ−1

l c~m,l−1. On the other
hand, ai − aj ∈ akc~n,l. Together, we have ai − aj ∈ λ−1

l c~m,l−1 ∩ akc~n,l.
We claim that λ−1

l c~m,l−1 ∩ akc~n,l ⊆ akc~n,l−1, which will lead to a contradiction, since ai − aj 6∈
akc~n,l−1. We prove the claim by proving it locally at every prime ideal p ⊆ OK , that is, we will
show that νp(λ−1

l c~m,l−1 ∩ akc~n,l) ≥ νp(akc~n,l−1).
Recall that al = al−1 ∩λ−1

l OK , so νp(al) = max(νp(al−1), νp(λ−1
l )), which implies that νp(bl) =

max(0, νp(λ−1
l )− νp(al−1)). We have

νp(λ−1
l c~m,l−1 ∩ akc~n,l) = νp(λ−1

l aka
−1
l c~n,l−1 ∩ akb

−nl

l c~n,l−1)

= νp(akc~n,l−1) + max(νp(λ−1
l )− νp(al),−nlνp(bl)).

If νp(al−1) ≥ νp(λ−1
l ), then νp(bl) = 0. Otherwise, νp(al) = νp(λ−1

l ). In either case, max(νp(λ−1
l )−

νp(al),−νp(bl)) ≥ 0, proving the claim and the lemma.

Unfortunately, there are no pairs of flags FK~n and GK~m that simultaneously satisfy Lemmas 7.1
and 7.2 for all l. Indeed, in order for π1(LD(A;FK~n )) = π1(LD(A;GK~m )) and |πl+1(LD(A;FK~n ))| ≤
|πl+1(LD(MlA;GK~m ))| to hold for all l via the lemmas, we would require that ml = nl and ml = nl+1
simultaneously. To overcome this, in the next subsection, we will show that for ~n sufficiently large
the projections of the lattice densities stabilise, so we may use FK~n and GK~n . This seems to suggest
that, as ~n tends to infinity, the lattice densities LD(A;F~n) themselves converge as compact subsets.
However, we make no attempt to formally prove this, since all we require is that their projections
converge.

7.2 Regularity

For this subsection, we consider a more general setup, where we have, for each ~n = (n1, . . . , nk) ∈ Nk,
two flags

F~n =
{
L~n,1 ⊆ L~n,2 ⊆ · · · ⊆ L~n,k ⊆ Zd

}
,

G~n =
{
M~n,1 ⊆M~n,2 ⊆ · · · ⊆M~n,k ⊆ Zd

}
,

where L~n,l depends only on nl, nl+1, . . . , nk and L~n,l ⊆ L~n′,l if ~n ≥ ~n′ and similarly for M~n,l. We
also fix a set A ⊆ Zd.

For a positive integer R, an R-cube is a set that comes from taking the set [0, R)d ⊂ Rd
and shifting it by an element of RZd. Let P be an R-cube for some R. For natural numbers
M,nl, nl+1, . . . , nk with M > 0 and a real number δ > 0, we say that P is (M, δ, nl, . . . , nk)-regular
if each of the Md different R/M -subcubes Q of P satisfies

|πl+1(LDQ(A;F~n′))| ≥ (1− δ)|πl+1(LDP (A;F~n))|, (10)

where ~n = (0, . . . , 0, nl, . . . , nk) and ~n′ = (0, . . . , 0, nl + 1, . . . , nk).
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Remark. Here we are implicitly assuming that R/M is an integer. Throughout the remainder of
the paper, whenever we mention a local density LDP (A;F), we will assume that P is tileable. In
particular, this means that R and R/M will always be multiples of every bounded number, so that
the lattices RZd and (R/M)Zd are contained in L~n,1. In practice, we will only be considering F~n
where ~n is bounded and (N/M)-cubes where M is bounded and N can be taken to be a multiple of
a sufficiently large integer.

By Lemmas 6.6 and 6.8, we always have

|πl+1(LDQ(A;F~n′))| ≤ |πl+1(LDQ(A;F~n))| ≤ |πl+1(LDP (A;F~n))|,

so regularity says that both inequalities are close to equalities. In other words, our notion of
regularity really encompasses two different types of regularity. The first is that the size of the
projection πl+1 does not change much when we replace ~n with ~n′. The second is that the local
lattice density does not change much when we shrink the local region from P to Q. Note that in the
definition of regularity, we may replace ~n, ~n′ with ~n = (∗, . . . , ∗, nl, . . . , nk) and ~n′ = (∗, . . . , ∗, nl +
1, . . . , nk), where the ∗’s could be any (possibly distinct) natural numbers, since that does not
change the relevant projection of the lattice density.

Before proving our main result on regularity, we note some simple consequences of the definition.

Lemma 7.3. Let M1,M2 be positive integers and P be an (M1M2, δ, nl, . . . , nk)-regular R-cube.
Then the following hold:

1. P is (M1, δ, nl, . . . , nk)-regular.

2. For any R/M1-subcube Q of P , Q is (M2, δ, nl, . . . , nk)-regular.

Proof. Let Q be any R/M1-subcube of P and S be any R/(M1M2)-subcube of Q. By regularity,
we have

|πl+1(LDS(A;F~n′))| ≥ (1− δ)|πl+1(LDP (A;F~n))|.

By Lemma 6.8, we have |πl+1(LDP (A;F~n))| ≥ |πl+1(LDQ(A;F~n))| and |πl+1(LDQ(A;F~n′))| ≥
|πl+1(LDS(A;F~n′))|. Therefore,

|πl+1(LDQ(A;F~n′))| ≥ (1− δ)|πl+1(LDP (A;F~n))|,
|πl+1(LDS(A;F~n′))| ≥ (1− δ)|πl+1(LDQ(A;F~n))|,

which prove the first and second parts of the lemma, respectively.

We now come to our main result on regularity, which says that, for any dense A ⊆ [0, N)d, one
can cut the box [0, N)d into a bounded number of subcubes, most of which are regular and where
the union of the regular subcubes covers most of A. We first prove such a result with respect to a
single projection πl+1, before iterating to establish regularity with respect to all projections.

Lemma 7.4. Fix ε, δ > 0 and l ∈ [k], a positive integer M and non-negative integers nl+1, . . . , nk.
Then there exists R0 = R0(M, ε, δ) such that if A ⊆ [0, N)d is of size at least εNd and N ′ | N ,
there exists a natural number r ≤ R0 and a collection P of disjoint N ′/Mr-cubes such that, for
A′ = A ∩

⋃
P∈P P ,

1. |A′| ≥ (1− δ)|A|,
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2. P is (M, δ, r, nl+1, . . . , nk)-regular for all P ∈ P.

Proof. Let P(r) be the collection of N ′/Mr-cubes in [0, N)d, P(r)
0 be the subcollection of all

(M, δ, r, nl+1, . . . , nk)-regular cubes in P(r) and A(r) = A ∩
⋃
P∈P(r)

0
P . We will set A′ = A(r)

and P = P(r)
0 , so we wish to show that there is some bounded r such that |A(r)| ≥ (1− δ)|A|.

Let P(r)
1 be the collection of all cubes in P(r) which are not (M, δ, r, nl+1, . . . , nk)-regular.

Writing ~n(r) = (0, . . . , 0, r, nl+1, . . . , nk), consider the quantity

Dr :=
(N ′/N)d

Mrd

∑
P∈P(r)

|πl+1(LDP (A;F~n(r)))| ≤
(N ′/N)d

Mrd
|P(r)| = 1.

For any P ∈ P(r) and subcube Q ∈ P(r+1), we have the inequalities

|πl+1(LDP (A;F~n(r)))| ≥ |πl+1(LDP (A;F~n(r+1)))| ≥ |πl+1(LDQ(A;F~n(r+1)))|.

Therefore, Dr is decreasing in r.

Set R0 := Md

εδ2 . Since Dr is decreasing and in [0, 1], there is some r ≤ R0 such that Dr ≥ Dr+1 ≥
Dr − εδ2

Md . For each P ∈ P(r)
1 , since P is not regular, there is some subcube Q ∈ P(r+1) of P such

that
|πl+1(LDQ(A;F~n(r+1)))| ≤ (1− δ)|πl+1(LDP (A;F~n(r)))|.

Therefore,

Dr −Dr+1 =
(N ′/N)d

Mrd

∑
P∈P(r)

|πl+1(LDP (A;F~n(r)))| −
1

Md

∑
Q∈P(r+1)

Q⊂P

|πl+1(LDQ(A;F~n(r+1)))|


≥ (N ′/N)d

Mrd

∑
P∈P(r)

1

δ

Md
|πl+1(LDP (A;F~n(r)))|

=
(N ′/N)dδ

M (r+1)d

∑
P∈P(r)

1

|πl+1(LDP (A;F~n(r)))|. (11)

By Lemma 6.9, for any P ∈ P(r)
1 , we have

Vol(LDP (A;F~n(r))) =
|A ∩ P |
|Zd ∩ P |

=
Mrd

N ′d
|A ∩ P |.

Therefore,

|A \A(r)| =
∑

P∈P(r)
1

|A ∩ P | = N ′d

Mrd

∑
P∈P(r)

1

Vol(LDP (A;F~n(r)))

≤ N ′d

Mrd

∑
P∈P(r)

1

|πl+1(LDP (A;F~n(r)))|. (12)
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Combining (11) and (12), we have

|A \A(r)| ≤ NdMd

δ
(Dr −Dr+1) ≤ εδNd ≤ δ|A|,

as required.

Lemma 7.5. Fix ε, δ > 0 and a positive integer M and suppose that A ⊆ [0, N)d is of size at least
εNd. Then there exist n1, . . . , nk, r ≤ R1 = R1(M, ε, δ) and a collection P of disjoint N/Mr-cubes
such that, for A′ = A ∩

⋃
P∈P P ,

1. |A′| ≥ (1− δ)|A|,

2. P is (M, δ, nl, . . . , nk)-regular for all P ∈ P and l ∈ [k].

Proof. Following the notation of Lemma 7.4, set S1 = R0(M, ε/2, δ/k) and, for l = 2, . . . , k,

Sl = R0(MS1+···+Sl−1+1, ε/2, δ/k).

We then set R1 := S1 + · · · + Sk. We shall apply Lemma 7.4 k times in succession to obtain
nk, nk−1, . . . , n1 ≤ R1.

First, we obtain nk ≤ Sk and a collection P(k) of disjoint N/Mnk -cubes such that, for A(k) =
A ∩

⋃
P∈P(k) P , we have

1. |A(k)| ≥
(
1− δ

k

)
|A|,

2. P is (MS1+···+Sk−1+1, δ, nk)-regular for all P ∈ P(k).

Suppose we have constructed nk, nk−1, . . . , nl+1 for some l ≥ 1. Then, using Lemma 7.4,
we obtain nl ≤ Sl and a collection P(l) of disjoint N/Mnk+···+nl -cubes such that, for A(l) =
A(l+1) ∩

⋃
P∈P(l) P , we have

1. |A(l)| ≥
(
1− δ

k

)
|A(l+1)|,

2. P is (MS1+···+Sl−1+1, δ, nl, . . . , nk)-regular for all P ∈ P(l).

We may also assume that the collection P(l) is a subset of a refinement of P(l+1).
Finally, set P = P(1), a collection of N/Mr-cubes, where r = n1 + · · · + nk ≤ R1. Then, for

A′ = A ∩
⋃
P∈P P , we have

1. |A′| ≥
(
1− δ

k

)k |A| ≥ (1− δ)|A|,

2. for each l ∈ [k] and each P ∈ P, P is a subcube of some P (l) ∈ P(l), which is, by construc-
tion, (MS1+···+Sl−1+1, δ, nl, . . . , nk)-regular. But then, by Lemma 7.3, P is (M, δ, nl, . . . , nk)-
regular.
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8 Proof of the dense case

In this section, we make use of the results of the last two sections to prove Lemma 5.1, which we
restate for the reader’s convenience. As noted in Section 5, this will complete the proof of our
main result. Recall, from Section 2, that we have isomorphisms Φ′ : D → Zd and Φ : OK → Zd.
Multiplication of the elements of D by λl then corresponds to the map Ll : Zd → Zd given by
Ll = Φ ◦Ml ◦ Φ′−1. In particular, one may check that |detL0| = NK/Q(D).

Lemma 8.1. For any ε > 0, there exists N0 such that if N ≥ N0 and A ⊂ [0, N)d with |A| ≥ εNd,
then

|L0A+ · · ·+ LkA| ≥ H(λ1, . . . , λk)|A| − oε(|A|).

Proof. Suppose A ⊆ [0, N)d with |A| ≥ εNd. Let δ > 0 be arbitrary, D be a large integer and
M be a sufficiently large multiple of D. M will depend on both ε and δ, but not on N , which is
assumed to be very large. By Lemma 7.5, there are bounded n1, . . . , nk, r and a collection P of
disjoint N/Mr-cubes such that, for A′ = A ∩

⋃
P∈P P , we have

1. |A′| ≥ (1− δ)|A|,

2. P is (M2, δ, nl, . . . , nk)-regular for all P ∈ P and l ∈ [k].

Let Q be the collection of N/Mr+1-cubes Q such that Q ⊂ P for some P ∈ P and Q is at least
at a distance of DN/Mr+1 away from the boundary of P . In particular, |Q| = (M − 2D)d|P|. By
Lemma 7.3, each Q is (M, δ, nl, . . . , nk)-regular for all l ∈ [k]. Set A′′ = A∩

⋃
Q∈QQ. Then A′ \A′′

consists of points covered by P but not Q, so

|A′ \A′′| ≤

(
1−

(
M − 2D

M

)d)
Nd ≤ ε−1

(
1−

(
M − 2D

M

)d)
|A|

≤ 2Dd

Mε
|A| ≤ δ|A|

for M ≥ 2Dd/δε. It follows that |A′′| ≥ (1 − 2δ)|A|. Let Q0 be the collection of all N/Mr+1-
cubes, including those outside [0, N)d. For Q ∈ Q0, denote by Q+ the slightly expanded cube
Q+ [− DN

Mr+2 ,
DN
Mr+2 ]d. Then, for M sufficiently large (M ≥ 4Dd/δ suffices),

Vol(Q+) =

(
1 +

2D

M

)d
Vol(Q) ≤ (1 + δ) Vol(Q). (13)

Let FK~n ,GK~n be the families of flags of sublattices of D and OK defined in Section 7.1. Under
the isomorphisms Φ,Φ′, these families translate to families F~n,G~n in Zd given by F~n := Φ′(FK~n )
and G~n := Φ(GK~n ). By Lemmas 7.1 and 7.2, we have the following two properties:

1. For d-periodic A ⊆ Zd,
π1(LD(A;F~n)) = π1(LD(L0A;G~n+1)). (14)

2. For d-periodic A ⊆ Zd and l ∈ [k],

|πl+1(LD(A;F~n))| ≤ |πl+1(LD(LlA;G~m))| (15)

if mi = ni + 1 for i = l + 1, . . . , k and ml = nl.
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Define the bodies X,Y ⊂ Rd+k+1 = Rd × Rk+1 by

X :=
⋃
Q∈Q

(Q× LDQ(A;F~n)),

Y :=
⋃

Q∈Q0

(L0Q× (1 + 2δ) LDL0(Q+)(L0A+ · · ·+ LkA;G~n+1)).

We remark that in order for LDL0(Q+) to make sense, we require that L0(Q+) be tileable with
respect to the sparsest lattice in G~n+1. But this is possible for N a multiple of a large enough
number, since ~n is bounded.

For each l = 0, . . . , k, let L′l : Rd+k+1 → Rd+k+1 be the linear map given by

L′l(~x, y0, y1, . . . , yk) = (Ll~x, 0, . . . , 0, yl, 0, . . . , 0).

We make the following claim.

Claim 8.2. L′0X + · · ·+ L′kX ⊆ Y.

Before proving this key claim, we first finish the proof of Lemma 8.1 assuming it. Let L∗ :
Rd+k+1 → Rd+k+1 be given by L∗(x, y) = (L−1

0 x, y) for x ∈ Rd and y ∈ Rk+1. Note that L−1
0 Ll

is conjugate to Ml, the map corresponding to multiplication by λl on K. By Lemma 2.3, the
maps 1,L−1

0 L1, . . . ,L−1
0 Lk are simultaneously diagonalisable over C, where the diagonal matrix

corresponding to L−1
0 Ll has diagonal entries (σ1(λl), . . . , σd(λl)). Therefore, the L∗L′l are simul-

taneously diagonalisable with corresponding diagonal matrix entries (1, . . . , 1, 1, 0, . . . , 0) for l = 0
and (σ1(λl), . . . , σd(λl), 0, . . . , 0, 1, 0, . . . , 0) otherwise. Thus, by Theorem 3.1, we have

µ(L∗L′0X + · · ·+ L∗L′kX) ≥
d∏
i=1

(1 + |σi(λ1)|+ |σi(λ2)|+ · · ·+ |σi(λk)|)µ(X).

Therefore, using Claim 8.2 and the fact that |detL0| = NK/Q(D),

µ(Y ) ≥ µ(L′0X + · · ·+ L′kX)

=
1

|det(L∗)|
µ(L∗L′0X + · · ·+ L∗L′kX)

≥ |det(L0)|
d∏
i=1

(1 + |σi(λ1)|+ |σi(λ2)|+ · · ·+ |σi(λk)|)µ(X)

= H(λ1, . . . , λk)µ(X).

By Lemma 6.9,

µ(X) =
∑
Q∈Q

Vol(Q)×Vol(LDQ(A;F~n))

=
∑
Q∈Q
|A ∩Q| = |A′′| ≥ (1− 2δ)|A|.

By the definition of C1 (see Lemma 4.1), since A lies in the cube (−N,N)d, the sum A +
L−1

0 L1A + · · · + L−1
0 LkA lies in the cube (−(k + 1)C1N, (k + 1)C1N)d ⊂ Rd. There are at most
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(4(k + 1)C1)dMd(r+1) different Q ∈ Q0 such that Q+ intersects (−(k + 1)C1N, (k + 1)C1N)d. For
simplicity, assume that D > (4(k + 1)C1)d, so that there are at most DMd(r+1) such Q. Thus,
there are at most DMd(r+1) different Q ∈ Q0 such that L0(Q+)∩ (L0A+ · · ·+LkA) 6= ∅. For each
such Q, we have

|L0(Q+) ∩ (L0A+ · · ·+ LkA)| − |L0Q ∩ (L0A+ · · ·+ LkA)| ≤ det(L0)(Vol(Q+)−Vol(Q))

= O

(
DNd

M (r+1)d+1

)
≤ δ(N/Mr+1)d.

Therefore, again using Lemma 6.9,

µ(Y ) =
∑
Q∈Q0

Vol(L0Q)× (1 + 2δ)k+1 Vol(LDL0(Q+)(L0A+ · · ·+ LkA;G~n+1))

= (1 + 2δ)k+1
∑
Q∈Q0

Vol(L0Q)

Vol(L0(Q+))
|L0(Q+) ∩ (L0A+ · · ·+ LkA)|

≤ (1 + 2δ)k+1
∑
Q∈Q0

|L0(Q+) ∩ (L0A+ · · ·+ LkA)|

≤ (1 + 2δ)k+1

 ∑
Q∈Q0

|L0Q ∩ (L0A+ · · ·+ LkA)|+DMd(r+1) · δ(N/Mr+1)d


= (1 + 2δ)k+1(|L0A+ · · ·+ LkA|+DδNd).

Thus, we have

|L0A+ · · ·+ LkA| ≥ (1 + 2δ)−(k+1)µ(Y )−OD(δ)Nd

= (1−O(δ))µ(Y )−OD(δ)Nd

≥ (1−O(δ))H(λ1, . . . , λk)µ(X)−OD(δ)Nd

≥ (1−O(δ))H(λ1, . . . , λk)(1− 2δ)|A| −OD(δ)Nd

= H(λ1, . . . , λk)|A| −OD(δ)Nd.

Since δ was arbitrary, this proves the lemma.

In order to complete the proof, we now return to Claim 8.2.

Proof of Claim 8.2. Let (xl, yl) ∈ X for l = 0, . . . , k with Ql ∈ Q the cube containing xl and
yl ∈ LDQl

(A;F~n). Our aim is to show that (
∑
l Llxl, y) ∈ Y , where y = (π1(y0), . . . , πk+1(yk)).

Let Q∗ ∈ Q0 be the cube containing x := x0 + L−1
0 L1x1 + · · · + L−1

0 Lkxk. Then L0x0 + · · · +
Lkxk = L0x ∈ L0Q

∗, so it suffices to show that y ∈ (1 + 2δ) LDL0(Q∗+)(L0A+ · · ·+ LkA;G~n+1).

Suppose Q∗ = Q0 + t for some translate t ∈ N
Mr+1Zd. Then t = L−1

0 L1x1 + · · ·+ L−1
0 Lkxk + t0

for some t0 ∈ (− N
Mr+1 ,

N
Mr+1 )d. Let x∗k = xk + L−1

k L0t0, so that

x∗k − xk = L−1
k L0t0 ∈

[
− C1N

Mr+1
,
C1N

Mr+1

]d
⊆
[
− DN

Mr+1
,
DN

Mr+1

]d
.
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Therefore, if Pk ∈ P is the cube containing Qk and Q∗k ∈ Q0 is the cube containing x∗k, we must
have Q∗k ⊂ Pk, since Qk ∈ Q is at least a distance DN/Mr+1 away from the boundary of Pk.

Let Rl be the N/Mr+2-cube containing xl for each l = 1, . . . , k − 1 and R∗k the N/Mr+2-cube
containing x∗k, so that R∗k ⊂ Pk. Define the following sets:

• A0 = A ∩Q0,

• Al = A ∩Rl for l = 1, . . . , k − 1,

• Ak = A ∩R∗k.

We have xl ∈ Al for l = 0, . . . , k − 1, x∗k ∈ Ak and t = L−1
0 L1x1 + · · · + L−1

0 Lkx∗k. Since Al is
contained in an N/Mr+2-cube for l = 1, . . . , k, L−1

0 L1A1 + · · ·+L−1
0 LkAk is contained in a cube of

side length DN/Mr+2 if D is sufficiently large. Since t ∈ L−1
0 L1A1 + · · ·+L−1

0 LkAk and A0 ⊆ Q0,
we have A0 + L−1

0 L1A1 + · · ·+ L−1
0 LkAk ⊆ Q

+
0 + t = Q∗+.

Suppose L is a lattice such that Q+ is tiled by L for every Q ∈ Q0, such as L = ((N/Mr+1 +
2DN/Mr+2)Z)d. Then L0(Q+) is tiled by L0L. By repeatedly applying Theorem 6.5, we have that

k∏
l=0

πl+1(LD(LlAl + L0L;G~n+1)) ⊆ LD(L0A0 + · · ·+ LkAk + L0L;G~n+1)

= LDL0(Q∗+)(L0A0 + · · ·+ LkAk;G~n+1).

We will now show that |πl+1(LD(LlAl +L0L;G~n+1))| ≥ (1− δ)πl+1(yl) for all l, looking at each
of the three cases l = 0, 1 ≤ l ≤ k − 1 and l = k separately. For l = 0, we have

|π1(LD(L0A0 + L0L;G~n+1))| = |π1(LD(A0 + L;F~n))| by (14)

= |π1(LDQ+
0

(A0;F~n))|

=
Vol(Q0)

Vol(Q+
0 )
|π1(LDQ0(A0;F~n))| by Lemma 6.7

≥ (1− δ)|π1(LDQ0
(A;F~n))| by (13)

≥ (1− δ)π1(y0).

For l = 1, . . . , k−1, since Ql is (M, δ, nl, . . . , nk)-regular, by (10), we have, for ~n(l) = (n1+1, . . . , nl+
1, nl+1, . . . , nk), that

|πl+1(LDRl
(A;F~n(l)))| ≥ (1− δ)|πl+1(LDQl

(A;F~n))|.

Note that L−1
l L0(Q+) is tiled by L−1

l L0L for any Q ∈ Q0. Let Sl be a translate of L−1
l L0(Q∗+)

containing Rl. Such a translate exists for M sufficiently large since Rl is an N/Mr+2-cube and Q∗

is an N/Mr+1-cube. Therefore,

|πl+1(LD(LlAl + L0L;G~n+1))| ≥ |πl+1(LD(Al + L−1
l L0L;F~n(l)))| by (15)

= |πl+1(LDSl
(Al;F~n(l)))|

= |πl+1(LDRl
(Al;F~n(l)))| by Lemma 6.7

= |πl+1(LDRl
(A;F~n(l)))|

≥ (1− δ)|πl+1(LDQl
(A;F~n))| by regularity

≥ (1− δ)πl+1(yl).
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Finally, for l = k, similarly define Sk to be a translate of L−1
k L0(Q∗+k ) containing R∗k. Then, we

have

|πk+1(LD(LkAk + L0L;G~n+1))| ≥ |πk+1(LD(Ak + L−1
k L0L;F~n(k)))| by (15)

= |πk+1(LDSk
(Ak;F~n(k)))|

= |πk+1(LDR∗k
(Ak;F~n(k)))| by Lemma 6.7

= |πk+1(LDR∗k
(A;F~n(k)))|

≥ (1− δ)|πk+1(LDPk
(A;F~n))| by regularity of Pk

≥ (1− δ)|πk+1(LDQk
(A;F~n))| by Lemma 6.8

≥ (1− δ)πk+1(yk).

Therefore, we have

(1− δ)y = ((1− δ)π1(y0), . . . , (1− δ)πk+1(yk))

∈ LDL0(Q∗+)(L0A0 + · · ·+ LkAk;G~n+1)

⊆ LDL0(Q∗+)(L0A+ · · ·+ LkA;G~n+1),

which implies that y ∈ (1 + 2δ) LDL0(Q∗+)(L0A+ · · ·+ LkA;G~n+1), as required.

9 Sums of linear transformations

In this section, we prove Theorem 1.7, our main result about sums of pre-commuting linear trans-
formations. As mentioned in the introduction, the idea of the proof is to show that the general case
reduces to the seemingly special case of sums of algebraic dilates.

9.1 Algebraic number theory preliminaries

Recall that, for α1, . . . , αk ∈ K, the denominator ideal Dα1,...,αk;K is given by

Dα1,...,αk;K := {x ∈ OK | xαi ∈ OK for all i = 1, . . . , k} .

Abbreviating this again as D, the ideal norm NK/Q(D) is the index [OK : D]. The main result
of this short subsection gives an alternative way to compute the norm of the denominator ideal.
In the statement, we also use the notation NK/Q(α), but this now refers to the field norm of an
element α of K, which is the product of the conjugates of α.

Theorem 9.1. Let α1, . . . , αk ∈ K and consider the polynomial

F (x0, . . . , xk) := NK/Q(x0 + x1α1 + · · ·+ xkαk) ∈ Q[x0, x1, . . . , xk].

If D > 0 is the smallest positive integer such that DF has integer coefficients, then D = NK/Q(D).

To prove this, we require a variant of Gauss’s lemma over the ring of integers OK . We first need
a definition.

Definition 9.2. Let F (x) = a0 + a1x + · · · + anx
n ∈ K[x]. Define the content of F , denoted by

contK(F ), to be the fractional ideal a0OK + a1OK + · · ·+ anOK ⊆ K. If it is clear from context,
we omit the subscript and simply write cont(F ).
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If F ∈ Z[x], then contQ(F ) = cZ, where c ∈ Z is the content of F as used in the usual Gauss’s
lemma, that is, the greatest common divisor of the coefficients of F . If L is a field extension of
K and F ∈ K[x], then contL(F ) = contK(F ) · OL. In particular, if F ∈ Q[x], then contK(F ) =
contQ(F ) · OK . Our variant of Gauss’s lemma over OK is now as follows.

Lemma 9.3 (Gauss’s lemma over OK). For any two polynomials F,G ∈ K[x], cont(FG) =
cont(F ) cont(G).

Remark. This result also follows from the Dedekind–Mertens lemma, which says that for any ring
R and polynomials F,G ∈ R[x] there exists a positive integer n such that cont(F )n cont(FG) =
cont(F )n+1 cont(G). Our lemma then follows, since every non-zero fractional ideal in OK is in-
vertible. We give a direct proof here for completeness.

Proof of Lemma 9.3. Let F (x) = a0 + a1x+ · · ·+ anx
n and G(x) = b0 + b1x+ · · ·+ bmx

m. Then
their product F (x)G(x) = c0 +c1x+ · · ·+cn+mx

n+m has coefficients cj = a0bj+a1bj−1 + · · ·+ajb0.
It is clear that cont(FG) ⊆ cont(F ) cont(G). To show that cont(FG) ⊇ cont(F ) cont(G), it suffices
to show that, for any prime ideal p ⊆ OK , νp(cont(FG)) ≤ νp(cont(F )) + νp(cont(G)).

Suppose νp(cont(F )) = s and νp(cont(G)) = t. Since νp(cont(F )) = min(νp(a0), . . . , νp(an)),
there exists an index k such that νp(ak) = s. Let k be the smallest such index, so that νp(aj) ≥ s+1
for j = 0, . . . , k−1. Similarly, let l be the smallest index such that νp(bl) = t, so that νp(bj) ≥ t+ 1
for j = 0, . . . , l − 1.

Consider the coefficient ck+l =
∑k+l
j=0 ajbk+l−j . For j = k, the term akbl satisfies νp(akbl) =

νp(ak) + νp(bl) = s + t. For every other j 6= k, either j < k (for which νp(aj) ≥ s + 1) or j > k
(for which νp(bk+l−j) ≥ t + 1). In either case, we have νp(ajbk+l−j) ≥ s + t + 1. Therefore,
νp(ck+l) = s+ t, so we have νp(cont(FG)) ≤ s+ t, as required.

Observe that we may similarly define content for multivariate polynomials F ∈ K[x0, . . . , xk]
and our variant of Gauss’s lemma then also holds for multivariate polynomials. Indeed, the set
of coefficients for F (x0, . . . , xk) is the same as for F (x, xN1 , . . . , xNk) for sufficiently large Nk �
Nk−1 � · · · � N1 � 1. Thus, the content of F is the same as the content of F (x, xN1 , . . . , xNk),
so we may apply the univariate case.

Proof of Theorem 9.1. Let σ1, . . . , σd : K → C be the complex embeddings of K, with σ1 being the
identity. Then

F (x0, . . . , xk) = NK/Q(x0 + x1α1 + · · ·+ xkαk) =

d∏
i=1

(x0 + x1σi(α1) + · · ·+ xkσi(αk)).

Let K ′ ⊆ C be the smallest field containing σ1(K), . . . , σd(K), that is, K ′ is the normal closure of
K over Q. By definition, D−1Z = contQ(F ), so we have contK′(F ) = D−1OK′ . On the other hand,
by Lemma 9.3,

contK′(F ) =
∏
i

contK′(x0 + x1σi(α1) + · · ·+ xkσi(αk)).

For any subset S ⊂ K ′, denote by SOK′ the OK′ -fractional ideal generated by S, i.e., the set of
elements of the form s1a1 + · · ·+ snan for some non-negative integer n, si ∈ S and ai ∈ OK′ . Then

contK′(x0 + x1σi(α1) + · · ·+ xkσi(αk)) = OK′ + σi(α1)OK′ + · · ·+ σi(αk)OK′
= σi(OK′ + α1OK′ + · · ·+ αkOK′)
= σi(D

−1OK′) = σi(D
−1)OK′ .

44



Multiplying over all i, we get contK′(F ) =
∏
i σi(D

−1)OK′ = NK/Q(D−1)OK′ , where the last equal-
ity follows from the fact that, for any OK-fractional ideal a, we have

∏
i σi(a)OK′ = NK/Q(a)OK′ .

Indeed, this holds when a = αOK is principal (since NK/Q(α) =
∏
i σi(α) and NK/Q(αOK) =

NK/Q(α)OK), so the general case follows since am is always principal for some m ≥ 0. Therefore,
we have D−1OK′ = NK/Q(D−1)OK′ , so D = NK/Q(D), as required.

9.2 Pre-commuting matrices

In this subsection, we prove the following result, which allows us to regard sums of pre-commuting
linear transformations as sums of algebraic dilates.

Theorem 9.4. Suppose L0, . . . ,Lk ∈ Matd(Z) are non-zero, pre-commuting, irreducible and co-
prime. Then they are invertible over Q and there exist a number field K with deg(K/Q) = d,
λ1, . . . , λk ∈ K and a Q-isomorphism Φ : K → Qd such that |det(L0)| = NK/Q(Dλ1,...,λk;K) and,

for all u ∈ Qd and l = 1, . . . , k,

L−1
0 Ll(u) = Φ(λl · Φ−1(u)).

Before proving this theorem, we prove a structure theorem for pairwise commuting matrices with
no non-trivial common invariant subspace. A folklore result (e.g., [9, Corollary 2.4.6.4]) says that
pairwise commuting maps are simultaneously upper-triangularisable over C and so have a common
eigenvector.

Lemma 9.5. If L1, . . . ,Lk ∈ Matd(C) are pairwise commuting matrices, then they have a common
eigenvector v ∈ Cd.

Suppose λ1, . . . , λk generate the field K and multiplication by these elements correspond to the
matrices M1, . . . ,Mk ∈ Matd(Q), as spelled out in Section 2. Then M1, . . . ,Mk are pairwise
commuting and have no non-trivial common invariant subspace over Q. Conversely, we now show
that any such tuple of matrices M1, . . . ,Mk arise from some λ1, . . . , λk in some field K.

Lemma 9.6. Suppose M1, . . . ,Mk ∈ Matd(Q) are pairwise commuting and have no non-trivial
common invariant subspace over Q. Then there is a number field K of degree d, algebraic numbers
λ1, . . . , λk ∈ K and a Q-isomorphism Φ : K → Qd such that

1. K = Q(λ1, . . . , λk),

2. for l = 1, . . . , k, the map Φ−1MlΦ : K → K is given by multiplication by λl.

Proof. By Lemma 9.5, there is a common eigenvector v ∈ Cd for M1, . . . ,Mk with eigenvalues
λ1, . . . , λk. Let K = Q(λ1, . . . , λk). Then we may assume without loss of generality that v ∈
Kd. Let d′ = deg(K/Q) and σ1, . . . , σd′ : K → C be the complex embeddings. Then σi(v) is
also a common eigenvector for M1, . . . ,Mk with eigenvalues σi(λ1), . . . , σi(λk). Since the tuples
(σi(λ1), . . . , σi(λk)) are distinct for i = 1, . . . , d′ (as each tuple uniquely determines the map σi :
K → K), the common eigenvectors σ1(v), . . . , σd′(v) ∈ Cd are linearly independent, implying that
d′ ≤ d.

Note that U = 〈σ1(v), . . . , σd′(v)〉 ∩Qd is a common invariant subspace. We will show that this
subspace has dimension d′. Clearly it has dimension at most d′. Let λ ∈ K be a generator, so
that 1, λ, . . . , λd

′−1 is a Q-basis for K. For i = 0, . . . , d′ − 1, let ui = σ1(λiv) + · · · + σd′(λ
iv) =
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TrK/Q(λiv) ∈ Qd, so that ui ∈ U . We claim that u0, . . . , ud′−1 are linearly independent. Indeed,
since ui = σ1(λ)iσ1(v)+ · · ·+σd′(λ)iσd′(v) and σ1(v), . . . , σd′(v) are linearly independent, it suffices
to show that the d′ × d′ matrix 

1 σ1(λ) · · · σ1(λ)d
′−1

1 σ2(λ) · · · σ2(λ)d
′−1

...
...

. . .
...

1 σd′(λ) · · · σd′(λ)d
′−1


is non-singular. But this is true since it is a Vandermonde matrix and σ1(λ), . . . , σd′(λ) are distinct,
which in turn follows from the fact that λ generates K.

SinceM1, . . . ,Mk have no non-trivial common invariant subspace, we must have d′ = d. We de-
duce thatM1, . . . ,Mk are simultaneously diagonalisable with eigenvalue tuples (σi(λ1), . . . , σi(λk))
for i = 1, . . . , d. Define the linear map Φ : K → Qd as follows. First, let e1 ∈ Qd be any non-
zero vector and set Φ(1) = e1. Then, for any α ∈ K, express α as a polynomial P (λ1, . . . , λk)
with rational coefficients in λ1, . . . , λk. Such a polynomial exists since λ1, . . . , λk generate K,
though it is not unique. Set Φ(α) = P (M1, . . . ,Mk)e1. Observe that this is independent of the
choice of P . Indeed, it suffices to show that if P is a polynomial with rational coefficients such
that P (λ1, . . . , λk) = 0, then P (M1, . . . ,Mk) = 0. The matrix P (M1, . . . ,Mk) is diagonalisable
with eigenvalues P (σi(λ1), . . . , σi(λk)) for i = 1, . . . , d. Since P has rational coefficients, we have
P (σi(λ1), . . . , σi(λk)) = σi(P (λ1, . . . , λk)) = 0 for all i and thus P (M1, . . . ,Mk) = 0.

Notice that if P (λ1, . . . , λk) = α 6= 0, then P (M1, . . . ,Mk) is diagonalisable with eigenvalues
σ1(α), . . . , σk(α). Thus, P (M1, . . . ,Mk) is non-singular and so Φ(α) 6= 0. It follows that Φ is
injective and hence an isomorphism. Since Φ also satisfies condition 2, the result follows.

We now return to Theorem 9.4.

Proof of Theorem 9.4. Let P ∈ GLd(Q) be such that PL0, . . . ,PLk are pairwise commuting. Since
L0, . . . ,Lk are irreducible, PL0, . . . ,PLk have no non-trivial common invariant subspace. Let
K,λ0, . . . , λk,Φ be as in the conclusion of Lemma 9.6 when applied to PL0, . . . ,PLk.

Since all of L0, . . . ,Lk are non-zero, all of λ0, . . . , λk are also non-zero. In particular, L0, . . . ,Lk
are invertible over Q. Since I, (PL0)−1PL1, . . . , (PL0)−1PLk are also pairwise commuting, we may
assume without loss of generality that P = L−1

0 , so we have λ0 = 1. From Lemma 9.6, we have
that, for all u ∈ Qd and l = 1, . . . , k,

L−1
0 Ll(u) = Φ(λl · Φ−1(u)).

It remains to show that |det(L0)| = NK/Q(D), where D = Dλ1,...,λk;K . Consider the integer
polynomial

G(x0, . . . , xk) = det(x0L0 + · · ·+ xkLk)

= det(L0) det(x0 + x1L−1
0 L1 + · · ·+ xkL−1

0 Lk)

= det(L0)NK/Q(x0 + x1λ1 + · · ·+ xkλk).

By Theorem 9.1, NK/Q(D) is the smallest positive integer required to scale NK/Q(x0 +x1λ1 + · · ·+
xkλk) into an integer polynomial. Thus, NK/Q(D) divides det(L0), so that |det(L0)| ≥ NK/Q(D).
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Let Φ1 : OK → Zd and Φ2 : D → Zd be linear isomorphisms of lattices, so that Φ1 ◦ Φ−1
2 :

Zd → Zd is a d × d integer matrix with absolute determinant NK/Q(D). Since λl · D ⊆ OK , we

have Φ1(λl ·Φ−1
2 (u)) ∈ Zd for any u ∈ Zd. Thus, the linear map u 7→ Φ1(λl ·Φ−1

2 (u)) is represented
by an integer matrix. But this map is also equal to the composition (Φ1 ◦ Φ−1)(L−1

0 Ll)(Φ ◦ Φ−1
2 ).

Since L0, . . . ,Lk are coprime, we have |det((Φ1 ◦ Φ−1)(L−1
0 )(Φ ◦ Φ−1

2 ))| ≥ 1, which implies that
NK/Q(D) = |det(Φ1 ◦ Φ−1

2 )| ≥ |det(L0)|. Therefore, |det(L0)| = NK/Q(D), as required.

9.3 Sums of pre-commuting linear transformations

We are now ready to prove Theorem 1.7, our main result about sums of linear transformations,
which we restate for convenience. Recall that if L0, . . . ,Lk ∈ Matd(Z) are non-zero, pre-commuting,
irreducible and coprime and the polynomial G(x0, . . . , xk) = det(x0L0 + · · ·+ xkLk) factorises as

G(x0, . . . , xk) =

d∏
i=1

(a0ix0 + · · ·+ akixk),

then H(L0, . . . ,Lk) is defined by

H(L0, . . . ,Lk) =

d∏
i=1

(|a0i|+ · · ·+ |aki|).

The statement that we wish to prove is then as follows.

Theorem 9.7. Suppose that L0, . . . ,Lk ∈ Matd(Z) are pre-commuting, irreducible and coprime.
Then

|L0A+ · · ·+ LkA| ≥ H(L0, . . . ,Lk)|A| − o(|A|)
for all finite subsets A of Zd.

Proof. We may assume that L0, . . . ,Lk are non-zero. Let λ1, . . . , λk be the algebraic numbers
given by applying Theorem 9.4 to L0, . . . ,Lk. Then the required estimate follows from Theorem 1.2
provided only that H(L0, . . . ,Lk) = H(λ1, . . . , λk). To check this, note that the map corresponding
to multiplication by λl is similar to L−1

0 Ll, so we have

G(x0, . . . , xk) = det(x0L0 + · · ·+ xkLk)

= det(L0) det(x0I + x1L−1
0 L1 + · · ·+ xkL−1

0 Lk)

= det(L0)NK/Q(x0 + x1λ1 + · · ·+ xkλk)

= det(L0)

d∏
i=1

(x0 + σi(λ1)x1 + · · ·+ σi(λk)xk).

Therefore,

H(L0, . . . ,Lk) = |det(L0)|
d∏
i=1

(1 + |σi(λ1)|+ · · ·+ |σi(λk)|)

= NK/Q(Dλ1,...,λk;K)

d∏
i=1

(1 + |σi(λ1)|+ · · ·+ |σi(λk)|)

= H(λ1, . . . , λk),
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completing the proof.

10 Concluding remarks

Lower-order terms. A close inspection of our arguments shows that the o(|A|) term in our bound

|A+ λ1 ·A+ · · ·+ λk ·A| ≥ H(λ1, . . . , λk)|A| − o(|A|)

can be taken to be O(|A|/
√

log(k) |A|), where log(k) is the k-times iterated logarithm. This is clearly

not best possible. The lower bound in Section 3.1 suggests that one should be able to improve the
error term to O(|A|1−1/d), where d = deg(K/Q), though this is likely to be difficult. Given this,
it would already be interesting to obtain O(|A|1−σ) for some σ depending only on λ1, . . . , λk. In
the particular case where k = 1 and λ is of the form (p/q)1/d, this was already achieved in our
earlier paper [7]. However, the methods of that paper and this one are quite orthogonal, so a novel
approach is likely to be necessary for the general case.

An interesting example. The main problem left open by this paper is to prove an analogue of
Theorem 1.2 when the matrices L0, . . . ,Lk ∈ Matd(Z) are not necessarily pre-commuting. Our own
attentions in this direction have focused on the specific example where

L0 =

 0 1 0
−1 0 0
0 0 0

 , L1 =

 0 0 1
0 0 0
−1 0 0

 , L2 =

0 0 0
0 0 1
0 −1 0

 .

These matrices can be shown to be irreducible and coprime, though they are not pre-commuting.
We believe that

|L0A+ L1A+ L2A| ≥ 8|A| − o(|A|)

for all finite A ⊂ Z3, with the box [0, N)3 showing that this would be asymptotically best possible.
However, we were unable to even prove that there is some C > 0 such that

|L0A+ L1A+ L2A| ≥ C|A|

for all finite A ⊂ Z3. Resolving this issue would be a promising first step towards understanding
the general problem.
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