HYPERGRAPHS ACCUMULATE INFINITELY OFTEN

DAVID CONLON AND BJARNE SCHÜLKE

ABSTRACT. We show that the set $\Pi^{(k)}$ of Turán densities of k-uniform hypergraphs has infinitely many accumulation points in [0, 1) for every $k \ge 3$. This extends an earlier result of ours showing that $\Pi^{(k)}$ has at least one such accumulation point.

§1. INTRODUCTION

For $k \in \mathbb{N}$, a k-uniform hypergraph (or k-graph) H = (V, E) consists of a vertex set V and an edge set $E \subseteq V^{(k)} = \{e \subseteq V : |e| = k\}$. Given $n \in \mathbb{N}$ and a family of k-graphs \mathcal{F} , the extremal number $ex(n, \mathcal{F})$ is the maximum number of edges in a k-graph H with n vertices that does not contain a copy of any graph in \mathcal{F} . The Turán density of \mathcal{F} is then given by

$$\pi(\mathcal{F}) = \lim_{n \to \infty} \frac{\operatorname{ex}(n, \mathcal{F})}{\binom{n}{k}},$$

where the limit is known, by a simple monotonicity argument [5], to be well-defined. If $\mathcal{F} = \{F\}$ for some k-graph F, we omit the parentheses, writing $\pi(\mathcal{F}) = \pi(F)$. The problem of determining these Turán densities is one of the oldest and most fundamental questions in extremal combinatorics.

When k = 2, that is, when \mathcal{F} is a family of graphs, $\pi(\mathcal{F})$ is essentially completely understood, with the final result, the culmination of work by Turán [10], Erdős and Stone [3], and Erdős and Simonovits [2], saying that $\pi(\mathcal{F}) = \frac{\chi(\mathcal{F})-2}{\chi(\mathcal{F})-1}$, where $\chi(\mathcal{F})$ is the minimum chromatic number of an element of \mathcal{F} . If we set

 $\Pi^{(k)} = \{ \pi(F) : F \text{ is a } k\text{-graph} \},\$ $\Pi_{\text{fin}}^{(k)} = \{ \pi(\mathcal{F}) : \mathcal{F} \text{ is a finite family of } k\text{-graphs} \},\$ $\Pi_{\infty}^{(k)} = \{ \pi(\mathcal{F}) : \mathcal{F} \text{ is a family of } k\text{-graphs} \},\$

then the Erdős–Stone–Simonovits theorem implies that

$$\Pi^{(2)} = \Pi^{(2)}_{\text{fin}} = \Pi^{(2)}_{\infty} = \{0, 1/2, 2/3, 3/4, \dots\}.$$

In particular, each of these sets is well-ordered.

¹⁹⁹¹ Mathematics Subject Classification. 05C65, 05C35, 05D05, 05D99. Key words and phrases. Turán problem, hypergraphs, jumps.

For $k \ge 3$, there is no clear analogue of the Erdős–Stone–Simonovits theorem for any of the sets $\Pi^{(k)}$, $\Pi^{(k)}_{\text{fin}}$, or $\Pi^{(k)}_{\infty}$. For $\Pi^{(k)}_{\infty}$, this was shown by Frankl and Rödl [4], who proved that $\Pi^{(k)}_{\infty}$ is not well-ordered. That is, the set has downward accumulation points. In particular, this disproved the jumping conjecture of Erdős, which suggested that, like for $\Pi^{(2)}_{\infty}$, there should be a non-trivial gap or jump between any element of [0, 1) and the next element of $\Pi^{(k)}_{\infty}$. By applying the important result of Pikhurko [9] that $\Pi^{(k)}_{\infty}$ is the closure of $\Pi^{(k)}_{\text{fin}}$, it is easily seen that $\Pi^{(k)}_{\text{fin}}$ is also not well-ordered.

While it remains an intriguing open problem to show that $\Pi^{(k)}$ is again not well-ordered, a first step showing that $\Pi^{(k)}$ is indeed more complex than $\Pi^{(2)}$ was taken in the recent paper [1], where we proved the following result.

Theorem 1.1. For every integer $k \ge 3$, the set $\Pi^{(k)}$ has an accumulation point in [0,1).

Here we extend this result, showing that $\Pi^{(k)}$ has infinitely many accumulation points. This goes another step further in showing how much more complex $\Pi^{(k)}$ gets for $k \ge 3$.

Theorem 1.2. For every integer $k \ge 3$, the set $\Pi^{(k)}$ has infinitely many accumulation points in [0,1).

This is a consequence of the following result which states that, in addition, for each of these accumulation points α there is a family of k-graphs whose Turán density is α .

Theorem 1.3. For every integer $k \ge 3$, there are infinitely many $\alpha \in [0, 1)$ such that there are two sequences of k-graphs, $\{F_i\}_{i\in\mathbb{N}}$ and $\{G_i\}_{i\in\mathbb{N}}$, with the following properties:

- I. $\pi(F_i) \to \alpha$ and $\pi(F_i) < \alpha$ for all $i \in \mathbb{N}$.
- II. For all $\varepsilon > 0$, there is some $i \in \mathbb{N}$ such that $\alpha \leq \pi(G_i) \leq \alpha + \varepsilon$.

The proof of this result will occupy the remainder of this short paper.

§2. Preliminaries

Given an integer t and a k-graph F, let B(F,t) be the t-blow-up of F, the k-graph obtained from F by replacing every vertex by t copies of itself. The following phenomenon, which we make extensive use of, is well-known (see, for instance, Lemma 2.1 and Theorem 2.2 in [6], as well as the subsequent discussion).

- **Theorem 2.1** (Supersaturation). (1) For every k-graph F and $\delta > 0$, there are $\varepsilon > 0$ and n_0 such that every k-graph on $n \ge n_0$ vertices with at least $(\pi(F) + \delta) \binom{n}{k}$ edges contains at least $\varepsilon n^{|V(F)|}$ copies of F.
 - (2) For every integer t and k-graph F, $\pi(B(F,t)) = \pi(F)$.

- (3) Let F be a k-graph and \mathcal{F} be the (finite) family of k-graphs F' whose vertex set is a subset of V(F) and for which there exists a homomorphism $\varphi : F \to F'$. Then $\pi(\mathcal{F}) = \pi(F)$.
- (4) For every k-graph F and $\delta > 0$, there are $\varepsilon > 0$ and n_0 such that, for all $v \in V(F)$, every k-graph on $n \ge n_0$ vertices with at least $(\pi(F) + \delta) \binom{n}{k}$ edges contains the kgraph obtained from F by replacing v by εn copies of v.

We will also make use of expansions of hypergraphs. Setting $X = \{x_1, \ldots, x_s\}$, the kuniform *expansion* of $K_s^{(2)}$, the complete 2-graph on s vertices, is the k-graph $G_s^{(k)}$ with vertex set

$$X \cup \{v_i^e : i \in [k-2], e \in X^{(2)}\}$$

and edge set

$$\{e \cup \{v_1^e, \dots, v_{k-2}^e\}: e \in X^{(2)}\}.$$

In other words, the k-uniform expansion of $K_s^{(2)}$ is obtained from $K_s^{(2)}$ by adding k-2 new vertices to each edge. We will need the following result of Mubayi [7] determining the Turán density of these expansions.

Theorem 2.2. For all integers $s > k \ge 2$, $\pi(G_s^{(k)}) = \frac{(s-1)\cdot(s-2)\cdots(s-k)}{(s-1)^k}$.

§3. Proof of Theorem 1.3

The proof makes use of some k-graphs that are obtained by gluing ladders and zycles, both of which we now define, in appropriate ways.

For $k, \ell \in \mathbb{N}$, we define the k-uniform ladder of length ℓ to be the k-graph $L_{\ell}^{(k)}$ with vertex set

$$V(L_{\ell}^{(k)}) = \{ v_{ij} : i \in [\ell], j \in [k-1] \} \cup \{t\}$$

and edge set

$$E(L_{\ell}^{(k)}) = \{v_{i1} \dots v_{ik-1} v_{i+1j} : i \in [\ell-1], j \in [k-1]\} \cup \{v_{\ell 1} \dots v_{\ell k-1} t\}.$$

For $k, \ell \in \mathbb{N}$ with $\ell \ge 2$, we define the k-uniform zycle of length ℓ to be the k-graph $Z_{\ell}^{(k)}$ with vertex set

$$V(Z_{\ell}^{(k)}) = \{ v_{ij} : i \in \mathbb{Z}/\ell\mathbb{Z}, j \in [k-1] \}$$

and edge set

$$E(Z_{\ell}^{(k)}) = \{ v_{i1} \dots v_{ik-1} v_{i+1j} : i \in \mathbb{Z}/\ell\mathbb{Z}, j \in [k-1] \}.$$

Next we define a k-graph that, roughly speaking, is obtained by gluing a zycle of length ℓ to the last (k-1)-set of a ladder of length m. More formally, for $k, m, \ell \in \mathbb{N}$ with $\ell \ge 2$, the k-graph $LZ^{(k)}(m, \ell)$ is the k-graph with vertex set

$$V(LZ^{(k)}(m,\ell)) = \{ v_{ij} : i \in [m], j \in [k-1] \}$$
$$\cup \{ w_{ij} : i \in [\ell] \setminus \{1\}, j \in [k-1] \}$$

and edge set

$$E(LZ^{(k)}(m,\ell)) = \{v_{i1} \dots v_{ik-1}v_{i+1j} : i \in [m-1], j \in [k-1]\}$$
$$\cup \{v_{m1} \dots v_{mk-1}w_{2j} : j \in [k-1]\}$$
$$\cup \{w_{i1} \dots w_{ik-1}w_{i+1j} : i \in [\ell-1] \setminus \{1\}, j \in [k-1]\}$$
$$\cup \{w_{\ell 1} \dots w_{\ell k-1}v_{m j} : j \in [k-1]\}.$$

For each of $L_{\ell}^{(k)}$, $Z_{\ell}^{(k)}$, and $LZ^{(k)}(m,\ell)$, we sometimes refer to the set $\{v_{11},\ldots,v_{1k-1}\}$ as the *starting set*.

If, in addition, $s \in \mathbb{N}$ with s > k, we consider the k-graph obtained from an s-set X by adding, for each pair $e \in X^{(2)}$, a copy of $L_{\ell_e}^{(k)}$ such that these copies only intersect in vertices of X, where the length ℓ_e may depend on the pair e. More formally, given a set $X = \{x_1, \ldots, x_s\}$, let $\{e_1, \ldots, e_{\binom{s}{2}}\} = X^{(2)}$ be an enumeration of the pairs of elements in X. Furthermore, let $\ell_1, \ldots, \ell_{\binom{s}{2}} \in \mathbb{N}$ with $\ell_i \ge \ell_{i+1}$ for all $i \in [\binom{s}{2} - 1]$. For $x_i x_j = e \in X^{(2)}$ with i < j, we write $v_{1k-2}^e = x_i$ and $v_{1k-1}^e = x_j$. For all $e \in X^{(2)}$ and $j \in [k-3]$, let v_{1j}^e be pairwise distinct vertices which are also distinct from any vertex in X. Finally, for all $e_r \in X^{(2)}$, $i \in [\ell_r] \setminus \{1\}$, and $j \in [k-1]$, let $v_{ij}^{e_r}$ be distinct vertices which are also distinct from any previously chosen vertices. Then we define $GL^{(k)}(s; \ell_1, \ldots, \ell_{\binom{s}{2}})$ to be the k-graph with vertex set

$$V(GL^{(k)}(s; \ell_1, \dots, \ell_{\binom{s}{2}})) = \{ v_{ij}^{e_r} : e_r \in X^{(2)}, i \in [\ell_r], j \in [k-1] \}$$
$$\cup \{ t^e : e \in X^{(2)} \}$$
(3.1)

and edge set

$$E(GL^{(k)}(s;\ell_1,\ldots,\ell_{\binom{s}{2}})) = \{v_{i1}^{e_r}\ldots v_{ik-1}^{e_r}v_{i+1j}^{e_r}: e_r \in X^{(2)}, i \in [\ell_r - 1], j \in [k-1]\}$$
$$\cup \{v_{\ell_r 1}^{e_r}\ldots v_{\ell_r k-1}^{e_r}t^{e_r}: e_r \in X^{(2)}\}.$$

If $\ell_i = \ell$ for all $i \in [\binom{s}{2}]$, we simply write $GL^{(k)}(s, \ell)$ for $GL^{(k)}(s; \ell, \ldots, \ell)$. We also note that $GL^{(k)}(s, 1) = G_s^{(k)}$, as defined in Section 2.

Lastly, we need one more type of k-graph. Roughly speaking, it is obtained from $GL^{(k)}(s, \ell)$ by closing the ends of the ladders that come out of the set X into zycles. More

formally, for $k, s, m, \ell \in \mathbb{N}$ with s > k and $\ell \ge 2$, we define the k-graph $GLZ^{(k)}(s, m, \ell)$ to be the k-graph with vertex set

$$V(GLZ^{(k)}(s,m,\ell)) = \{ v_{ij}^e : e \in X^{(2)}, i \in [m], j \in [k-1] \}$$
$$\cup \{ w_{ij}^e : e \in X^{(2)}, i \in [\ell] \smallsetminus \{1\}, j \in [k-1] \}$$

and edge set

$$\begin{split} E(GLZ^{(k)}(s,m,\ell)) &= \{ v_{i1}^e \dots v_{ik-1}^e v_{i+1j}^e : \ e \in X^{(2)}, \ i \in [m-1], \ j \in [k-1] \} \\ & \cup \{ v_{m1}^e \dots v_{mk-1}^e w_{2j}^e : \ e \in X^{(2)}, \ j \in [k-1] \} \\ & \cup \{ w_{i1}^e \dots w_{ik-1}^e w_{i+1j}^e : \ e \in X^{(2)}, \ i \in [\ell-1] \smallsetminus \{1\}, \ j \in [k-1] \} \\ & \cup \{ w_{\ell 1}^e \dots w_{\ell k-1}^e v_{mj}^e : \ e \in X^{(2)}, \ j \in [k-1] \} . \end{split}$$

From now on, we suppress the uniformity in the notation if it is clear from context, for instance, writing $GL(s, \ell)$ instead of $GL^{(k)}(s, \ell)$. In outline, the proof of Theorem 1.3 will proceed as follows. First, we show that for every integer $s > k \ge 3$ there is some $\alpha_s \in [0, 1]$ such that $\lim_{\ell \to \infty} \pi(GL(s, \ell)) = \alpha_s$, but $\pi(GL(s, \ell)) < \alpha_s$ for all $\ell \in \mathbb{N}$. Because $GL(s, \ell) \subseteq$ $GL(s+1, \ell)$ for all s > k and ℓ , we have $\alpha_s \le \alpha_{s+1}$. We will argue that, more strongly, for every s > k there is some s' such that $\alpha_s < \alpha_{s'}$. Together, these imply Part I of the theorem. We will then show that for every s > k and $\varepsilon > 0$, there are $m, \ell \in \mathbb{N}$ such that $\alpha_s \le \pi(GLZ(s, m, \ell)) \le \alpha_s + \varepsilon$, which will complete the proof.

3.1. **Part I.** Let $s > k \ge 3$ be an integer. To show that there is some $\alpha_s \in [0, 1]$ such that $\lim_{\ell \to \infty} \pi(GL(s, \ell)) = \alpha_s$, but $\pi(GL(s, \ell)) < \alpha_s$ for all $\ell \in \mathbb{N}$, it is sufficient to show that $\pi(GL(s, \ell)) < \pi(GL(s, \ell + 1))$ for all $\ell \in \mathbb{N}$. We do this by induction on ℓ .

First, let $\ell = 1$ and, for a given $n \in \mathbb{N}$, let H be the k-graph that is obtained from a balanced complete (s - 1)-partite k-graph with partition $V(H) = [n] = V_1 \cup \cdots \cup V_{s-1}$ by adding a balanced complete k-partite k-graph inside each partition class (with partition $V_i = W_i^1 \cup \cdots \cup W_i^k$ for each $i \in [s - 1]$). If there were a copy of GL(s, 2)in H, there would have to be at least two vertices $x, x' \in X$ that lie in the same partition class V_i . By the constructions of GL(s, 2) and H, the vertices $v_{21}^{xx'}$ and $v_{22}^{xx'}$, say, must lie in the same W_i^j . But then in H there is no edge containing both $v_{21}^{xx'}$ and $v_{22}^{xx'}$ (which exists in GL(s, 2)), meaning that, in fact, H has to be GL(s, 2)-free. This implies that $\pi(GL(s, 2)) > k! {s-1 \choose k} \frac{1}{(s-1)^k} = \pi(GL(s, 1))$, where the last inequality comes from Theorem 2.2.

Now assume that $\ell > 1$ and that $\pi(GL(s,i)) < \pi(GL(s,i+1))$ holds for all $i \in [\ell-1]$. We will show that $\pi(GL(s,\ell)) < \pi(GL(s,\ell+1))$. By induction, we know that $\pi(GL(s,\ell)) > \pi(GL(s,\ell-1))$. Thus, there is some maximum $r \in [\binom{s}{2}]$ such that, setting $\ell_i = \ell$ for $i \in [r-1]$ and $\ell_i = \ell - 1$ for $i \in [r, \binom{s}{2}]$, we have $\pi(GL(s;\ell_1,\ldots,\ell_{\binom{s}{2}})) < \pi(GL(s,\ell))$. Let $\ell'_i = \ell$ for $i \in [r]$ and $\ell'_i = \ell - 1$ for $i \in [r+1,\binom{s}{2}]$. Denote by \mathcal{GL} the (finite) family of k-graphs F whose vertex set is a subset of $V(GL(s;\ell'_1,\ldots,\ell'_{\binom{s}{2}}))$ and for which there exists a homomorphism φ : $GL(s;\ell'_1,\ldots,\ell'_{\binom{s}{2}}) \to F$. By supersaturation (Theorem 2.1 (3)) (and the choice of r), we know that $\pi(\mathcal{GL}) = \pi(GL(s,\ell))$ and thus it suffices to show that $\pi(\mathcal{GL}) < \pi(GL(s,\ell+1))$.

Set $\pi_0 = \pi(GL(s; \ell_1, \ldots, \ell_{\binom{s}{2}}))$ and note that $\pi(\mathcal{GL}) > \pi_0$. Therefore, setting $\eta = \pi(\mathcal{GL}) - \pi_0$, we have $\eta > 0$. Furthermore, by supersaturation (Theorem 2.1 (4)), there is some $\varepsilon_1 > 0$ such that, for n sufficiently large, every k-graph H on n vertices with at least $(\pi_0 + \eta/2) \binom{n}{k}$ edges contains a copy of the k-graph G that is obtained from $GL(s; \ell_1, \ldots, \ell_{\binom{s}{2}})$ by blowing up the vertex t^{e_r} to a set T of size $\varepsilon_1 n$. Finally, let $\varepsilon_2 \ll \varepsilon_1, \eta$ with $\varepsilon_2 > 0$ and let $n \in \mathbb{N}$ be sufficiently large that¹

$$\frac{\exp(n, GL(s; \ell_1, \dots, \ell_{\binom{s}{2}}))}{\binom{n}{k}} - \pi_0 < \varepsilon_2,$$

$$\frac{\exp(n, \mathcal{GL})}{\binom{n}{k}} - \pi(\mathcal{GL}) < \varepsilon_2, \text{ and}$$

$$\frac{\exp(n, GL(s, \ell+1))}{\binom{n}{k}} - \pi(GL(s, \ell+1)) < \varepsilon_2.$$
(3.2)

Now consider an extremal example H for \mathcal{GL} on n vertices. By our choice of constants, we know that H contains a copy of G. If any (k-1)-subset of T is contained in an edge of H, then H would contain a (possibly) degenerate copy of $GL(s; \ell'_1, \ldots, \ell'_{\binom{s}{2}})$, i.e., a copy of an element of \mathcal{GL} . Thus, no (k-1)-subset of T is contained in an edge of H.

Next we add to H a complete balanced k-partite k-graph on $T = T_1 \cup \cdots \cup T_k$ and call the resulting k-graph H'. We claim that H' is $GL(s, \ell + 1)$ -free. Assume, for the sake of contradiction, that H' contains a copy of $GL(s, \ell + 1)$ with vertex set as in (3.1).² Since this copy of $GL(s, \ell + 1)$ is not contained in H, one of its edges must be an edge $z_1 \ldots z_k \in$ $E(H') \setminus E(H)$, so we also have $z_1, \ldots, z_k \in T$. In fact, since H is (in particular) $GL(s, \ell)$ free, there must be $e \in X^{(2)}$, $i \in [\ell]$, and $j \in [k-1]$ such that $z_1 \ldots z_k$ is one of the edges $v_{i_1}^e \ldots v_{i_{k-1}}^e v_{i_{+1j}}^e$. Without loss of generality, assume that $z_1 = v_{i_1}^e, \ldots, z_{k-1} = v_{i_{k-1}}^e$ for some $e \in X^{(2)}$, $i \in [\ell]$, and $j \in [k-1]$ with $v_{i_1}^e \in T_1, \ldots, v_{i_{k-1}}^e \in T_{k-1}$. Recall that, by the construction of H' and the discussion in the previous paragraph, any edge of H' containing

¹By the monotonicity argument mentioned in the introduction, all of the terms on the left-hand side are non-negative.

²To avoid making the notation messier, we will not give the vertices new names. We do not mean the vertices of this copy of $GL(s, \ell + 1)$ to be necessarily the same as some of the vertices of the copy of G.

a (k-1)-subset of T must be in $E(H') \setminus E(H)$ and must therefore contain exactly one vertex from each of T_1, \ldots, T_k . Thus, $v^e_{(i+1)1}, \ldots, v^e_{(i+1)k-1} \in T_k$ and so these k-1 vertices cannot lie together in any edge of H', contradicting that there is a copy of $GL(s, \ell + 1)$ in H'. Hence, H' is indeed a $GL(s, \ell + 1)$ -free k-graph on n vertices.

By monotonicity, we know that H has at least $\pi(\mathcal{GL})\binom{n}{k}$ edges. Therefore, H' has more than

$$\pi(\mathcal{GL})\binom{n}{k} + \left(\frac{\varepsilon_1 n}{k+1}\right)^k > (\pi(\mathcal{GL}) + \varepsilon_2)\binom{n}{k}$$

edges. By (3.2), this means that $\pi(GL(s, \ell + 1)) > \pi(\mathcal{GL}) = \pi(GL(s, \ell))$. We have therefore proved that $\lim_{\ell \to \infty} \pi(GL(s, \ell)) = \alpha_s$ for some $\alpha_s \in [0, 1]$ with $\pi(GL(s, \ell)) < \alpha_s$ for all $\ell \in \mathbb{N}$.

Next we argue that for every integer s > k, there is some integer $s' \gg s$ such that $\alpha_{s'} > \alpha_s$. Note that since $GL(s', \ell) \supseteq G_{s'}$ for every $\ell \in \mathbb{N}$, Theorem 2.2 implies that

$$\alpha_{s'} \geqslant \frac{(s'-1)\cdot(s'-2)\cdots(s'-k)}{(s'-1)^k}$$

On the other hand, observe that $GL(s, \ell)$ is contained in a blow-up of $K_{s+\binom{s}{2} \cdot [(k-3)+(k-1)]}^{(k)}$ for every $\ell \in \mathbb{N}$. Therefore, by Theorem 2.1 (2), $\alpha_s \leq \pi(K_{s+\binom{s}{2} \cdot (2k-4)}^{(k)})$. Since

$$\frac{(s'-1)\cdot(s'-2)\cdots(s'-k)}{(s'-1)^k} \to 1$$

as $s' \to \infty$ and $\pi(K_{s+\binom{s}{2}\cdot(2k-4)}^{(k)}) < 1$, we indeed have $\alpha_{s'} > \alpha_s$ for $s' \gg s$.

3.2. Part II. Let s > k be an integer and let $\varepsilon > 0$. Choose $t, n \in \mathbb{N}$ such that

$$\varepsilon, s^{-1} \gg t^{-1} \gg n^{-1}$$

and, for simplicity, assume that $t \mid n$. Now let H be a k-graph with vertex set [t]and $e(H) \ge (\alpha_s + \varepsilon) {t \choose k}$. We will show that there is a homomorphism from $GLZ(s, {t \choose k-1}) + 1, {t \choose k-1}!)$ into H. Let $H_* = B(H, n/t)$ be the k-graph obtained from H by replacing every vertex i of H by n/t copies of itself, the set of which we call V_i . For $v \in V(H_*)$, let f(v) denote the index of the partition class of H_* that contains v, i.e., if v is one of the copies of the vertex $i \in V(H)$, then f(v) = i. Then H_* is a k-graph on n vertices with $e(H_*) \ge (\alpha_s + \varepsilon) {t \choose k} {n \choose t}^k \ge (\alpha_s + \varepsilon/2) {n \choose k}$.

Since $\pi(GL(s, \ell)) < \alpha_s$ for every $\ell \in \mathbb{N}$, we have that H_* contains a copy of $GL(s, \binom{t}{k-1} + 1)$ with vertex set as in (3.1). Fix $e \in X^{(2)}$. Note that for each $i \in [\binom{t}{k-1} + 1]$, the indices $f(v_{ij}^e)$ with $j \in [k-1]$ are pairwise distinct, since $v_{i1}^e, \ldots, v_{ik-1}^e$ are contained in an

edge together. As H_* only has t distinct partition classes, we deduce from the pigeonhole principle that, for some $i, i' \in [\binom{t}{k-1} + 1]$ with i' < i, we have

$$\{f(v_{i1}^e),\ldots,f(v_{ik-1}^e)\}=\{f(v_{i'1}^e),\ldots,f(v_{i'k-1}^e)\}.$$

Since H_* is a blow-up of H, this implies that there is a homomorphism of a zycle of length at most $\binom{t}{k-1}$ into H that maps the starting set to $\{f(v_{i1}^e), \ldots, f(v_{ik-1}^e)\}$. As described in [8], "cycling" through any such zycle the right number of times yields a homomorphism from $Z_{\binom{t}{k-1}!}$ to H that maps the starting set to $\{f(v_{i1}^e), \ldots, f(v_{ik-1}^e)\}$. Note that this means that there is a homomorphism from $LZ(i, \binom{t}{k-1})!$ into H that maps the starting set to $\{f(v_{11}^e), \ldots, f(v_{1k-1}^e)\}$. Furthermore, observe that for any $j, j' \in \mathbb{N}$ with $j \leq j'$ there is a homomorphism from $LZ(j', \binom{t}{k-1}!)$ to $LZ(j, \binom{t}{k-1}!)$ that preserves the starting set. Therefore, there is a homomorphism from $LZ(\binom{t}{k-1} + 1, \binom{t}{k-1}!)$ to H that maps the starting set to $\{f(v_{11}^e), \ldots, f(v_{1k-1}^e)\}$. Since the above holds for all $e \in X^{(2)}$, we obtain a homomorphism from $GLZ(s, \binom{t}{k-1} + 1, \binom{t}{k-1}!)$ to H. Thus, $\exp(t, GLZ(s, \binom{t}{k-1}) + 1, \binom{t}{k-1}!)$. Since the sequence

$$\frac{\exp\left(m, GLZ(s, \binom{t}{k-1} + 1, \binom{t}{k-1})!\right)}{\binom{m}{k}}$$

is non-increasing in *m*, this implies that $\pi_{\text{hom}}(GLZ(s, {t \choose k-1} + 1, {t \choose k-1}!)) \leq \alpha_s + \varepsilon$. Thus, we have

$$\alpha_s \leq \pi \Big(GLZ \Big(s, \begin{pmatrix} t \\ k-1 \end{pmatrix} + 1, \begin{pmatrix} t \\ k-1 \end{pmatrix} ! \Big) \Big)$$
$$= \pi_{\text{hom}} \Big(GLZ \Big(s, \begin{pmatrix} t \\ k-1 \end{pmatrix} + 1, \begin{pmatrix} t \\ k-1 \end{pmatrix} ! \Big) \Big) \leq \alpha_s + \varepsilon$$

where the first inequality holds since if H contains $GLZ(s, \binom{t}{k-1} + 1, \binom{t}{k-1}!)$, then there exists a homomorphism from $GL(s, \ell)$ into H for all $\ell \in \mathbb{N}$. In fact, for all integers $m \ge 2$ and $i \ge 1$, there is a homomorphism from $GL(s, \ell)$ into GLZ(s, i, m) for all $\ell \in \mathbb{N}$, so that $\alpha_s \le \pi(\{GLZ(s, i, m) : i, m \in \mathbb{N}, m \ge 2\})$. Since in the above argument $\varepsilon > 0$ was arbitrary, $\pi(\{GLZ(s, i, m) : i, m \in \mathbb{N}, m \ge 2\}) = \alpha_s$.

§4. Concluding Remarks

Our earlier paper [1] showed that $\Pi^{(k)}$ contains a subset of order type $\omega 2$ when $k \ge 3$. This is already enough to distinguish it from $\Pi^{(2)}$, which has order type ω . In this paper, we went further, showing that $\Pi^{(k)}$ contains a subset of order type ω^2 when $k \ge 3$. This is still likely far from the truth and we conjecture that $\Pi^{(k)}$ contains subsets of any countable order type when $k \ge 3$. However, it would already be interesting to push our techniques to handle, say, ω^3 , ω^{ω} , or ε_0 . It may also be that $-\Pi^{(k)}$ contains subsets of any countable order type when $k \ge 3$. This might be difficult, as finding a subset of order type ω would already show that $\Pi^{(k)}$ is not well-ordered, itself an interesting open problem. Finally, we note that a result of Pikhurko [9] saying that $\Pi_{\infty}^{(k)}$ has the cardinality of the continuum for $k \ge 3$ implies that $\Pi_{\infty}^{(k)}$ and, therefore, $\Pi_{\text{fin}}^{(k)}$ has uncountably many accumulation points. The same may well be true of $\Pi^{(k)}$.

Acknowledgements

We thank Forte Shinko and Mathias Schacht for interesting discussions. The first author was supported by NSF Awards DMS-2054452 and DMS-2348859 and by a Simons Visiting Professorship, while the second author was partially supported by the Young Scientist Fellowship IBS-R029-Y7. This research was also supported by the National Science Foundation under Grant No. DMS-1928930 while the authors were in residence at the Simons Laufer Mathematical Sciences Institute in Berkeley, California during the Spring 2025 semester on Extremal Combinatorics.

References

- D. Conlon and B. Schülke, Hypergraphs accumulate, Int. Math. Res. Not. IMRN 2 (2025), Paper No. rnae289, 5 pp. [↑]1, 4
- [2] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966), 51–57. ↑1
- [3] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087–1091. [↑]1
- [4] P. Frankl and V. Rödl, Hypergraphs do not jump, Combinatorica 4 (1984), 149–159. $\uparrow 1$
- [5] G. Katona, T. Nemetz, and M. Simonovits, On a problem of Turán in the theory of graphs, Mat. Lapok 15 (1964), 228–238 (Hungarian, with English and Russian summaries). [↑]1
- [6] P. Keevash, Hypergraph Turán problems, Surveys in combinatorics 2011, London Math. Soc. Lecture Note Ser., vol. 392, Cambridge Univ. Press, Cambridge, 2011, pp. 83–139. [↑]2
- [7] D. Mubayi, A hypergraph extension of Turán's theorem, J. Combin. Theory Ser. B 96 (2006), 122–134.
 ^{↑2}
- [8] S. Piga and B. Schülke, Hypergraphs with arbitrarily small codegree Turán density (2023), available at arXiv:2307.02876. [↑]3.2
- [9] O. Pikhurko, On possible Turán densities, Israel J. Math. **201** (2014), 415–454. ↑1, 4
- [10] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436–452 (Hungarian, with German summary). [↑]1

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, USA *Email address*: dconlon@caltech.edu

Extremal Combinatorics and Probability Group, Institute for Basic Science, Daejeon, South Korea

Email address: schuelke@ibs.re.kr