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Abstract. We show that the set Πpkq of Turán densities of k-uniform hypergraphs has
infinitely many accumulation points in r0, 1q for every k ě 3. This extends an earlier
result of ours showing that Πpkq has at least one such accumulation point.

§1. Introduction

For k P N, a k-uniform hypergraph (or k-graph) H “ pV,Eq consists of a vertex set V
and an edge set E Ď V pkq “ te Ď V : |e| “ ku. Given n P N and a family of k-graphs F ,
the extremal number expn,Fq is the maximum number of edges in a k-graph H with n
vertices that does not contain a copy of any graph in F . The Turán density of F is then
given by

πpFq “ lim
nÑ8

expn,Fq
`

n
k

˘ ,

where the limit is known, by a simple monotonicity argument [5 ], to be well-defined.
If F “ tF u for some k-graph F , we omit the parentheses, writing πpFq “ πpF q. The
problem of determining these Turán densities is one of the oldest and most fundamental
questions in extremal combinatorics.

When k “ 2, that is, when F is a family of graphs, πpFq is essentially completely
understood, with the final result, the culmination of work by Turán [10 ], Erdős and
Stone [3 ], and Erdős and Simonovits [2 ], saying that πpFq “ χpFq´2

χpFq´1 , where χpFq is the
minimum chromatic number of an element of F . If we set

Πpkq “ tπpF q : F is a k-graphu ,

Πpkqfin “ tπpFq : F is a finite family of k-graphsu ,

Πpkq8 “ tπpFq : F is a family of k-graphsu ,

then the Erdős–Stone–Simonovits theorem implies that

Πp2q “ Πp2qfin “ Πp2q8 “ t0, 1{2, 2{3, 3{4, . . . u.

In particular, each of these sets is well-ordered.
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For k ě 3, there is no clear analogue of the Erdős–Stone–Simonovits theorem for any of
the sets Πpkq, Πpkqfin , or Πpkq8 . For Πpkq8 , this was shown by Frankl and Rödl [4 ], who proved
that Πpkq8 is not well-ordered. That is, the set has downward accumulation points. In
particular, this disproved the jumping conjecture of Erdős, which suggested that, like
for Πp2q8 , there should be a non-trivial gap or jump between any element of r0, 1q and the
next element of Πpkq8 . By applying the important result of Pikhurko [9 ] that Πpkq8 is the
closure of Πpkqfin , it is easily seen that Πpkqfin is also not well-ordered.

While it remains an intriguing open problem to show that Πpkq is again not well-ordered,
a first step showing that Πpkq is indeed more complex than Πp2q was taken in the recent
paper [1 ], where we proved the following result.

Theorem 1.1. For every integer k ě 3, the set Πpkq has an accumulation point in r0, 1q.

Here we extend this result, showing that Πpkq has infinitely many accumulation points.
This goes another step further in showing how much more complex Πpkq gets for k ě 3.

Theorem 1.2. For every integer k ě 3, the set Πpkq has infinitely many accumulation
points in r0, 1q.

This is a consequence of the following result which states that, in addition, for each of
these accumulation points α there is a family of k-graphs whose Turán density is α.

Theorem 1.3. For every integer k ě 3, there are infinitely many α P r0, 1q such that there
are two sequences of k-graphs, tFiuiPN and tGiuiPN, with the following properties:

I. πpFiq Ñ α and πpFiq ă α for all i P N.
II. For all ε ą 0, there is some i P N such that α ď πpGiq ď α ` ε.

The proof of this result will occupy the remainder of this short paper.

§2. Preliminaries

Given an integer t and a k-graph F , let BpF, tq be the t-blow-up of F , the k-graph
obtained from F by replacing every vertex by t copies of itself. The following phenomenon,
which we make extensive use of, is well-known (see, for instance, Lemma 2.1 and Theorem 2.2
in [6 ], as well as the subsequent discussion).

Theorem 2.1 (Supersaturation). (1) For every k-graph F and δ ą 0, there are ε ą 0
and n0 such that every k-graph on n ě n0 vertices with at least pπpF q ` δq

`

n
k

˘

edges
contains at least εn|V pF q| copies of F .

(2) For every integer t and k-graph F , πpBpF, tqq “ πpF q.
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(3) Let F be a k-graph and F be the (finite) family of k-graphs F 1 whose vertex set
is a subset of V pF q and for which there exists a homomorphism ϕ : F Ñ F 1.
Then πpFq “ πpF q.

(4) For every k-graph F and δ ą 0, there are ε ą 0 and n0 such that, for all v P V pF q,
every k-graph on n ě n0 vertices with at least pπpF q ` δq

`

n
k

˘

edges contains the k-
graph obtained from F by replacing v by εn copies of v.

We will also make use of expansions of hypergraphs. Setting X “ tx1, . . . , xsu, the k-
uniform expansion of Kp2q

s , the complete 2-graph on s vertices, is the k-graph Gpkqs with
vertex set

X Ÿ tvei : i P rk ´ 2s, e P Xp2q
u

and edge set

teY tve1, . . . , v
e
k´2u : e P Xp2q

u.

In other words, the k-uniform expansion of Kp2q
s is obtained from Kp2q

s by adding k ´ 2
new vertices to each edge. We will need the following result of Mubayi [7 ] determining the
Turán density of these expansions.

Theorem 2.2. For all integers s ą k ě 2, πpGpkqs q “
ps´1q¨ps´2q¨¨¨ps´kq

ps´1qk .

§3. Proof of Theorem 1.3 

The proof makes use of some k-graphs that are obtained by gluing ladders and zycles,
both of which we now define, in appropriate ways.

For k, ` P N, we define the k-uniform ladder of length ` to be the k-graph L
pkq
` with

vertex set

V pL
pkq
` q “ tvij : i P r`s, j P rk ´ 1su Ÿ ttu

and edge set

EpL
pkq
` q “ tvi1 . . . vik´1vi`1j : i P r`´ 1s, j P rk ´ 1su Y tv`1 . . . v`k´1tu .

For k, ` P N with ` ě 2, we define the k-uniform zycle of length ` to be the k-graph Zpkq`

with vertex set

V pZ
pkq
` q “ tvij : i P Z{`Z, j P rk ´ 1su

and edge set

EpZ
pkq
` q “ tvi1 . . . vik´1vi`1j : i P Z{`Z, j P rk ´ 1su .



4 D. CONLON AND B. SCHÜLKE

Next we define a k-graph that, roughly speaking, is obtained by gluing a zycle of length `
to the last pk ´ 1q-set of a ladder of length m. More formally, for k,m, ` P N with ` ě 2,
the k-graph LZpkqpm, `q is the k-graph with vertex set

V pLZpkqpm, `qq “ tvij : i P rms, j P rk ´ 1su

Ÿ twij : i P r`sr t1u, j P rk ´ 1su

and edge set

EpLZpkqpm, `qq “ tvi1 . . . vik´1vi`1j : i P rm´ 1s, j P rk ´ 1su

Y tvm1 . . . vmk´1w2j : j P rk ´ 1su

Y twi1 . . . wik´1wi`1j : i P r`´ 1sr t1u, j P rk ´ 1su

Y tw`1 . . . w`k´1vmj : j P rk ´ 1su .

For each of Lpkq` , Zpkq` , and LZpkqpm, `q, we sometimes refer to the set tv11, . . . , v1k´1u as
the starting set.

If, in addition, s P N with s ą k, we consider the k-graph obtained from an s-set X
by adding, for each pair e P Xp2q, a copy of Lpkq`e such that these copies only intersect
in vertices of X, where the length `e may depend on the pair e. More formally, given a
set X “ tx1, . . . , xsu, let te1, . . . , eps

2q
u “ Xp2q be an enumeration of the pairs of elements

inX. Furthermore, let `1, . . . , `ps
2q
P N with `i ě `i`1 for all i P r

`

s
2

˘

´1s. For xixj “ e P Xp2q

with i ă j, we write ve1k´2 “ xi and ve1k´1 “ xj. For all e P Xp2q and j P rk ´ 3s, let ve1j
be pairwise distinct vertices which are also distinct from any vertex in X. Finally, for
all er P Xp2q, i P r`rs r t1u, and j P rk ´ 1s, let ver

ij be distinct vertices which are also
distinct from any previously chosen vertices. Then we define GLpkqps; `1, . . . , `ps

2q
q to be

the k-graph with vertex set

V pGLpkqps; `1, . . . , `ps
2q
qq “ tver

ij : er P Xp2q, i P r`rs, j P rk ´ 1su

Ÿ tte : e P Xp2q
u (3.1)

and edge set

EpGLpkqps; `1, . . . , `ps
2q
qq “ tver

i1 . . . v
er
ik´1v

er
i`1j : er P Xp2q, i P r`r ´ 1s, j P rk ´ 1su

Y tver
`r1 . . . v

er
`rk´1t

er : er P Xp2q
u .

If `i “ ` for all i P r
`

s
2

˘

s, we simply write GLpkqps, `q for GLpkqps; `, . . . , `q. We also note
that GLpkqps, 1q “ Gpkqs , as defined in Section 2 .

Lastly, we need one more type of k-graph. Roughly speaking, it is obtained from
GLpkqps, `q by closing the ends of the ladders that come out of the set X into zycles. More
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formally, for k, s,m, ` P N with s ą k and ` ě 2, we define the k-graph GLZpkqps,m, `q to
be the k-graph with vertex set

V pGLZpkqps,m, `qq “ tveij : e P Xp2q, i P rms, j P rk ´ 1su

Ÿ tweij : e P Xp2q, i P r`sr t1u, j P rk ´ 1su

and edge set

EpGLZpkqps,m, `qq “ tvei1 . . . v
e
ik´1v

e
i`1j : e P Xp2q, i P rm´ 1s, j P rk ´ 1su

Y tvem1 . . . v
e
mk´1w

e
2j : e P Xp2q, j P rk ´ 1su

Y twei1 . . . w
e
ik´1w

e
i`1j : e P Xp2q, i P r`´ 1sr t1u, j P rk ´ 1su

Y twe`1 . . . w
e
`k´1v

e
mj : e P Xp2q, j P rk ´ 1su .

From now on, we suppress the uniformity in the notation if it is clear from context, for
instance, writing GLps, `q instead of GLpkqps, `q. In outline, the proof of Theorem 1.3 will
proceed as follows. First, we show that for every integer s ą k ě 3 there is some αs P r0, 1s
such that lim`Ñ8 πpGLps, `qq “ αs, but πpGLps, `qq ă αs for all ` P N. Because GLps, `q Ď
GLps ` 1, `q for all s ą k and `, we have αs ď αs`1. We will argue that, more strongly,
for every s ą k there is some s1 such that αs ă αs1 . Together, these imply Part I of the
theorem. We will then show that for every s ą k and ε ą 0, there are m, ` P N such
that αs ď πpGLZps,m, `qq ď αs ` ε, which will complete the proof.

3.1. Part I. Let s ą k ě 3 be an integer. To show that there is some αs P r0, 1s such
that lim`Ñ8 πpGLps, `qq “ αs, but πpGLps, `qq ă αs for all ` P N, it is sufficient to show
that πpGLps, `qq ă πpGLps, `` 1qq for all ` P N. We do this by induction on `.

First, let ` “ 1 and, for a given n P N, let H be the k-graph that is obtained from
a balanced complete ps ´ 1q-partite k-graph with partition V pHq “ rns “ V1 Ÿ ¨ ¨ ¨ Ÿ

Vs´1 by adding a balanced complete k-partite k-graph inside each partition class (with
partition Vi “ W 1

i Ÿ ¨ ¨ ¨ Ÿ W k
i for each i P rs ´ 1s). If there were a copy of GLps, 2q

in H, there would have to be at least two vertices x, x1 P X that lie in the same partition
class Vi. By the constructions of GLps, 2q and H, the vertices vxx121 and vxx

1

22 , say, must
lie in the same W j

i . But then in H there is no edge containing both vxx
1

21 and vxx
1

22

(which exists in GLps, 2q), meaning that, in fact, H has to be GLps, 2q-free. This implies
that πpGLps, 2qq ą k!

`

s´1
k

˘ 1
ps´1qk “ πpGLps, 1qq, where the last inequality comes from

Theorem 2.2 .
Now assume that ` ą 1 and that πpGLps, iqq ă πpGLps, i` 1qq holds for all i P r`´ 1s.

We will show that πpGLps, `qq ă πpGLps, `` 1qq.
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By induction, we know that πpGLps, `qq ą πpGLps, ` ´ 1qq. Thus, there is some max-
imum r P r

`

s
2

˘

s such that, setting `i “ ` for i P rr ´ 1s and `i “ ` ´ 1 for i P rr,
`

s
2

˘

s,
we have πpGLps; `1, . . . , `ps

2q
qq ă πpGLps, `qq. Let `1i “ ` for i P rrs and `1i “ ` ´ 1

for i P rr ` 1,
`

s
2

˘

s. Denote by GL the (finite) family of k-graphs F whose vertex set
is a subset of V pGLps; `11, . . . , `1ps

2q
qq and for which there exists a homomorphism ϕ :

GLps; `11, . . . , `1ps
2q
q Ñ F . By supersaturation (Theorem 2.1 (3 )) (and the choice of r), we

know that πpGLq “ πpGLps, `qq and thus it suffices to show that πpGLq ă πpGLps, `` 1qq.
Set π0 “ πpGLps; `1, . . . , `ps

2q
qq and note that πpGLq ą π0. Therefore, setting η “

πpGLq ´ π0, we have η ą 0. Furthermore, by supersaturation (Theorem 2.1 (4 )),
there is some ε1 ą 0 such that, for n sufficiently large, every k-graph H on n ver-
tices with at least pπ0 ` η{2q

`

n
k

˘

edges contains a copy of the k-graph G that is obtained
from GLps; `1, . . . , `ps

2q
q by blowing up the vertex ter to a set T of size ε1n. Finally,

let ε2 ! ε1, η with ε2 ą 0 and let n P N be sufficiently large that1 

expn,GLps; `1, . . . , `ps
2q
qq

`

n
k

˘ ´ π0 ă ε2 ,

expn,GLq
`

n
k

˘ ´ πpGLq ă ε2 , and

expn,GLps, `` 1qq
`

n
k

˘ ´ πpGLps, `` 1qq ă ε2 . (3.2)

Now consider an extremal example H for GL on n vertices. By our choice of constants,
we know that H contains a copy of G. If any pk ´ 1q-subset of T is contained in an edge
of H, then H would contain a (possibly) degenerate copy of GLps; `11, . . . , `1ps

2q
q, i.e., a copy

of an element of GL. Thus, no pk ´ 1q-subset of T is contained in an edge of H.
Next we add to H a complete balanced k-partite k-graph on T “ T1 Ÿ ¨ ¨ ¨ Ÿ Tk and call

the resulting k-graph H 1. We claim that H 1 is GLps, `` 1q-free. Assume, for the sake of
contradiction, that H 1 contains a copy of GLps, `` 1q with vertex set as in (3.1 ).2 Since
this copy of GLps, `` 1q is not contained in H, one of its edges must be an edge z1 . . . zk P

EpH 1qr EpHq, so we also have z1, . . . , zk P T . In fact, since H is (in particular) GLps, `q-
free, there must be e P Xp2q, i P r`s, and j P rk ´ 1s such that z1 . . . zk is one of the
edges vei1 . . . veik´1v

e
i`1j. Without loss of generality, assume that z1 “ vei1, . . . , zk´1 “ veik´1

for some e P Xp2q, i P r`s, and j P rk´1s with vei1 P T1, . . . , v
e
ik´1 P Tk´1. Recall that, by the

construction of H 1 and the discussion in the previous paragraph, any edge of H 1 containing
1By the monotonicity argument mentioned in the introduction, all of the terms on the left-hand side

are non-negative.
2To avoid making the notation messier, we will not give the vertices new names. We do not mean the

vertices of this copy of GLps, `` 1q to be necessarily the same as some of the vertices of the copy of G.
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a pk ´ 1q-subset of T must be in EpH 1qr EpHq and must therefore contain exactly one
vertex from each of T1, . . . , Tk. Thus, vepi`1q1, . . . , v

e
pi`1qk´1 P Tk and so these k ´ 1 vertices

cannot lie together in any edge of H 1, contradicting that there is a copy of GLps, ` ` 1q
in H 1. Hence, H 1 is indeed a GLps, `` 1q-free k-graph on n vertices.

By monotonicity, we know that H has at least πpGLq
`

n
k

˘

edges. Therefore, H 1 has more
than

πpGLq
ˆ

n

k

˙

`

ˆ

ε1n

k ` 1

˙k

ą pπpGLq ` ε2q

ˆ

n

k

˙

edges. By (3.2 ), this means that πpGLps, ` ` 1qq ą πpGLq “ πpGLps, `qq. We have
therefore proved that lim`Ñ8 πpGLps, `qq “ αs for some αs P r0, 1s with πpGLps, `qq ă αs

for all ` P N.
Next we argue that for every integer s ą k, there is some integer s1 " s such that αs1 ą αs.

Note that since GLps1, `q Ě Gs1 for every ` P N, Theorem 2.2 implies that

αs1 ě
ps1 ´ 1q ¨ ps1 ´ 2q ¨ ¨ ¨ ps1 ´ kq

ps1 ´ 1qk .

On the other hand, observe that GLps, `q is contained in a blow-up of Kpkq

s`ps
2q¨rpk´3q`pk´1qs

for every ` P N. Therefore, by Theorem 2.1 (2 ), αs ď πpK
pkq

s`ps
2q¨p2k´4qq. Since

ps1 ´ 1q ¨ ps1 ´ 2q ¨ ¨ ¨ ps1 ´ kq
ps1 ´ 1qk Ñ 1

as s1 Ñ 8 and πpKpkq

s`ps
2q¨p2k´4qq ă 1, we indeed have αs1 ą αs for s1 " s.

3.2. Part II. Let s ą k be an integer and let ε ą 0. Choose t, n P N such that

ε, s´1
" t´1

" n´1

and, for simplicity, assume that t | n. Now let H be a k-graph with vertex set rts
and epHq ě pαs` εq

`

t
k

˘

. We will show that there is a homomorphism from GLZps,
`

t
k´1

˘

`

1,
`

t
k´1

˘

!q into H. Let H˚ “ BpH,n{tq be the k-graph obtained from H by replacing
every vertex i of H by n{t copies of itself, the set of which we call Vi. For v P V pH˚q,
let fpvq denote the index of the partition class of H˚ that contains v, i.e., if v is one of
the copies of the vertex i P V pHq, then fpvq “ i. Then H˚ is a k-graph on n vertices
with epH˚q ě pαs ` εq

`

t
k

˘`

n
t

˘k
ě pαs ` ε{2q

`

n
k

˘

.
Since πpGLps, `qq ă αs for every ` P N, we have that H˚ contains a copy of GLps,

`

t
k´1

˘

`

1q with vertex set as in (3.1 ). Fix e P Xp2q. Note that for each i P r
`

t
k´1

˘

` 1s, the
indices fpveijq with j P rk ´ 1s are pairwise distinct, since vei1, . . . , veik´1 are contained in an
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edge together. As H˚ only has t distinct partition classes, we deduce from the pigeonhole
principle that, for some i, i1 P r

`

t
k´1

˘

` 1s with i1 ă i, we have

tfpvei1q, . . . , fpv
e
ik´1qu “ tfpv

e
i11q, . . . , fpv

e
i1k´1qu .

Since H˚ is a blow-up of H, this implies that there is a homomorphism of a zycle of length
at most

`

t
k´1

˘

into H that maps the starting set to tfpvei1q, . . . , fpveik´1qu. As described
in [8 ], “cycling” through any such zycle the right number of times yields a homomorphism
from Zp t

k´1q!
to H that maps the starting set to tfpvei1q, . . . , fpveik´1qu. Note that this

means that there is a homomorphism from LZpi,
`

t
k´1

˘

!q into H that maps the starting
set to tfpve11q, . . . , fpv

e
1k´1qu. Furthermore, observe that for any j, j1 P N with j ď j1

there is a homomorphism from LZpj1,
`

t
k´1

˘

!q to LZpj,
`

t
k´1

˘

!q that preserves the starting
set. Therefore, there is a homomorphism from LZp

`

t
k´1

˘

` 1,
`

t
k´1

˘

!q to H that maps the
starting set to tfpve11q, . . . , fpv

e
1k´1qu. Since the above holds for all e P Xp2q, we obtain

a homomorphism from GLZps,
`

t
k´1

˘

` 1,
`

t
k´1

˘

!q to H. Thus, exhompt, GLZps,
`

t
k´1

˘

`

1,
`

t
k´1

˘

!qq ď pαs ` εq
`

t
k

˘

. Since the sequence

exhom
´

m,GLZps,
`

t
k´1

˘

` 1,
`

t
k´1

˘

!q
¯

`

m
k

˘

is non-increasing in m, this implies that πhompGLZps,
`

t
k´1

˘

` 1,
`

t
k´1

˘

!qq ď αs ` ε. Thus,
we have

αs ď π
´

GLZ
`

s,

ˆ

t

k ´ 1

˙

` 1,
ˆ

t

k ´ 1

˙

!
˘

¯

“ πhom

´

GLZ
`

s,

ˆ

t

k ´ 1

˙

` 1,
ˆ

t

k ´ 1

˙

!
˘

¯

ď αs ` ε ,

where the first inequality holds since if H contains GLZps,
`

t
k´1

˘

` 1,
`

t
k´1

˘

!q, then there
exists a homomorphism from GLps, `q into H for all ` P N. In fact, for all integers m ě 2
and i ě 1, there is a homomorphism from GLps, `q into GLZps, i,mq for all ` P N, so
that αs ď πptGLZps, i,mq : i,m P N,m ě 2uq. Since in the above argument ε ą 0 was
arbitrary, πptGLZps, i,mq : i,m P N, m ě 2uq “ αs.

§4. Concluding remarks

Our earlier paper [1 ] showed that Πpkq contains a subset of order type ω2 when k ě 3.
This is already enough to distinguish it from Πp2q, which has order type ω. In this paper,
we went further, showing that Πpkq contains a subset of order type ω2 when k ě 3. This is
still likely far from the truth and we conjecture that Πpkq contains subsets of any countable
order type when k ě 3. However, it would already be interesting to push our techniques to
handle, say, ω3, ωω, or ε0. It may also be that ´Πpkq contains subsets of any countable



HYPERGRAPHS ACCUMULATE INFINITELY OFTEN 9

order type when k ě 3. This might be difficult, as finding a subset of order type ω would
already show that Πpkq is not well-ordered, itself an interesting open problem. Finally, we
note that a result of Pikhurko [9 ] saying that Πpkq8 has the cardinality of the continuum
for k ě 3 implies that Πpkq8 and, therefore, Πpkqfin has uncountably many accumulation points.
The same may well be true of Πpkq.
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