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Abstract. We show that for every integer k ě 3 the set of Turán densities of k-uniform
hypergraphs has an accumulation point in r0, 1q. In particular, 1{2 is an accumulation
point for the set of Turán densities of 3-uniform hypergraphs.

§1. Introduction

For k P N, a k-uniform hypergraph (or k-graph) H “ pV,Eq consists of a vertex set V
and an edge set E Ď V pkq “ te Ď V : |e| “ ku. Given n P N and a k-graph F , the extremal
number expn, F q is the maximum number of edges in a k-graph H with n vertices that
does not contain a copy of F . The Turán density of F is then given by

πpF q “ lim
nÑ8

expn, F q
`

n
k

˘ ,

where the limit is known, by a simple monotonicity argument [9 ], to be well-defined. The
problem of determining these Turán densities is one of the oldest and most fundamental
questions in extremal combinatorics.

When k “ 2, that is, if F is a graph, πpF q is essentially completely understood, with
the final result, the culmination of work by Turán [14 ], Erdős and Stone [5 ] and Erdős and
Simonovits [4 ], saying that πpF q “ χpF q´2

χpF q´1 , where χpF q is the chromatic number of F . In
contrast, very little is known about Turán densities for k ě 3, with even the problem of
determining the Turán density of the complete 3-graph on four vertices, a question first
raised by Turán in 1941 [14 ], remaining wide open. For more on what is known about
hypergraph Turán densities, we refer the interested reader to the many surveys on the
topic [8 , 10 , 13 ].

Given the difficulty of determining the Turán density of specific 3-graphs, one might
instead try to study the distribution of the set Πpkq “ tπpF q : F is a k-graphu of Turán
densities of k-graphs. For example, by a result of Erdős [3 ] saying that πpF q “ 0 if and
only if F is a k-partite k-graph, we know that there is no k-graph F with πpF q P p0, k!{kkq.
However, this direction turned out to be just as difficult and, beyond that simple result
and the identification of some specific points in the set, very little is known about Πpkq.
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If instead one considers the set Πpkq8 “ tπpFq : F is a family of k-graphsu, more is
known. Of particular note here is the result of Frankl and Rödl [7 ] showing that Πpkq8 is
not well-ordered, thereby disproving the jumping conjecture, for which Erdős had offered
$1000, saying that there is a non-trivial gap or jump between every two elements of Πpkq8 .
For more on the existence and non-existence of jumps, see, for instance, [1 , 6 ].

A more systematic study of Πpkq8 and Πpkqfin “ tπpFq : F is a finite family of k-graphsu
was undertaken by Pikhurko [11 ], who, roughly speaking, showed that for every iterative
blow-up construction H there is some finite family F of k-graphs for which H is an
extremal example. This then allowed him to show that Πpkqfin contains irrational numbers
and that Πpkq8 has the cardinality of the continuum. In particular, his results imply that Πpkqfin

has accumulation points in r0, 1q for all k ě 3, though we remark that the finite families
given by his construction are huge. In this note, we show that the same is true of Πpkq,
that is, that the set of Turán densities of single k-uniform hypergraphs has at least one
accumulation point in r0, 1q for all k ě 3.

Theorem 1.1. For every integer k ě 3, the set Πpkq has an accumulation point in r0, 1q.
Moreover, 1{2 is an accumulation point for Πp3q.

This is a consequence of the following more general result.

Theorem 1.2. For every integer k ě 3, there is some αpkq P r0, 1q such that all of the
following hold:

(1) There is a sequence of k-graphs tFnunPN such that limnÑ8 πpFnq “ αpkq and πpFnq ă
αpkq for all n P N.

(2) For every ε ą 0, there is a k-graph Gε with αpkq ď πpGεq ď αpkq ` ε. More-
over, πptG 1

n
unPNq “ αpkq.

(3) αpkq ď k´2
k´1 and αp3q “ 1{2.

Perhaps surprisingly, the proofs of the first two points are abstract in the sense that
they work without pinpointing αpkq. Regarding these values, it would be interesting to
determine αpkq for k ě 4 or to show that αpkq is itself in Πpkq for k ě 3. In particular,
highlighting the depth of our ignorance about Turán densities, it is not known if 1{2 P Πp3q.

§2. Preliminaries

Given an integer t and a k-graph F , let BpF, tq be the t-blow-up of F , the k-graph
obtained from F by replacing every vertex by t copies of itself. The following phenomenon,
which we make extensive use of, is well-known (see, for instance, Lemma 2.1 and Theorem 2.2
in [10 ], as well as the subsequent discussion).
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Theorem 2.1 (Supersaturation). (1) For every k-graph F and δ ą 0, there are ε ą 0
and n0 such that every k-graph on n ě n0 vertices with at least pπpF q ` δq

`

n
k

˘

edges
contains at least εn|V pF q| copies of F .

(2) For every integer t and k-graph F , πpBpF, tqq “ πpF q.
(3) Let F be a k-graph and let F be the (finite) family of k-graphs F 1 whose vertex

set is a subset of V pF q and for which there exists a homomorphism ϕ : F Ñ F 1.
Then πpFq “ πpF q.

(4) For every k-graph F and δ ą 0, there are ε ą 0 and n0 such that, for all v P V pF q,
every k-graph on n ě n0 vertices with at least pπpF q ` δq

`

n
k

˘

edges contains the k-
graph obtained from F by replacing v by εn copies of v.

§3. Proof of Theorem 1.2 

For k, ` P N, we define the k-uniform ladder of length ` to be the k-graph L
pkq
` with

vertex set

V pL
pkq
` q “ tvij : i P r`s, j P rk ´ 1su Ÿ ttu

and edge set

EpL
pkq
` q “ tvi1 . . . vik´1vi`1j : i P r`´ 1s, j P rk ´ 1su Y tv`1 . . . v`k´1tu .

For m P N, we further define the k-graph Lpkq` pmq to be the k-graph with vertex set

V pL
pkq
` pmqq “ tvij : i P r`s, j P rk ´ 1su Ÿ T ,

where T is some set of size m, and edge set

EpL
pkq
` pmqq “ tvi1 . . . vik´1vi`1j : i P r`´ 1s, j P rk ´ 1su Y tv`1 . . . v`k´1t : t P T u .

Lastly, following [12 ], for an integer ` ě 2, we define the k-uniform zycle of length ` to be
the k-graph Zpkq` with vertex set V pZpkq` q “ tvij : i P Z{`Z, j P rk ´ 1su and edge set

EpZ`q “ tvi1 . . . vik´1vi`1j : i P Z{`Z, j P rk ´ 1su .

Let k be an integer with k ě 3. We first show that there is some αpkq P p0, 1q such
that lim`Ñ8 πpL

pkq
` q “ αpkq while πpLpkq` q ă αpkq for all ` P N. Then we show that for

every ε ą 0 there is some M P N such that πpZpkqM q ď αpkq ` ε. Lastly, we will argue
that αpkq ď k´2

k´1 with equality for k “ 3.
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3.1. Part I. Note that, for every ` P N, Lpkq` is contained in a sufficiently large blow-
up of Kpkq

2pk´1q. Hence, by supersaturation (Theorem 2.1 (2 )), we have that for all ` P
N, πpLpkq` q ď πpK

pkq
2pk´1qq ă 1. It is thus sufficient to show that πpLpkq` q ă πpL

pkq
``1q for

all ` P N. We do this by induction on `. For ` “ 1, this follows from the result of
Erdős [3 ] mentioned in the introduction, since Lpkq1 is k-partite, but Lpkq2 is not. Now assume
that ` ą 1 and we know that πpLpkqi q ă πpL

pkq
i`1q holds for all i P r`´ 1s. Denote by Lpkq` the

(finite) family of k-graphs F whose vertex set is a subset of V pLpkq` q and for which there
exists a homomorphism ϕ : Lpkq` Ñ F . By supersaturation (Theorem 2.1 (3 )), we know
that πpLpkq` q “ πpL

pkq
` q. Therefore, it remains to show that πpLpkq` q ă πpL

pkq
``1q.

Let η “ πpL
pkq
` q ´ πpL

pkq
`´1q and note, by supersaturation (Theorem 2.1 (4 )), that there

is some ε1 such that, for n sufficiently large, every k-graph H on n vertices with at
least pπpLpkq`´1q ` η{2q

`

n
k

˘

edges contains a copy of the k-graph Lpkq`´1pε1nq. Finally, let ε2 !

ε1, η and let n also be large enough that

max
´!

ˇ

ˇπpL
pkq
i q ´

expn, Lpkqi q
`

n
k

˘

ˇ

ˇi P t`´ 1, `, `` 1u
)

Y

!

ˇ

ˇπpLpkq` q ´
expn,Lpkq` q

`

n
k

˘

ˇ

ˇ

)¯

ă ε2 .

(3.1)

Now consider an extremal example H for Lpkq` on n vertices. By our choice of constants,
we know that H contains a copy of Lpkq`´1pε1nq (say with vertex set tvij : i P r` ´ 1s, j P
rk ´ 1su Ÿ T Ď V pHq). If any pk ´ 1q-subset of T is contained in an edge of H, then H
would contain a (possibly) degenerate copy of Lpkq` , i.e., a copy of an element in Lpkq` . Thus,
no pk ´ 1q-subset of T is contained in an edge of H.

Next we add to H a complete nearly balanced k-partite k-graph on T “ T1 Ÿ . . . Ÿ Tk

and call the resulting k-graph H 1. We claim that H 1 is Lpkq``1-free. Assume, for the sake
of contradiction, that it contains a copy of Lpkq``1 (say with vertex set tuij : i P r`` 1s, j P
rk ´ 1su Ÿ ttu Ď V pHq). Since this copy is not contained in H, one of its edges must be
an edge x1 . . . xk P EpH

1q r EpHq, whence we also have x1, . . . , xk P T . In fact, since H
is (in particular) Lpkq` -free, we know that, without loss of generality, there is some i P r`s
with x1 “ ui1 P T1, . . . , xk´1 “ uik´1 P Tk´1. Recall that, by the construction of H 1 and the
discussion in the previous paragraph, any edge of H 1 containing a pk´ 1q-subset of T must
be in EpH 1qrEpHq and must therefore contain exactly one vertex from each of T1, . . . , Tk.
Thus, upi`1q1, . . . , upi`1qk´1 P Tk and so these k ´ 1 vertices do not lie together in any edge
of H 1, contradicting that tuij : i P r` ` 1s, j P rk ´ 1su Ÿ ttu is the vertex set of a copy
of Lpkq``1 in H 1. Hence, H 1 is indeed an Lpkq``1-free k-graph on n vertices.

By (3.1 ), we know that H has at least pπpLpkq` q ´ ε2q
`

n
k

˘

edges. Therefore, H 1 has more
than pπpLpkq` q ´ ε2q

`

n
k

˘

`
`

ε1n
k`1

˘k
ą pπpLpkq` q ` ε2q

`

n
k

˘

edges. Again by (3.1 ), this means
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that πpLpkq``1q ą πpLpkq` q “ πpL
pkq
` q. We have thus proved that lim`Ñ8 πpL

pkq
` q “ αpkq for

some αpkq P p0, 1q with πpLpkq` q ă αpkq for all ` P N.

3.2. Part II. Let ε ą 0 and pick t, n P N such that ε, k´1 " t´1 " n´1 and, for simplicity,
assume that t | n. Now let H be a k-graph with vertex set rts and epHq ě pαpkq ` εq

`

t
k

˘

.
We will show that there is a homomorphism from Z

pkq

p t
k´1q!

into H. Let H˚ “ BpH,n{tq be
the k-graph obtained from H by replacing every vertex i of H by n{t copies of itself, the
set of which we call Vi. For v P V pH˚q, let fpvq denote the index of the partition class
of H˚ that contains v, i.e., if v is one of the copies of a vertex i P V pHq, then fpvq “ i.
Then H˚ is a k-graph on n vertices with epHq ě pαpkq ` εq

`

t
k

˘`

n
t

˘k
ě pαpkq ` ε{2q

`

n
k

˘

.
Since πpLpkq` q ă αpkq for every `, we have that H˚ contains a copy L of Lpkq

p t
k´1q`1. As

above, let V pLq “ tvij : i P r
`

t
k´1

˘

` 1s, j P rk´ 1su Ÿ ttu. Note that for each i P r
`

t
k´1

˘

` 1s,
the indices fpvijq with j P rk´ 1s are pairwise distinct, since vi1, . . . , vik´1 are contained in
an edge together. As H˚ only has t distinct partition classes, we deduce from the pigeonhole
principle that, for some i, i1 P r

`

t
k´1

˘

` 1s with i ă i1, we have tfpvi1q, . . . , fpvik´1qu “

tfpvi11q, . . . , fpvi1k´1qu. Since H˚ is a blow-up of H, this implies that there is a homo-
morphism of a zycle of length at most

`

t
k´1

˘

into H. As described in [12 ], “cycling”
through any such zycle the right number of times yields a homomorphism from Z

pkq

p t
k´1q!

into H, whence exhompt, Zpkqp t
k´1q!

q ď pαpkq ` εq
`

t
k

˘

. Since the sequence exhompm,Zpkqp t
k´1q!

q{
`

m
k

˘

is non-increasing in m, this implies that πhompZpkqp t
k´1q!

q ď αpkq ` ε. Thus, we have

αpkq ď πpZ
pkq

p t
k´1q!

q “ πhompZ
pkq

p t
k´1q!

q ď αpkq ` ε, (3.2)

where the first inequality holds since ifH contains Zpkq
p t

k´1q!
, then there exists a homomorphism

from L
pkq
` into H for all ` P N. In fact, for every integer m ě 2, there is a homomorphism

from L
pkq
` into Zpkqm for all ` P N, so that αpkq ď πptZpkqm : m P N,m ě 2uq. Since in the

above argument ε ą 0 was arbitrary, the Turán density of the family of all k-uniform zycles
is αpkq.

3.3. Part III. In this subsection, we prove that αpkq ď k´2
k´1 with equality for k “ 3. In [2 ],

DeBiasio and Jiang gave the following construction showing that πpZp3q` q ě 1{2 for all ` ě 2.
Let A “ ta1, . . . , at n

2 uu and B “ tb1, . . . , br n
2 su and consider the 3-graph on AYB whose edges

are given by all triples aibjak and aibjbk, with i, j ă k. Thus, by Part II, we have 1{2 ď αp3q.
A result by DeBiasio and Jiang combined with an argument from [12 ] also shows that for
every ε ą 0 there is an ` such that πpZp3q` q ď 1{2`ε. This will also follow from Part II if we
can show that αpkq ď k´2

k´1 . By Parts I and II, it is therefore left to argue that πpLpkq` q ď k´2
k´1

for every ` P N. Given ` P N and ε ą 0, choose n P N such that ε, k´1, `´1 " n´1
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and let H be a k-graph on n vertices with δpHq ě pk´2
k´1 ` εq

`

n
k´1

˘

(a standard induction
argument – see Proposition 4.2 in [10 ] – shows that to prove an upper bound on the Turán
density, we may assume such a minimum degree condition). Let v`1v`2 . . . v`k´1t be an edge
in H. Then the minimum degree condition on H implies that the links of v`1, . . . , v`k´1

have at least ε
`

n
k´1

˘

common edges. Now let v`´11, . . . , v`´1k´1 be k ´ 1 vertices other
than t forming one of these edges. Using that ε, k´1, `´1 " n´1, for each i P r` ´ 2s
we can continue choosing vertices vi1, . . . , vik´1 such that vi1 . . . vik´1 is an edge in the
common intersection of the links of vpi`1q1, . . . , vpi`1qpk´1q and such that vi1, . . . , vipk´1q

are distinct from all previously chosen vertices. Indeed, when choosing vi1, . . . , vik´1,
at most pk ´ 1qp` ´ 1q ` 1 ď k` vertices have been chosen before. Hence, the links
of vpi`1q1, . . . , vpi`1qpk´1q have at least ε

`

n
k´1

˘

´ k`nk´2 ě ε
2

`

n
k´1

˘

common edges which do
not contain any previously chosen vertex. Eventually v11, . . . , v1k´1, . . . , v`1, v`k´1, t form
the vertex set of Lpkq` . Thus, πpLpkq` q ď k´2

k´1 , so that, by Part I, we have αpkq ď k´2
k´1 .

Acknowledgements

We thank Simón Piga and Marcelo Sales for interesting discussions. The first author
was supported by NSF Awards DMS-2054452 and DMS-2348859, while the second author
was partially supported by the Young Scientist Fellowship IBS-R029-Y7.

References

[1] R. Baber and J. Talbot, Hypergraphs do jump, Combin. Probab. Comput. 20 (2011), 161–171. Ò1 

[2] L. DeBiasio and T. Jiang, On the co-degree threshold for the Fano plane, European J. Combin. 36
(2014), 151–158. Ò3.3 

[3] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183–190.
Ò1 , 3.1 

[4] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966),
51–57. Ò1 

[5] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946),
1087–1091. Ò1 

[6] P. Frankl, Y. Peng, V. Rödl, and J. Talbot, A note on the jumping constant conjecture of Erdős, J.
Combin. Theory Ser. B 97 (2007), 204–216. Ò1 

[7] P. Frankl and V. Rödl, Hypergraphs do not jump, Combinatorica 4 (1984), 149–159. Ò1 

[8] Z. Füredi, Turán-type problems, Surveys in combinatorics 1991 (Guildford, 1991), London Math. Soc.
Lecture Note Ser., vol. 166, Cambridge Univ. Press, Cambridge, 1991, pp. 253–300. Ò1 

[9] G. Katona, T. Nemetz, and M. Simonovits, On a problem of Turán in the theory of graphs, Mat.
Lapok 15 (1964), 228–238 (Hungarian, with English and Russian summaries). Ò1 

[10] P. Keevash, Hypergraph Turán problems, Surveys in combinatorics 2011, London Math. Soc. Lecture
Note Ser., vol. 392, Cambridge Univ. Press, Cambridge, 2011, pp. 83–139. Ò1 , 2 , 3.3 

[11] O. Pikhurko, On possible Turán densities, Israel J. Math. 201 (2014), 415–454. Ò1 



HYPERGRAPHS ACCUMULATE 7

[12] S. Piga and B. Schülke, Hypergraphs with arbitrarily small codegree Turán density (2023), available at
arXiv:2307.02876 . Ò3 , 3.2 , 3.3 

[13] A. Sidorenko, What we know and what we do not know about Turán numbers, Graphs Combin. 11
(1995), 179–199. Ò1 

[14] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436–452
(Hungarian, with German summary). Ò1 

Department of Mathematics, California Institute of Technology, Pasadena, USA
Email address: dconlon@caltech.edu

Extremal Combinatorics and Probability Group, Institute for Basic Science, Daejeon,
South Korea

Email address: schuelke@ibs.re.kr

http://arxiv.org/abs/2307.02876

	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 1.2
	3.1. Part I
	3.2. Part II
	3.3. Part III

	Acknowledgements
	References

