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Abstract

We prove that there exists a constant c such that, for any integer ∆, the Ramsey number
of a bipartite graph on n vertices with maximum degree ∆ is less than 2c∆n. A probabilistic
argument due to Graham, Rödl and Ruciński implies that this result is essentially sharp, up
to the constant c in the exponent. Our proof hinges upon a quantitative form of a hypergraph
packing result of Rödl, Ruciński and Taraz.

1 Introduction

For a graph G, the Ramsey number r(G) is defined to be the smallest natural number n such
that, in any two-colouring of the edges of Kn, there exists a monochromatic copy of G. That these
numbers exist was proven by Ramsey [19] and rediscovered independently by Erdős and Szekeres
[10].
Whereas the original focus was on finding the Ramsey numbers of complete graphs, in which case
it is known that

√
2
t ≤ r(Kt) ≤ 4t,

the field has broadened considerably over the years. One of the most famous results in the area
to date is the theorem, due to Chvatál, Rödl, Szemerédi and Trotter [7], that if a graph G, on n
vertices, has maximum degree ∆, then

r(G) ≤ c(∆)n,

where c(∆) is just some appropriate constant depending only on ∆. Their proof makes use of the
regularity lemma and because of this the bound it gives on the constant c(∆) is (and is necessarily
[11]) very bad.
The situation was improved somewhat by Eaton [8], who proved, by using a variant of the regularity
lemma, that the function c(∆) may be taken to be of the form 22c∆ . Such a result follows for
bipartite graphs from an earlier theorem of Komlós (Corollary 7.6, [15]).
This bound was not best for long, for Graham, Rödl and Ruciński proved [13], by a beautiful
method which avoids any use of the regularity lemma, that

c(∆) ≤ 2c∆(log ∆)2
.
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For bipartite graphs they were able to do even better [14], showing that

c(∆) ≤ 2c∆ log ∆.

Moreover, they proved that these results were almost sharp in that there exists a bipartite graph
G on n vertices, with maximum degree ∆, for which

r(G) ≥ 2c∆n.

Our main result in this paper is a proof that for bipartite graphs this latter bound is, up to the
constant in the exponent, the correct one.

Theorem 1 For all bipartite graphs G on n vertices with maximum degree ∆

r(G) ≤ 2(2+o∆(1))∆n.

The proof is related to a lemma whose use has become very common in Ramsey theory of late
(see for example [12, 16, 22, 2, 18, 24, 23]). This lemma states that if we have a bipartite graph
G = (A,B;E) of density α, then, given a fixed constant β < α, we can find a large induced
subgraph (how large depends on the choice of β) on vertex sets A′ and B such that every subset
of A′ of size r has at least βr|B| neighbours in B. We give a non-standard version of this lemma.

Lemma 1 Let G = (A,B;E) be a bipartite graph with |A| = |B| = N . Suppose that the graph has
density α, that is that there are αN2 edges. Then, for any β < α and any r, s ∈ N, there exists a
set A′ ⊂ A of size greater than αs

2 N which contains at most 4βrs

αs

(
N
r

)
r-tuples which have less than

βrN common neighbours.

Proof: For each vertex v, let d(v) be its degree. For any given vertices b1, · · · , bs ∈ B, let I be
the set of common neighbours. What is the expectation of |I| over all possible random choices of
b1, · · · , bs (allowing repetitions)? If we apply Jensen’s inequality, we see that

E(|I|) =
∑
v∈A

P(v ∈ I) =
∑
v∈A

(
d(v)
N

)s

≥
N
(P

v∈A d(v)

N

)s
N s

=
N(αN)s

N s
= αsN.

Therefore we see that with probability at least αs/2 we have |I| ≥ αs

2 N .
We also have that the expected number of bad r-tuples, that is r-tuples which have less than βrN
common neighbours, is at most

βrs
(
N

r

)
.

To see this note simply that any such bad r-tuple has at most βrn neighbours in B and therefore
the probability that such an r-tuple be chosen is βrs. Thus, by Markov’s inequality, the probability
that the number of bad r-tuples is larger than 4βrs

αs

(
N
r

)
is at most αs/4.
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We therefore see that with positive probability we may choose a set A′ of size at least αs

2 N which
contains at most 4βrs

αs

(
N
r

)
bad r-tuples. 2

This lemma is normally applied by choosing an appropriate constant s and showing that the number
of bad r-tuples is smaller than the number of vertices. If we now delete one vertex for each bad
r-tuple we get a graph which contains no bad r-tuples. This kind of graph is very well-behaved and
we can easily find embedded graphs within it. For example, if we have such a graph for r = ∆ and
we want to find a graph of maximum degree ∆ within it, then, since we know that every set of ∆
points has at least β∆N neighbours, we can easily embed any graph H = (U, V ;F ) with maximum
degree ∆ for which |U | ≤ |A′| and |V | ≤ β∆N . The problem is that, typically, to be able to delete
the bad ∆-tuples, we need to take s to be of the order of logN and this implies that |A′| will be
smaller than N ε for some ε < 1.
The main concern of this paper is to avoid this annoying loss of size. What we will do is show that
the set of bad ∆-tuples are not such a hassle as at first appears and that we may avoid them without
deleting them outright. Indeed, suppose that we are given a bipartite graph H = (U, V ;F ) with
maximum degree ∆. Then, for each vertex v ∈ V , let D(v) be the set of neighbours. Each such
set may be considered to be a hyperedge in U . Since |D(v)| ≤ ∆ for all v, we may, by adding some
dummy vertices, assume that the resulting hypergraph is ∆-uniform. Now, given a two-coloured
graph G = (A,B;E), one of the colours, say red, has density greater than 1/2. Using our lemma, we
see that there is a subset A′ of A of size |A|/2s which contains at most βs∆

(
N
∆

)
bad ∆-tuples, that

is, ∆-tuples with less than β∆N neighbours. The set of bad ∆-tuples again defines a ∆-uniform
hypergraph. If now we could embed the hypergraph defined by H in the complement of that defined
by the bad ∆-tuples, this would allow us to embed our graph H within the red subgraph of our
complete graph, because, choosing N ≥ n/β∆, we see that every collection of ∆ vertices in U which
have a common neighbour in H will have n common neighbours in G. This naturally leads us to
the following question: under what circumstances can we pack two hypergraphs? This will be the
subject of the next section.

2 Packing hypergraphs

Let A and B be k-uniform hypergraphs, on vertex sets V and V ′ respectively, and suppose, without
loss of generality, that |V | ≤ |V ′|. We say that an injection ψ : V → V ′ is a packing of A and B if
the edge sets of B and ψ(A) are disjoint.
Recall that, for a hypergraph H, ∆j(H) denotes the maximum j-tuple degree in H, that is,

∆j(H) = max
T∈[V ]j

degH(T )

where

degH(T ) = |{e ∈ H : T ⊂ e}|.

For j = 1, we will simply write ∆(H) = ∆1(H).
The following result, which is the natural generalisation of the well-known graph packing result of
Spencer and Sauer [21] to hypergraphs, was proven by Rödl, Ruciński and Taraz (Proposition 2.1,
[20]):
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Proposition 1 Let A and B be k-uniform hypergraphs on no more than n vertices. Then, if

∆(A)∆k−1(B) + ∆(B)∆k−1(A) ≤ n− k + 1,

there is a packing of A and B.

For hypergraphs, this isn’t a particularly strong result, but it may be improved considerably by
being more careful. We will need some more notation:
Given a k-uniform hypergraph H, let Hk−1 be the shadow of H on the (k − 1)st level, that is,
the family of all (k − 1)-element sets that are contained in any hyperedge of H. Now, given two
k-uniform hypergraphs A and B, define

Bv = {e ∈ [V ]k−1 : e ∪ {v} ∈ B}

and

Dψ(B) = max
v∈V
|Bv ∩ ψ(Ak−1)|.

We may now state a more useful packing result, due again to Rödl, Ruciński and Taraz (Lemma
2.1, [20]):

Proposition 2 Let A and B be k-uniform hypergraphs on no more than n vertices. If there exists
an attempted packing ψ such that

∆(A)∆k−1(B) +Dψ(B)∆k−1(A) + |B ∩ ψ(A)|∆(A)∆k−1(A) ≤ n− k + 1

then there is a packing of A and B.

Rödl, Ruciński and Taraz then used this result and an application of the probabilistic method in
order to prove the following beautiful packing result (Theorem 2.1, [20]):

Theorem 2 For all integers k ≥ 2 and ∆ ≥ 1, there exist ε > 0 and n0 ∈ N such that, if A and B
are k-uniform hypergraphs on no more than n vertices, where n > n0, and
(i) ∆(A) ≤ ∆,
(ii) ∆(B) ≤ εnk−1,
(iii) ∆k−1(B) ≤ εn,
then there is a packing of A and B.

This is already very close to satisfying our needs. We would like to prove that we can pack a sparse
hypergraph with bounded maximum degree ∆ and a hypergraph with at most εnk edges, for some
appropriately chosen ε. Unfortunately we don’t really have any local control over the maximum
degree of the larger hypergraph so we can’t apply this theorem directly. There is, however, one
further packing theorem in [20] which proves more equal to the task. To state this theorem we will
again need some notation:

For a k-uniform hypergraph H and a real number ε > 0, let H(ε)
k−1 be the (k−1)-uniform hypergraph

consisting of all (k − 1)-element sets T with degH(T ) > εn. Moreover, for each j with 2 ≤ j ≤ k,
define H

(ε)
j−1 to be the (j − 1)-uniform hypergraph consisting of all (j − 1)-element sets T with

deg
H

(ε)
j

(T ) > εn. The theorem of Rödl, Ruciński and Taraz (Theorem 2.2, [20]) is now as follows:
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Theorem 3 For all integers k ≥ 2 and ∆ ≥ 1, there exist ε > 0 and n0 ∈ N such that, if A and B
are k-uniform hypergraphs on no more than n vertices, where n > n0, and
(i) ∆(A) ≤ ∆,

(ii) B(ε)
1 = ∅,

then there is a packing of A and B. Moreover, ε and n0 may be taken to be 1
100kc∆d22k and

100kc∆d22k respectively, where c and d are just some constants.

This theorem is exactly as stated by Rödl, Ruciński and Taraz except for the quantitative bounds
on ε and n0 that we have given. In order to verify that this quantitative bound does hold we will
give a detailed sketch of the proof concentrating on those aspects where extra care is necessary.

Proof: For k = 2 the theorem follows from the result of Sauer and Spencer. For k ≥ 3, we will
prove the theorem by inductively packing B

(ε)
j and Aj for each j = 2, · · · , k. We will study the

properties of a randomly chosen embedding ψ : V ← V ′.
Note that

|B(ε)
j | ≤

n|B(ε)
j−1|+ εn

(
n
j−1

)
j

,

and therefore, by induction,

|B(ε)
j | ≤

ε(j − 1)nj

j!
.

Moreover, the size of the j-shadow Aj of A satisfies

|Aj | ≤
(
k

j

)
∆n ≤ 2k∆n.

Thus the expected number of conflicts between B
(ε)
j and ψ(Aj) is at most

|Aj ||B(ε)
j |(

n
j

) ≤ 2εk2k∆n,

provided n ≥ k3. Therefore, by Markov’s inequality, we have, with probability 1/2k, that

|B(ε)
j ∩ ψ(Aj)| ≤ 4εk22k∆n.

Now, for each vertex v of the hypergraph B, let Bj
v be the (j − 1)-hypergraph

Bj
v = {e ∈ [V ]k−1 : e ∪ {v} ∈ B(ε)

j }

and

Dj
ψ(B) = max

v∈V
|Bj

v ∩ ψ(Aj−1)|.
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For each j, we have that

|Bj
v| ≤

ε(j − 1)nj−1

(j − 1)!
.

This latter inequality, and more specifically the factorial factor in the denominator, is crucial for
our purposes (and was ignored in [20]). The proof is similar to that bounding |B(ε)

j | above, and
follows from the simple inequality

|Bj
v| ≤

n|Bj−1
v |+ εn

(
n
j−2

)
j − 1

.

Define Xj
v to be the random variable given by

Xj
v = |Bj

v ∩ ψ(Aj−1)|.

We have that

E(Xj
v) =

|Bj
v||Aj−1|(
n
j−1

) ≤ 2εk2k∆n,

provided again that n ≥ k3.
At this stage a rather involved application of Chernoff’s inequality (which we omit, since it is almost
exactly the same as that in [20]) implies that, for some appropriate c and d and n ≥ 100kc∆d

ε , we
have, with probability 1− 1/4kn,

Xj
v ≤ 4εk2k∆n.

Therefore, with probability 1− 1/4k, we have

Dψ(B(ε)
j ) ≤ 4εk2k∆n.

We see, therefore, that with non-zero probability, we may choose a mapping ψ0 such that, for all
j = 2, · · · , k, the number of conflicts

|B(ε)
j ∩ ψ0(Aj)| ≤ 4εk22k∆n,

and also

Dψ0(B(ε)
j ) ≤ 4εk2k∆n.

The remainder of the proof will be concerned with showing that we may remove conflicts of all
orders (that is, all intersections of B(ε)

j with ψ0(Aj)). We will start by removing conflicts of small
order, by switching appropriate ‘bad’ vertices with ‘good’ ones. To be more precise, for each conflict,
of any possible order, choose a vertex involved in the conflict. There are at most 4εk32k∆n such
vertices. Every time that we switch a vertex we will be switching one of these with some other
vertex. We will do this so as to ensure that no extra conflicts of smaller order are created, but
conflicts of higher order might well be. In any case, there will always be a set of size at most
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4εk32k∆n which represents all conflicts. By the time we remove all conflicts of order k we will have
no conflicts remaining so we will be done.
We proceed by induction. Since there are no conflicts of order 1, there is nothing to do in this case.
So suppose that we have eliminated all conflicts of order i < j and that we are trying to eliminate
conflicts of order j. Note that at this step our initial embedding ψ0 may have been replaced by
another embedding ψ0, which, as we shall see, has related properties. Let T ∈ B(ε)

j be a conflict
of size j. We would like to swap one of the vertices x of T (which must be one of those that we
have fixed from the start) with some other vertex y without producing any new conflicts of size j
or less. If we cannot swap x with y then one of two possibilities must hold. For some i ≤ j, either
there exists a T ′ such that

T ′ ∪ {x} ∈ ψ(Ai), T ′ ∪ {y} ∈ B(ε)
i ,

or there exists T ′′ for which

T ′′ ∪ {x} ∈ B(ε)
i , T ′′ ∪ {y} ∈ ψ(Ai).

The question now arises: how many such vertices y can be ruled out by these conditions? For
any i there are at most 2k∆ choices of T ′ for which T ′ ∪ {x} ∈ Ai and because T ′ 6∈ B(ε)

i−1 (by the
induction hypothesis), at most εk2k∆n possibilities for y are ruled out by the first case (the extra
k comes from counting over the i). In the second case there are at most |Bi

x ∩ ψ(Ai−1)| choices for
T ′′ and any such choice gives rise to at most k∆ choices of y (because T ′′ is contained in at most ∆
edges of A). It is tempting now to use our bound on Dψ(B), but we must be careful. Any switch
that we have done may potentially increase the maximum value of |Bi

v ∩ψ(Ai−1)| by ∆(Ai−1) (any
vertex may belong to this many sets in Ai−1) and we may make as many as 4εk42k∆n switchings
overall (changing each vertex in each turn). Therefore the value of |Bi

x ∩ ψ(Ai−1)| may be as large
as

Dψ0(B(ε)
i ) + 4εk4∆(Ai−1)2k∆n ≤ 4εk2k∆n+ 4εk422k∆2n,

since ∆(Ai) ≤ 2k∆. Therefore, in the second case, there are at most

4εk32k∆2n+ 4εk622k∆3n

bad choices for y (we get an extra k from counting over the i). If we now choose

ε =
1

15k6∆322k

we find that the total number of bad choices for y is smaller than n− k + 1 and therefore we can
swap in such a way as to remove our conflict of size j. The result therefore follows. 2

The theorem that we will apply to prove our main result is the following corollary of Theorem 2.4:

Corollary 1 For all integers k ≥ 2 and ∆ ≥ 1, there exist δ > 0 and n0 ∈ N such that, if A and
B are k-uniform hypergraphs on n/2 and n vertices respectively, and
(i) ∆(A) ≤ ∆,
(ii) |B| ≤ δ

(
n
k

)
,

then there is a packing of A and B. Moreover, δ and n0 may be taken to be 1

100kkck∆dk22k2 and
200kc∆d22k respectively, where c and d are just some constants.
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Proof: Note that

|B(ε)
j | ≥

εn|B(ε)
j−1|
j

,

and therefore

|B(ε)
1 | ≤

δn

εk−1
.

If we choose δ ≤ εk−1/4, we then see that |B(ε)
1 | ≤ n/2. Removing all of these points we have

B
(ε)
1 = ∅.

Applying Theorem 2.4 to the graph that remains, we see that there exists a packing, as required.
2

3 Finding sparse bipartite graphs

We are now ready to give the proof of Theorem 1.1. More precisely, we prove the following result:

Theorem 4 There exists a constant C such that, for a bipartite graph H with maximum degree ∆
on n ≥ 22∆+C log ∆ vertices,

r(H) ≤ 22∆+C log ∆n.

Proof: Suppose that we have a bipartite graph G = (A,B;E) with |A| = |B| = N the edges of
which have been coloured red and blue. One of the colours, say red, has density greater than 1/2.
If we apply Lemma 1.2 to this graph, with r = ∆, s = 2∆ and

β =
1

22+C log ∆/∆
,

for some C to be chosen large, we find a set A′ of size at least N/22∆+1 which contains at most

1
24∆2+C′∆ log ∆

(
N

∆

)
≤ 1

22∆2+C′′∆ log ∆

(
|A′|
∆

)
bad ∆-tuples, for some C ′, C ′′ depending only on C.
Now, associate to the graph H = (U, V ;F ), with |U |, |V | ≤ n, the ∆-uniform hypergraph whose
edge set is the set of neighbours D(v) of any vertex v ∈ V . If we add dummy vertices to ensure
that every vertex has a corresponding hyperedge the resulting hypergraph has at most ∆n vertices.
Now, by Corollary 2.5, applied with k = ∆, we see that if we choose C ′′ large enough (slightly
larger than c+ d will do), and take

N

22∆+1
≥ 2∆n,

we may pack the set of bad ∆-tuples and the hypergraph formed by H.
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Fix such a packing. Then, for each hyperedge corresponding to a vertex v ∈ V , there are at least
N/22∆+C log ∆ vertices to which they are connected. Taking

N ≥ 22∆+C log ∆n,

we see that there are always n vertices to choose from, so even if we have already chosen some of
these vertices there will always be some left. We therefore see that we can find a copy of H in the
red component of G, as required. 2

Some extra consideration now allows us to tidy up this result to get our main result:

Corollary 2 There exists a constant D such that, for a bipartite graph H with maximum degree
∆ on n vertices,

r(H) ≤ 22∆+D log ∆n.

Proof: For n ≥ 22∆+C log ∆, the result follows immediately from Theorem 3.1, which tells us that

r(H) ≤ 22∆+C log ∆n.

For n < 22∆+C log ∆, we use Lemma 1.2 in the more usual way, by simply removing all the bad
∆-tuples. More precisely, suppose we are given a two-colouring of a bipartite graph G = (A,B;E)
with |A| = |B| = N , and suppose also that the colour red has density greater than 1/2. Applying
Lemma 1 with r = ∆, s = 2∆ +C ′ log ∆ (for some C ′ to be chosen later) and β = 1/4 tells us that
we have a set A′ ⊂ A with size at least N/22∆+C′ log ∆+1 containing at most

1
24∆2+2C′∆ log ∆−O(∆)

(
N

∆

)
bad ∆-tuples. But for

N = 22∆+C′ log ∆+1n ≤ 24∆+(C+C′) log ∆+1,

this is necessarily less than 1 (provided C ′ is chosen appropriately), so we have no bad ∆-tuples.
Therefore, noting that every ∆-tuple in A has a set of common neighbours of size N/22∆, and
taking N = 22∆+C′ log ∆n, we’re done. 2

4 Concluding remarks

It seems unlikely that our method can be extended to improve upon the general upper bound for
sparse Ramsey numbers. It would, however, be very interesting to obtain the correct bound for
this problem as it could potentially allow a solution to the following problem of Erdős (see [6], [9]):

Problem 1 Does there exist a constant c such that

r(G) ≤ 2c
√
e(G)?
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The reason underlying this belief is that the best known result on this problem,

r(G) ≤ 2c
√
e(G) log e(G),

due to Alon, Krivelevich and Sudakov [2], is proved by applying the methods of Graham, Rödl and
Ruciński [13]. There is, however, no guarantee that the determination of the correct asymptotic
for sparse Ramsey numbers would yield the full conjecture. Accordingly, the interesting question
of determining the correct upper bound for sparse Ramsey numbers must be stated as another
independent open problem:

Problem 2 Does there exist a constant c such that, for all graphs G on n vertices with maximum
degree ∆,

r(G) ≤ 2c∆n?

Note added in proof. It recently came to the author’s attention that the main theorem of this
paper, that for any bipartite graph G on n vertices with maximum degree ∆ the Ramsey number
r(G) is smaller than 2c∆n, has been proved simultaneously and independently by Jacob Fox and
Benny Sudakov. They give the bound r(G) ≤ ∆2∆+5n.
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[13] Graham, R. L., Rödl, V. and Ruciński, A. (2000) On graphs with linear Ramsey numbers. J.
Graph Theory 35 176–192.
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