Lecture 9

A graph H is said to be p-arrangeable if there is an ordering v_1, \ldots, v_n of the vertices of H such that, for every vertex v_i, the set of left neighbours of the set of right neighbours of v_i has size at most p. The following theorem, generalising the result about graphs of bounded maximum degree, is due to Chen and Schelp.

Theorem 1 For every p, there exists $c(p) > 0$ such that, if H is a p-arrangeable graph with n vertices,

$$r(H) \leq c(p)n.$$

The best known value of $c(p)$, due to Graham, Rödl and Ruciński, is $2^{cp \log^2 p}$. One corollary is that planar graphs have linear Ramsey numbers. This follows because planar graphs are known to be 10-arrangeable.

All of these results on graphs of bounded maximum degree and bounded arrangeability stem from an important conjecture of Burr and Erdős. A graph H is said to be d-degenerate if there is an ordering v_1, \ldots, v_n of the vertices of H such that, for every $1 \leq i \leq n$, the vertex v_i has at most d left neighbours. Equivalently, every subgraph of H has a vertex of degree at most d. The Burr-Erdős conjecture states that for every d, there should exist $c(d) > 0$ such that, for every d-degenerate graph on n vertices, $r(H) \leq c(d)n$. This remains open.

The best result, due to Fox and Sudakov, is that, for each d, there exists $c(d) > 0$ such that, if H is a d-degenerate graph with n vertices, then $r(H) \leq 2^{c(d)\sqrt{\log n}}$. So there is an $n^{1+o(1)}$ bound. Here we prove such a bound when H is bipartite.

Lemma 1 Let $t, r \geq 2$ and let G be a bipartite graph with N vertices on either side and at least $2N^{2-1/(t^2r)}$ edges. Then G contains two subsets U_1 and U_2 such that, for $k = 1, 2$, every r-tuple in U_k has at least $m = N^{1-1.8/t}$ common neighbours in U_{3-k}.

Proof: Let $q = \frac{7}{4}rt$. Note that the density of G is at least $\alpha = 2N^{-1/(t^2r)}$ and apply the dependent random choice lemma with α, $\beta = N^{-1.8/t^2r}$, $s = t^2r$ and q. Then we get a set of size at least $2N^{1-1/t}$ with fewer than

$$4\beta^q \alpha^{-s} \left(\begin{array}{c} N \\ q \end{array} \right) \leq 4\beta^q(N-1)\frac{Nq}{q!} < 1$$

bad q-tuples, where a q-tuple is bad if it has fewer than $\beta^q N = N^{1-1.8/t}$ common neighbours. For each bad q-tuple remove a vertex. This leaves us with a set of size at least $N^{1-1/t}$ where every q-tuple is good.

Choose a random subset $T \subset U_1$ consisting of $q-r$ (not necessarily distinct) uniformly chosen vertices of U_1. Since $t \geq 2$, we have $q-r = \frac{7}{4}rt - r \geq \frac{5}{4}rt$. Let U_2 be the set of common neighbours of T. The probability that U_2 contains a subset of size r with at most m common neighbours in U_1 is at most

$$\left(\begin{array}{c} N \\ r \end{array} \right) \left(\frac{m}{|U_1|} \right)^{q-r} \leq \frac{N^r}{r!} N^{-0.8(q-r)/t} \leq 1/r! < 1,$$

where we use that $m = N^{1-1.8/t}$ and $|U_1| \geq N^{1-1/t}$.

Therefore, there is a choice of T such that every subset of U_2 of size r has at least m common neighbours in U_1. Consider now an arbitrary subset S of U_1 of size at most r. Since $S \cup T$ is a subset of U_1 of
size at most \(q \), this set has at least \(m \) common neighbours in \(G \). By the definition of \(U_2 \) all common neighbours of \(T \) in \(G \) lie in \(U_2 \). Therefore, \(N(S \cup T) \subset N(T) \subset U_2 \). Hence \(S \) has at least \(m \) common neighbours in \(U_2 \), implying the result.

The usefulness of this lemma is that the criteria on \(U_1 \) and \(U_2 \) is easily enough to embed an \(r \)-degenerate graph.

Lemma 2 Let \(G \) be a graph with vertex subsets \(U_1 \) and \(U_2 \) such that, for \(k = 1, 2 \), every subset of at most \(r \) vertices in \(U_k \) have at least \(n \) common neighbors in \(U_{3-k} \). Then \(G \) contains every \(r \)-degenerate bipartite graph \(H \) with \(n \) vertices.

Proof: Let \(v_1, \ldots, v_n \) be an ordering of the vertices of \(H \) such that, for \(1 \leq i \leq n \), vertex \(v_i \) has at most \(r \) neighbors \(v_j \) with \(j < i \). Let \(A_1 \) and \(A_2 \) be the two parts of \(H \). We find an embedding \(f : V(H) \to V(G) \) of \(H \) in \(G \) such that the image of the vertices in \(A_k \) belongs to \(U_k \) for \(k = 1, 2 \). We embed the vertices of \(H \) one by one, in the above order. Without loss of generality, suppose that the vertex \(v_i \) we want to embed is in \(A_1 \). Consider the set \(\{f(v_j) : j < i, (v_j, v_i) \in E(H)\} \) of images of neighbors of \(v_i \) which are already embedded. Note that this set belongs to \(U_2 \), has cardinality at most \(r \) and therefore has at least \(n \) common neighbors in \(U_1 \). All these neighbors can be used to embed \(v_i \) and at least one of them is yet not occupied, since so far we embedded less than \(n \) vertices. Pick such a neighbor \(w \) and set \(f(v_i) = w \).

Putting Lemmas 1 and 2 together gives the following density result.

Corollary 1 If \(r, t \geq 2 \) and \(G \) is a bipartite graph with \(N \) vertices on each side and at least \(2N^2 - 1/(t^3r) \) edges, then \(G \) contains every \(r \)-degenerate bipartite graph with at most \(N^{1-1.8/t} \) vertices.

The required Ramsey statement is a simple corollary of this result.

Corollary 2 The Ramsey number of every \(r \)-degenerate bipartite graph \(H \) with \(n \) vertices, \(n \) sufficiently large, satisfies

\[
r(H) \leq 2^{8r^{1/3}(\log n)^{2/3}} n.
\]

Proof: In every two-colouring of the edges of the complete bipartite graph \(K_{N/2, N/2} \), one of the color classes contains at least half of the edges. Let \(N = 2^{8r^{1/3}(\log n)^{2/3}} n \) and let \(t = \frac{1}{2} \left(\frac{r}{1} \log n \right)^{1/3} \). Then \(2N^2 - 1/(t^3r) \leq \frac{1}{2} \left(\frac{N}{2} \right)^2 \) and and \(N^{1-1.8/t} \geq n \). By Corollary 2, the majority color contains a copy of \(H \). \(\square \)