
Lecture 8

In this lecture we will give a proof that, for bipartite graphs H with n vertices and maximum degree
∆, the Ramsey number satisfies r(H) ≤ 2c∆n. This was solved independently by the author and by
Fox and Sudakov. We will begin by proving what is known as the dependent random choice lemma.
This shows that every dense graph contains a large set of vertices U such that all (or almost all) small
subsets of U have many common neighbours. This property is very useful because it allows one to
greedily embed sparse bipartite graphs.

Lemma 1 Let G = (A,B;E) be a bipartite graph with |A| = |B| = N . Suppose that the graph has
density α, that is that there are αN2 edges. Then, for any β < α and any r, s ∈ N, there exists a set
A′ ⊂ A of size greater than αs

2 N which contains at most 4βrs

αs

(
N
r

)
r-tuples with less than βrN common

neighbours.

Proof: For each vertex v, let d(v) be its degree. For any given vertices b1, · · · , bs ∈ B, let I be the set
of common neighbours. What is the expectation of |I| over all possible random choices of b1, · · · , bs
(allowing repetitions)? If we apply Jensen’s inequality, we see that

E(|I|) =
∑
v∈A

P(v ∈ I) =
∑
v∈A

(
d(v)
N

)s

≥
N
(∑

v∈A d(v)

N

)s
N s

=
N(αN)s

N s
= αsN.

Therefore we see that with probability at least αs/2 we have |I| ≥ αs

2 N .

We also have that the expected number of bad r-tuples, that is r-tuples in I which have less than βrN
common neighbours, is at most

βrs
(
N

r

)
.

To see this note simply that any such bad r-tuple has at most βrN common neighbours in B and
therefore the probability that such an r-tuple be chosen is βrs. Thus, by Markov’s inequality, the
probability that the number of bad r-tuples is larger than 4βrs

αs

(
N
r

)
is at most αs/4.

We therefore see that with positive probability we may choose a set A′ of size at least αs

2 N which
contains at most 4βrs

αs

(
N
r

)
bad r-tuples. 2

Now we need an embedding lemma. The following, taken from the paper of Fox and Sudakov, is more
than sufficient. To state the lemma we need to note that a hypergraph H is said to be down-closed if,
whenever e1 ⊂ e2 and e2 in an edge of H, then e1 is also an edge.

Lemma 2 Let H be an n-vertex hypergraph with maximum degree d such that each edge of H has
size at most h. If F = (V,E) is a down-closed hypergraph with N = 4n vertices and more than
(1− (4d)−h)

(
N
h

)
edges of cardinality h, then there are at least (N/2)n labeled copies of H in F .

Proof: Call a subset S ⊂ V of size |S| ≤ h good if S is contained in more than (1− (4d)|S|−h)
(

N
h−|S|

)
edges of F of cardinality h. For a good set S with |S| < h and a vertex j ∈ V \S, call j bad with
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respect to S if S ∪ {j} is not good. Let BS denote the set of vertices j ∈ V \S that are bad with
respect to S. The key observation is that if S is good with |S| < h, then |BS | ≤ N/(4d). Indeed,
suppose |BS | > N/(4d), then the number of h-sets containing S that are not edges of F is at least

|BS |
h− |S|

(4d)|S|+1−h
(

N

h− |S| − 1

)
> (4d)|S|−h

(
N

h− |S|

)
,

which contradicts the fact that S is good.

Fix a labeling {v1, . . . , vn} of the vertices of H. Since the maximum degree of H is d, for every vertex
vi there are at most d subsets S ⊂ Li = {v1, . . . , vi} containing vi such that S = e ∩ Li for some edge
e of H. We use induction on i to find many embeddings f of H in F such that for each edge e of H,
the set f(e ∩ Li) is good.

By our definition, the empty set is good. Assume at step i, for all edges the sets f(e ∩ Li) are good.
There are at most d subsets S of Li+1 that are of the form S = e ∩ Li+1 where e is an edge of H
containing vi+1. By the induction hypothesis, for each such subset S, the set f(S\{vi+1}) is good
and therefore there are at most N

4d bad vertices in F with respect to it. In total this gives at most
dN4d = N/4 vertices. The remaining at least 3N/4− i vertices in F\f(Li) are good with respect to all
the above sets f(S\{vi+1}) and we can pick any of them to be f(vi+1). Notice that this construction
guarantees that f(e ∩ Li+1) is good for every edge e in H. In the end of the process we obtain a
mapping f such that f(e ∩ Ln) = f(e) is good for every e in H. In particular, f(e) is contained in at
least one edge of F of cardinality h and therefore f(e) itself is an edge of F since F is down-closed.
This shows that f is indeed an embedding of H in F . Since at step i we have at least 3N/4− i choices
for vertex vi+1 and since N = 4n, we get at least

∏n−1
i=0

(
3
4N − i

)
= (N/2)n labeled copies of H. 2

We can now put these two lemmas together to prove the required Ramsey result. A density result also
holds by a similar method, but we’ll just prove the Ramsey version. We refer the interested reader to
the excellent paper of Fox and Sudakov.

Theorem 1 Let H be a bipartite graph with n vertices and maximum degree at most ∆ ≥ ∆0. Then

r(H) ≤ 28∆42∆n.

Proof: Associate to the graph H = (U, V ;F ), with |U |, |V | ≤ n, the ∆-uniform hypergraph H whose
edge set is the set of neighbours N(v) of any vertex v ∈ V .

One of the colours, red say, must have density at least 1/2. Therefore, if we apply Lemma 1 to the
red graph, with r = ∆, s = ∆, α = 1

2 and β = 1
2

(
1− 3 log 4∆

∆

)
, we find a subset A′ of A of size at least

2−(∆+1)N which contains at most

2∆+2β∆2

(
N

∆

)
≤ 2∆+3β∆2

α−∆2
2∆

(
|A′|
∆

)
≤ 22∆+3e−3∆ log 4∆

(
|A′|
∆

)
≤ (4∆)−∆

(
|A′|
∆

)
bad ∆-tuples, that is ∆-tuples with less than β∆N common neighbours in B. Let F be the down-closed
hypergraph consisting of all good ∆-tuples and their subsets.

By Lemma 2, F must contain at least |A
′|

2

n
copies of H. Fix such an embedding. Then, if ∆ is

sufficiently large, for each hyperedge corresponding to a vertex v ∈ V there are at least 2−∆(4∆)−4N

vertices to which they are connected. Taking N ≥ 28∆42∆n, we see that there are always n vertices
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to choose from, so even if we have already chosen some of these vertices there will always be some left.
We therefore see that we can find a copy of H in the red graph, as required. 2

One simple corollary of this is the following estimate for the Ramsey number of the hypercube. The
hypercube Qn is the graph on vertex set {0, 1}n, where two vertices are adjacent if they differ in
exactly one coordinate.

Corollary 1
r(Qn) ≤ 2(2+o(1))n.

An old conjecture of Burr and Erdös says that this should be O(2n).
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