
Lecture 7

In this lecture, we will prove a lower bound, due to Graham, Rödl and Ruciński, for the Ramsey
number of graphs with n vertices and maximum degree ∆, showing that there is some such graph H

for which r(H) > 2c∆n. The graph H in question will essentially be a random graph on n vertices
with maximum degree ∆.

The proof is based on two lemmas. The first says that if one chooses such a random graph, then the
edges must be quite well distributed. In particular, no matter how we split our vertex set into pieces,
more than half of the bipartite chunks contain edges of the graph.

Lemma 1 There are fixed constants c > 1 > ε with cε > 1 and ∆0 such that, for each ∆ ≥ ∆0

and n ≥ k2, where k = c∆, there exists a graph H with n vertices and maximum degree ∆ with the
following property. For all partitions V = V1 ∪ · · · ∪ Vk of the vertex set V with |Vi| ≤ ε∆n,∑

i<j: eH(Vi,Vj)>0

|Vi||Vj | > 0.55
(
n

2

)
.

Proof: Choose c < (0.7)−1/202 and ε so that cε > 1, but cε2 < 1. Finally, choose ∆0 so that
(cε2)∆0 < 0.1 and

(
c(0.7)1/202

)∆0
< 1/4 . Let d = ∆/202. Consider the random graph G(m, dm) on

m vertices with dm edges, where m = 1.01n. The number of vertices of degree larger than ∆ is at
most 2dm

∆+1 <
m

101 . We form a graph H by deleting the n/100 vertices of largest degree. Note that H
is a graph with n vertices and maximum degree less than or equal to ∆.

We claim that, with positive probability, G(m, dm) has the following property. For every partition
[m] = V1 ∪ · · · ∪ Vk ∪D, k = c∆, with |Vi| ≤ ε∆n and |D| = n/100,∑

i<j: eG(Vi,Vj)>0

|Vi||Vj | > 0.55
(
n

2

)
. (1)

Note that the total number of pairs within the sets Vi is at most∑
i

(
|Vi|
2

)
≤ (cε2)∆0

(
n

2

)
.

Hence, since (cε2)∆0 < 0.1, this contribution is at most 0.1
(
n
2

)
. Therefore, if a partition of the vertices

of G violates (1), the partition must satisfy∑
i<j: eG(Vi,Vj)=0

|Vi||Vj | ≥ 0.35
(
n

2

)
≥ 0.3

(
m

2

)
. (2)

However, the expected number of partitions (V1, . . . , Vk, D) of G(m, dm) which satisfy (2) is smaller
than

(k + 1)m2(k
2)
(0.7(m

2 )
dm

)
((m

2 )
dm

) < 2(k
2)(2k(0.7)d)m < 4m

(
(0.7)1/202c

)∆0m
< 1.

Note that the term (k + 1)m bounds the number of partitions, the 2(k
2) bounds the number of choices

of pairs (Vi, Vj) with no edges between them and the fractions is an upper bound on the probability
that there is no edge between these pairs.
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Hence, there exists a graph G ∈ G(m, dm) satisfying (1). Setting D to be the n/100 vertices in G of
largest degree, the graph H = G\D has the required properties. 2

The second lemma says that with high probability every large subset of vertices of the random graph
G(k, 1

2) spans about the expected number of edges. In actual fact, we need a more precise weighted
version of this lemma.

Lemma 2 For every k ≥ 4, there exists a graph R on [k] such that, for all functions w : [k] → [0, 1]
with

∑k
i=1w(i) = x > (107 + 2) log k,

W =
∑
ij∈R

w(i)w(j) < 0.51
(
x

2

)
and W =

∑
ij 6∈R

w(i)w(j) < 0.51
(
x

2

)
.

Proof: To begin, note that, for any graph R and any fixed x, W is maximised by a choice of weight
function where the set K = {i : 0 < w(i) < 1} is a clique in R or K = ∅. Suppose otherwise, and that
there is some ij 6∈ R for which 0 < w(i), w(j) < 1 and that the sum of weights assigned to the neighbors
of i is at least the sum of weights of the neighbors of j. Let w′(i) = w(i) + ε and w′(j) = w(j) − ε,
where ε = min{1 − w(i), w(j)}. Then W ′ ≥ W and K has one vertex less. Continuing this process
yields that K is a clique or empty. Similarly, W is maximal when K is an independent set in R or
empty.

Now, let R be a randomly chosen graph on [k], where each edge is chosen with probability 1
2 . Then,

with probability at least 1
2 , the largest clique or independent set has size at most 2 log2 k. To see this,

suppose s = 2 log2 k + 1 ≥ 5. Then the expected number of cliques or independent sets of size s is

2
(
k

s

)
2−(s

2) < 2
(e
s

)s
<

1
2
,

which implies the required estimate.

Moreover, by Chernoff’s inequality, the probability that there is a set S ⊂ [k] with s = |S| ≥ 107 log2 k

and

|G(k,
1
2

) ∩ [S]2| > 0.501
(
s

2

)
or |G(k,

1
2

) ∩ [S]2| < 0.499
(
s

2

)
(3)

is smaller than

2
k∑

s=107 log2 k

(
k

s

)
exp

{
−10−6

(
s

2

)
/3
}
< 2

∑
s

(
ek

s
e−10−7s

)s

= 2
∑

s

(e/s)s <
1
2
.

Therefore, there exists some R such that (3) doesn’t hold for any set S of size at least 107 log2 k and
there are no cliques or independent sets of size more than 2 log2 k.

Let T = {i : w(i) = 1}. Then x ≥ t = |T | ≥ x − 2 log2 k, since the largest clique has size 2 log2 k.
Therefore, t ≥ 107 log2 k and so

W ≤
∑

ij∈R∩[T ]2

1 + (2 log2 k)x < 0.501
(
t

2

)
+ (2 log2 k)x < 0.501

(
x

2

)
.

A similar argument applies to establish the bound for W . 2

Putting these two lemmas together now gives the required bound.
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Theorem 1 There exists a constant c′ such that there is a graph H with n vertices and maximum
degree ∆ such that

r(H) ≥ 2c′∆n.

Proof: Suppose that c, ε and ∆0 are given as in Lemma 1. Suppose that ∆ ≥ ∆0 and n ≥ c2∆.
Choose H as given by Lemma 1 and R as given by Lemma 2. Use R to 2-colour the edges of KN ,
where N = (cε)∆n, as follows. Partition [N ] = U1 ∪ · · · ∪ Uk, |Ui| = N/k, where k = c∆. Then, let an
edge of the graph be red if it lies between two different sets Ui and Uj , where ij ∈ R. Colour it blue if
it lies between two different sets Ui and Uj , where ij 6∈ R. If it lies within one of the sets, then colour
it as you please.

We want to show that this colouring has no monochromatic H. Suppose otherwise, and that there is
a red copy H0 of H. Set Vi = V (H0) ∩ Ui. Lemma 1 tells us that∑

ij∈R

|Vi||Vj | ≥
∑

i<j: eH0
(Vi,Vj)>0

|Vi||Vj | > 0.55
(
n

2

)
.

On the other hand, let |Vi| = w(i)N/k. Note that n =
∑

i |Vi| = N/k
∑

iw(i) and, therefore,

x =
∑

i

w(i) =
kn

N
=

c∆n

(cε)∆n
> (107 + 2) log2 k,

for ∆ ≥ ∆1 and ∆1 chosen sufficiently large. By Lemma 2, this implies that∑
ij∈R

|Vi||Vj | =
N

k2

∑
ij∈R

w(i)w(j) <
N2

k2
(0.51)

(
x

2

)
≤ 0.51

(
n

2

)
.

This is a contradiction, so we’re done in the case when ∆ ≥ ∆′ = max{∆0,∆1} and n ≥ c2∆.

For n < c2∆, note that the complete graph K∆+1 is an example since

r(K∆+1) ≥ 2∆/2 ≥ c3∆ > c∆n.

For ∆ < ∆′, let H be a matching with n or n− 1 vertices. Then, since a matching with n vertices has
Ramsey number 3

2n+O(1) and ∆′ is bounded, we can choose a (very small) c1 for which r(H) ≥ c∆
1 n.

2

This result can be strengthened to show that there are bipartite graphsH with n vertices and maximum
degree ∆ for which r(H) > 2c′∆n. In the next lecture, we shall prove a matching upper bound for
bipartite graphs, r(H) ≤ 2c∆n.
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