
Lecture 3

The aim of this lecture is to prove the Ajtai, Komlós and Szemerédi bound r(3, n) ≤ c n2

log n . We will
actually prove quite a bit more - the AKS bound follows as a simple corollary of our main result - but
to state it we will need some definitions.

Given a graph G, let β(G) be the size of the largest independent set in G, that is the largest set of
vertices such that no two vertices are joined by an edge. Let d(G) be the average degree of G, noting
the standard convention that a graph with no vertices has average degree 0.

We will also need to define a very specific function. This function f , defined on and mapping to the
positive integers, is given by f(0) = 1, f(1) = 1

2 and

f(d) = (d log d− d+ 1)/(d− 1)2, d 6= 0, 1.

Note that f is continuous, convex and decreases strictly from 1 to 0. Note also that

f ′ =
(−(d+ 1) log d+ (d2 − 1)/d+ (d− 1)2/d

(d− 1)3

and, therefore,
1− (d+ 1)f(d) + (d− d2)f ′(d) = 0.

We now prove a precise version of the AKS result, in a form due to Shearer.

Theorem 1 Let G be a triangle-free graph of order N and average degree d. Then

β(G) ≥ f(d)N.

Proof: We will prove the bound by induction on N . The result is plainly true for N = 0, so we may
assume that N > 0 and the result is true for all smaller values. Since the result is vacuously true for
d = 0, we may also assume that d > 0.

For each x ∈ V , let d(x) be the degree of x and d̃(x) the average degree of the neighbours of x.
Moreover, let D(x) be the set of neighbours of x. Then Gx is the induced subgraph of G on the subset
V \{x} ∪D(x) and dx = d(Gx), the average degree of the graph Gx. Note that |Gx| = N − d(x)− 1.
Moreover, since the graph G is triangle-free, no two neighbours of x are joined by an edge. Therefore,

e(Gx) = e(G)−
∑

y∈D(x)

d(y) =
Nd

2
− d(x)d̃(x).

By the convexity of f ,
f(dx) ≥ f(d) + (dx − d)f ′(d).

Hence, by induction,

β(G) = 1 +
1
N

∑
x∈V

β(Gx) ≥ 1 +
1
N

∑
x∈V

f(dx)(N − d(x)− 1)

≥ 1 +
1
N

∑
x∈V

(
f(d) + (dx − d)f ′(d)

)
(N − d(x)− 1)

= 1 + f(d)N − f(d)(d+ 1) + (d2 + d)f ′(d) +
f ′(d)
N

∑
x∈V

(dx(N − d(x)− 1)−Nd) ,
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where, in the last line, we used
∑

x∈V d(x) = Nd. Now dx(N − d(x)− 1) = 2e(Gx) and, therefore,

dx(N − d(x)− 1) = Nd− 2d(x)d̃(x).

Hence,

β(G) ≥ 1 + f(d)N − f(d)(d+ 1) + (d+ d2)f ′(d) +
f ′(d)
N

∑
x∈V

(
−2d(x)d̃(x)

)
.

Therefore, since ∑
x∈V

d(x)d̃(x) =
∑
x∈V

∑
y∈D(x)

d(y) =
∑
y∈V

d2(y) ≥ Nd2

and f ′ < 0,
β(G) ≥ f(d)N + 1− f(d)(d+ 1) + (d− d2)f ′(d).

However, as we observed before the proof, 1 − f(d)(d + 1) + (d − d2)f ′(d) = 0. This completes the
proof. 2

For the sake of the next proof, note that, for d ≥ 3,

f(d) =
(d log d− d+ 1)

(d− 1)2
≥ log d

d
.

Theorem 2

r(3, n) ≤ n2

log n
.

Proof: Suppose that there is a colouring of KN without a red triangle or a blue Kn. Let G be the red
graph. Since it is triangle-free, the set of neighbours of every vertex of G are independent. Therefore,
d(G) ≤ n. Thus,

n ≥ β(G) ≥ log n
n

N,

implying the result. 2

Finally, note that, as we mentioned in the last lecture, a variation on the AKS proof may be used to
prove that r(s, n) ≤ cs ns−1

(log n)s−2 . This proof uses a robust version of Theorem 1 where one knows that
G has few triangles rather than no triangles. This remains the state of the art.
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