
Lecture 2

We would also like to have a lower bound for the Ramsey number r(t). The first construction one
might think of is to take t− 1 red cliques, each of size t− 1, where every edge between cliques is blue.
This implies a lower bound r(t) > (t− 1)2. For a brief period, it was believed that this or something
close to it might be sharp. However, as the next theorem shows, this is wildly false.
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Proof: If we two-colour the edges of Kn at random, each colour being chosen with probability 1/2,
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Here we used the bound t! ≥ 2
(

t
e

)t. Therefore, since the expectation is smaller than 1, there must be
some colouring of Kn which contains no monochromatic copy of Kt. Choosing this graph completes
the proof. 2

In the sixty years since Erdős proved this bound, it has only been improved by a factor of 2, by
Spencer. His proof uses the Lovász local lemma, an important probabilistic tool, which often allows
one to show that unlikely events do occur with positive probability.

The bounds given by explicit constructions are much worse. The best-known example, due to Frankl
and Wilson, gives a lower bound of r(t) > t

c log t
log log t . Recently, there has been some work improving

these bounds, but the constructions aren’t as obviously explicit. Instead, they take polynomial time
in t to describe.

We are now going to focus on off-diagonal Ramsey numbers r(s, n), where we fix the value of s and
allow n to grow. An easy upper bound, which follows from the Erdős-Szekeres formula, is

r(s, n) ≤
(
n+ s− 2
s− 1

)
≤ (n+ s− 2)s−1

(s− 1)!
,

or, roughly speaking, csns−1. Ajtai, Komlós and Szemerédi have improved this to

r(s, n) ≤ cs
ns−1

(log n)s−2
.

We shall prove the special case r(3, n) ≤ c n2

log n in the next lecture. For the rest of this lecture, we will
focus on lower bounds.

Theorem 2 For all s ≥ 3, there exists a constant cs such that

r(s, n) ≥ cs
(

n
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)(s−1)/2

.
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Proof: Let N = c
(

n
log n

)(s−1)/2
. Two-colour the edges of KN at random, colouring edges red with

probability p = 1
2N2/(s−1) and blue with probability 1− p. Note that p ≥ 4s log n

n for c sufficiently small.

The expected number of red Ks is at most p(
s
2)N s while the expected number of blue Kn is at most

(1− p)(
n
2)Nn. Adding the two, we see that the expected number of red Ks and blue Kn is at most
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Here we used the inequality 1 − x ≤ e−x. Therefore, there must be some colouring of KN which
contains neither a red Ks or a blue Kn. 2

Another application of the Lovász local lemma allowed Spencer to show that

r(s, n) ≥ cs
(

n

log n

)(s+1)/2

.

For s = 3, this gives r(3, n) ≥ c( n
log n)2. This was improved, by Kim, to give a sharp bound of the form

r(3, n) ≥ c n2

log n using the semi-random method. Recently, Bohman and Keevash have showed how to
improve the lower bound for all s ≥ 4 using the so-called H-free process. Their result says that

r(s, n) ≥ cs(log n)1/(s−2)

(
n
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.

Rather than pursuing any of these routes, we will discuss a more elementary proof, due to Erdős, that
r(3, n) ≥ c( n

log n)2.

Theorem 3 There exists a constant c such that

r(3, n) ≥ c
(

n

log n

)2

.

Proof: Let N = c
(

n
log n

)2
. Let p = a log n

n , where a will be chosen later. We colour the edges of
KN red with probability p and blue with probability 1− p. This graph may have many red triangles.
However, let E be a minimal set of red edges which, if recoloured blue, would give a triangle-free red
graph. We will show that with high probability this recoloured graph contains no blue Kn.

By standard large deviation inequalities, we may assume that there are no vertices of degree greater
than 2pN . For the remainder of the proof, we shall assume this is the case. This means that all
our probabilities should be calculated conditional upon this event. However, since it makes very little
difference to the probabilities, we have chosen to ignore this complication.

For any given subset W of V , the vertex set of KN , let CW be the event that the induced red graph
on W has an edge xy which is not contained in any red triangle xyz with z ∈ V \W . The critical
thing to notice is that if a graph satisfies CW , then any maximal triangle-free subgraph H of the red
graph formed by recolouring edges has blue complement which is not monochromatic on W . To see
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this, suppose that xy has been recoloured blue. Since H is maximal, the graph H + xy must contain
a red triangle xyz. But then, by property CW , z must be in W . But xz and yz are red. Hence, if
we can prove that the event ∩WCW , where the intersection is taken over all W of size n, occurs with
high probability, we will be done.

We will try and estimate the probability P(CW ), where W is a subset of V of size n. If we can show
that P(CW ) ≤ n−n, we will be done, since there are only

(
N
n

)
<
(

eN
n

)
� nn sets W of size n. We will

prove the required inequality in two steps. First, we will show that with high probability, most pairs
in W have no common neighbours outside W . Then we shall prove that any given large set of pairs
of vertices from W must contain an edge.

Let di = e2ipn/i and Ni = n/e2i. Let Pi be the probability that at least Ni vertices in V \W have at
least di vertices in W .

Claim 1 For all 1 ≤ i ≤ log n, the probability Pi ≤ n−2n−1.

Therefore, adding over all 1 ≤ i ≤ log n, we see that with probability at least 1 − n−2n, there are at
most Ni vertices which have di neighbours in W . Moreover, note that, for i0 = (log n − log logn)/2,
di0 > 2pN . Our assumption that all vertices have degree at most 2pN therefore implies that there are
no vertices with degree di0 in W . Hence, the number of pairs of vertices in W which share a neighbour
in V \W is at most

N
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which may be made as small as any δn2, for c sufficiently small depending on a and δ. Therefore,
for c small, at least (1− δ)

(
n
2

)
of the edges in W do not have common neighbours in V \W . But, for

δ = 1/2 and a = 12, the probability that this set, which has at least n2/6 edges, doesn’t contain an
edge of the random graph is at most

(1− p)n2/6 ≤ e−pn2/6 = e−2n log n = n−2n.

Note that, since the edges within W and the edges between V \W and W are independent, this latter
probability is independent of each of the Pi. Therefore,

P(CW ) ≤ n−2n + n−2n < n−n,

completing the proof. 2

The proof of the claim is conditional upon Chernoff’s inequality, which we give without proof. Given
a set X, let Xp be the set formed by choosing each element randomly with probability p. Chernoff’s
inequality gives us a good tail estimate for the size of the set |Xp|.

Lemma 1 (Chernoff’s inequality) For u ≥ 4 and 0 < p ≤ 1
2 , the binomial random variable Xp

satisfies
P(|Xp| ≥ up|X|) < (e/u)up|X|.
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Proof of Claim 1: Let dW (z) be the degree of the vertex z ∈ V \W in W . Each of the random
variables dW (z) is independent. Applying Chernoff implies

P(dW (z) ≥ e2ipn/i) ≤ e−e2ipn.

Therefore,

Pi ≤
(
N

Ni

)
e−(e2ia log n)Ni < n3ne−2i−an < n−2n−1.

This completes the proof. 2
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