
Lecture 11

The goal of this lecture is to prove that the size-Ramsey number for the path Pt with t edges is linear
in t. That is, there exists a constant c such that r̂(Pt) ≤ ct.
We begin with a well-known lemma of Pósa. To state it, suppose that, for a given vertex x0, the path
P = x0x1 . . . xh is a longest path starting from x0 within a given graph G. A simple transform P ′ of
P is a path of the form P ′ = x0x1 . . . xixhxh−1 . . . xi+1. A transform of P is anything obtained by a
sequence of simple transforms. Let U be the set of endpoints of transforms of P and set

N = {xi : 0 ≤ i ≤ h− 1, {xi−1, xi+1} ∩ U 6= ∅},

and R = V (P ) − U ∪ N . Thus U is the set of final vertices, N is the set of neighbours and R the
rest of the vertices. Pósa’s lemma is now the following. In short, it says that the set U of final points
doesn’t really expand.

Lemma 1 There are no edges between U and R.

Proof: Suppose x ∈ U and xy ∈ E(G). Let Px be a transform of P ending in x. Since xy ∈ E(G),
Px has a simple transform Pz ending in a vertex z which is a neighbour of y in Px.

If yz ∈ E(P ), then y ∈ N . Otherwise, an edge yw ∈ E(P ) had to be erased in one step of the sequence
P → P ′ → · · · → Px. When yw was erased for the first time, one of y or w became an endvertex and,
therefore, {y, w} ⊂ U ∪N . Hence y ∈ U ∪N . 2

This yields, as a corollary, the following simple condition for a graph to contain a long path. Basically,
if every small set expands, then, in light of Lemma 1, the set of endpoints must be quite large. This
then implies that the length of the longest path is quite large.

Lemma 2 Suppose u ≥ 1 is such that for every set U ⊂ V (G), |U | ≤ u,

|U ∪N(U)| ≥ 3|U |.

Then G contains a path of length at least 3u− 1.

Proof: Let P = x0x1 . . . xh be a longest path in G. By Lemma 1, there are no edges between U and
R. Note also that, because P is a longest path, there are no edges between U and V \V (P ). Therefore,
N(U) ⊂ U ∪N , implying

|U ∪N(U)| ≤ 3|U | − 1,

since
U ∪N ⊂ U ∪ {xh−1}

⋃
xj∈U,j<h

{xj−1, xj+1}.

This implies that |U | > u. Choose a U0 ⊂ U with |U0| = u. Then, by assumption,

h ≥ |U0 ∪N(U0)| ≥ 3u,

as required. 2
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For any two subsets X,Y ⊂ V = V (G), let eG(X,Y ) be the number of edges between X and Y . Let

dG(X) =
(

1
|X|

)
eG(X,V ).

This is distinct from d(G), which is the average degree of G. Note that, if X = {x}, d(X) is the degree
of x and, for X = V , d(V ) = e(G)

|V | = 1
2d(G). The next lemma says that any graph G has a subgraph

H for which dH(X) is at least half the average degree for every set X ⊂ V (H).

Lemma 3 Every graph G contains a subgraph H for which

dH(X) ≥ 1
2
d(G)

for every non-empty subset X of V (H).

Proof: Let W ⊂ V be a minimal non-empty subset satisfying e(G[W ]) ≥ 1
2d(G)|W | and set H =

G[W ]. Take a non-empty proper subset X ⊂W and let Y = W\X 6= ∅. Then

dH(X) =
1
|X|

(e(H)− e(H[Y ])) >
1
|X|

(
e(H)− 1

2
d(G)|Y |

)
≥ 1
|X|

(
1
2
d(G)|W | − 1

2
d(G)|Y |

)
=

1
2
d(G).

2

The next lemma says that if between any two small sets X ⊂ Y ⊂ V , the density is quite small, then
any subgraph G′ of G with at least half the edges of G contains long paths. It works by first applying
Lemma 3 to find a subgraph H of G′ where every subset X has large average degree. This implies
that U ∪NH(U) must always be large. Then one can apply Lemma 2 to show that H contains a long
path.

Lemma 4 Suppose G is such that if X ⊂ Y ⊂ V (G) and |Y | ≤ 3|X| − 1 ≤ 3u− 1, then

e(X,Y ) <
1
4
d(G)|X|.

Let G′ be a subgraph of G with e(G′) ≥ 1
2e(G). Then G′ contains a path of length 3u− 1.

Proof: By Lemma 3, there is a subgraph H of G′ with

dH(X) ≥ 1
2
d(G′) ≥ 1

4
d(G)

for every non-empty X ⊂ V (H). Let U ⊂ V (H) with |U | ≤ u. Then

|U ∪NH(U)| ≥ 3|U |.

Suppose otherwise. Let X = U and Y = U ∪NH(U). Then

dH(X)|X| = eH(X,Y ) ≤ e(X,Y ) <
1
4
d(G)|X|,

which is a contradiction. Therefore, by Lemma 2, H contains a path of length at least 3u− 1. 2

All that’s left to prove is that there are sparse random graphs satisfying the requirement of Lemma 4.
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Theorem 1 There exists a constant c such that

r̂(Pt) ≤ ct.

Proof: We will consider the probability space G(n, p), where p = c
n , for c to be chosen later. Let d

be such that 16 ≤ 4d < c < c′ < 4.001d. Note that, almost surely, d(Gp) ≥ 4d and e(Gp) ≤ c′n/2.
Moreover, let 0 < α < 0.03, ρ > c′/6α, u = bαnc and t = 3u− 1.

Our aim is to show that, with high probability, for all X ⊂ Y ⊂ V , |Y | = 3|X| = 3s ≤ 3u, we have
e(X,Y ) < ds. Since either the red or blue graph contains half the edges of G, Lemma 4 will then
imply that the graph contains a monochromatic path of length t and so r̂(Pt) ≤ ρt.
For each 1 ≤ s ≤ u, let Zs be the random variable counting the number of pairs (X,Y ) with X ⊂ Y ⊂
V , |Y | = 3|X| = 3s ≤ 3u and e(X,Y ) ≥ ds. We want to prove that

P

(
u∑

s=1

Zs ≥ 1

)
= o(1).

For a fixed pair (X,Y ), X ⊂ Y , |Y | = 3|X| = 3s ≤ 3u, the number of edges between X and Y is
binomial with probability p and s∗ =

(
s
2

)
+ 2s2 possible edges. Therefore,

E(Zs) ≤
(
n

s

)(
n

2s

)(
5s2/2
ds

)
pds(1− p)5s2/2−ds

≤ c0s
−3/2

(n
s

)s ( n
2s

)2s
(

n

n− 3s

)n−3s(5esc
2dn

)ds

e−5s2c/2n

≤ c0s
−3/2(s/n)(d−3)s2−2se(d+3)s(10.01)dse−5s2c/2n.

Hence,

E(Zs) ≤ c0

(
sn−1(10.01)d/(d−3)e(d+3)/(d−3)2−2/(d−3)

)(d−3)s
.

With c = 72.001, c′ = 72.002, d = 18, α = 1/59 and ρ = 720, we find that the base is bounded away
from one. Therefore,

u∑
s=1

E(Zs) = o(1),

as required. 2

It was an open question for some time to determine whether a similar theorem held for graphs of
maximum degree 3. Rödl and Szemerédi showed that this is not the case by finding a 3-regular graph
H for which r̂(H) ≥ cn(log n)c′

. On the other hand, it was shown recently that for any graph H

with maximum degree ∆, r̂(H) ≤ n2−1/∆(log n)1/∆. This difficult result is due to Kohayakawa, Rödl,
Schacht and Szemerédi. A very large gap still remains between the upper and lower bounds.
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