
Lecture 10

The size-Ramsey number r̂(H) is the smallest natural number m such that there exists a graph G

with m edges which is Ramsey with respect to H, that is, such that any two-colouring of the edges of
G produces a monochromatic copy of H. For H = Kt, we simply write r̂(t).

The following theorem, attributed to Chvátal, says that the size-Ramsey number of the complete
graph Kt is at least the number of edges in the complete graph on r(t) vertices.

Theorem 1

r̂(t) =
(
r(t)

2

)
.

Proof: Fix a colouring C of the complete graph on vertices {1, 2, . . . , r(t)−1} which does not contain
a monochromatic Kt. Suppose that G is a graph which is Ramsey with respect to Kt. If the chromatic
number χ(G) of G is smaller than r(t), then we may colour edges of G by mapping uv to the edge
χ(u)χ(v) in the complete graph on vertices {1, 2, . . . , r(t)− 1} and colouring the edge with the colour
of χ(u)χ(v) in C. This colouring of G does not contain a monochromatic Kt and so we may assume
that χ(G) ≥ r(t). But if this is the case, G must have at least

(
r(t)
2

)
edges. 2

Consider the following game between two players, Builder and Painter. Builder draws edges one at a
time and Painter colours them, in either red or blue, as each appears. Builder’s aim is to force Painter
to draw a monochromatic copy of a fixed graph H. The minimum number of edges which Builder
must draw, regardless of Painter’s strategy, in order to guarantee that this happens is known as the
on-line Ramsey number r̃(H) of H. For H = Kt, we simply write r̃(t).

The following theorem says that infinitely often the on-line Ramsey number r̃(t) is exponentially
smaller than

(
r(t)
2

)
. This is in sharp contrast with Theorem 1.

Theorem 2 For infinitely many t,

r̃(t) ≤ 1.001−t
(
r(t)

2

)
.

Proof: Let α = 0.01. Consider the following strategy. To begin, Builder draws n−1 edges emanating
from a single vertex v1. Painter must paint at least (n− 1)/2 of these the same colour. Let V1 be the
neighbourhood of v1 in such a colour. We also define a string s in terms of the colours chosen. We
initialise this string by writing s = R if the majority colour was red and s = B if it were blue.

Suppose now that we are looking at a set Vi. We choose any given vertex vi+1 and draw all the
neighbours of vi+1 within Vi. If, in the string s, there are more Rs than Bs, we choose Vi+1 to be the
neighbourhood of vi+1 in red if |Vi+1| ≥ (1 − α)(|Vi| − 1) and the neighbourhood in blue otherwise.
Similarly, if there are more Bs than Rs, one chooses Vi+1 to be the neighbourhood of vi+1 in blue if
and only if |Vi+1| ≥ (1− α)(|Vi| − 1). If the number of Rs and Bs in the string are the same, then we
follow whichever has more neighbours. The string s then has whichever colour we followed appended
to it. If, for example, our string were a1 · · · ai, with each aj = R or B, and we followed red, the new
string would be a1 · · · aiR.

Let µ = 0.99 and ν = 0.01. The process stops when the string s contains either µt Rs, µt Bs or νt Rs
and νt Bs. Suppose, at that stage, that we have chosen m vertices and m neighbourhoods. Builder’s
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strategy now is to fill in a complete subgraph of Vm of size p equal to the maximum of r((1 − µ)t, t)
and r((1 − ν)t). It is easy to see that Painter will be forced to draw a complete graph in one colour
or the other. Suppose, for example, that our string contains µt blues. Since p ≥ r(t, (1 − µ)t), Vm
contains either a red clique of size t, in which case we are done, or a blue clique of size (1− µ)t. This
latter clique may be appended to the µt vertices which correspond to B in the string to form a blue
clique of size t. The other cases follow similarly.

We need now to estimate the number of edges that Builder has to draw. In order to guarantee that
the process works, we need to start with an n which will guarantee that |Vm| ≥ p. If we made the
most expensive choice at each point as we were choosing the vi, we may have to choose n to be as
large as (2/α)νt(1− α)−µtp. Since m ≤ (µ+ ν)t = t, it is then elementary to see that the number of
edges Builder draws is at most

mn+
(
p

2

)
≤ t(2/α)νt(1− α)−tp+

(
p

2

)
.

To estimate the value of this expression, we must first understand something about p. By the choice
of µ and the standard bound r(s, t) ≤

(
s+t
s

)
,

r((1− µ)t, t) = r(0.01t, t) ≤
(

1.01t
t

)
≤

(
1.01et
0.01t

)0.01t

≤ 1.06t ≤ 1.25−tr(t),

since r(t) ≥ 2t/2.

On the other hand, there must be infinitely many values t for which

r((1− ν)t) = r(0.99t) ≤ 1.001−tr(t).

Suppose otherwise. Then there exists t0 such that, for all t ≥ t0,

r(t)
r(0.99t)

≤ 1.001t.

By telescoping, this would imply that, for every positive integer A,

r(0.99−At0) ≤ (1.001)(0.99−1+···+0.99−A)t0r(t0)

≤ (1.001)100(0.99)−At0r(t0).

If we rewrite this equation, with t = 0.99−At0 and C = r(t0), we see that this would imply

r(t) ≤ C(1.001)100t ≤ C(1.106)t,

which, since r(t) ≥ 2t/2, is plainly a contradiction for large t.

We may therefore conclude that p ≤ 1.001−tr(t) infinitely often. At such values of t we have that the
number of edges Builder must draw to force Painter to draw a monochromatic Kt is less than

t(2/α)νt(1− α)−tp+
(
p

2

)
≤ t(200)0.01t(0.99)−tp+

(
p

2

)
≤ t(1.066)tp+

(
p

2

)
≤ r(t)− 1

4
p+

(
p

2

)
≤ 1.001−t

(
r(t)

2

)
,
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provided that t is sufficiently large. 2

For complete bipartite graphs, the size-Ramsey number is known to within surprisingly accurate
bounds:

c′t22t ≤ r̂(Kt,t ≤ ct32t.

While the upper bound may be improved to r̃(Kt,t) ≤ c2tt5/2 log1/2 t for on-line Ramsey numbers, the
only lower bound known is r̃(Kt,t) ≥ r(Kt,t)−1

2 ≥ ct
√

2
t
. This same problem arises for most on-line

Ramsey numbers and it remains a major open question to show that r̃(t) is exponentially larger than√
2
t
.

For simpler graphs like the path, it is easy to show that r̃(Pt) is linear in t. What is perhaps more
surprising is that the same is true for the size-Ramsey number r̂(Pt). We shall prove both these results
in the next lecture.
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