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Lecture 1

Definition The Ramsey number r(t) is the smallest natural number n such that, in any 2-colouring
of the edges of the complete graph Kn, there is guaranteed to be a monochromatic copy of Kt.

Theorem 1
r(t) ≤ 22t−3.

Proof: Suppose that we have a complete graph on n = 22t−3 vertices whose edges have been 2-
coloured, in red and blue, say. Fix a vertex v1. By the pigeonhole principle, either the red or blue
neighborhood of v1 has size 22t−4. We let V1 be this neighborhood. Moreover, we initiate a string S,
letting it be R if it was the red neighborhood or B if it was blue.

At step i, we have a set Vi−1 of size 22t−3−i. Fix a vertex vi ∈ Vi−1. By the pigeonhole principle,
either the red or blue neighborhood of v1 has size 22t−3−(i+1). Let Vi be this neighborhood. Moreover,
depending on whether the neighborhood was red or blue, we append an R or a B to the string, which
now reads S = a1a2 . . . ai, where each aj is either R or B.

We terminate this process after 2t− 3 steps. Note that |V2t−3| ≥ 1 and let v2t−2 be an element of this
set. Also, at this stage, the string S has length 2t − 3, so there must be some subsequence of length
t− 1 which consists only of Rs or only of Bs. Suppose that aj1 , aj2 , . . . , ajt−1 is this sequence and that
it consists entirely of Rs. We claim that {vj1 , vj2 , . . . , vjt−1} ∪ {v2t−2} is a monochromatic clique of
size t. Clearly it has size t. Moreover, by the choice of aji = R each vji is connected to every future
vertex in red. This completes the proof. 2

To sharpen this bound, we need to expand our horizons and consider the following definition.

Definition The Ramsey number r(s, t) is the smallest natural number n such that, in any 2-colouring
of the edges of the complete graph Kn, in red and blue, say, there is guaranteed to be a red copy of
Ks or a blue copy of Kt.

Lemma 1
r(s+ 1, t+ 1) ≤ r(s, t+ 1) + r(s+ 1, t).

Proof: Suppose that the edges of Kn have been 2-coloured, in red and blue, say, so that there is
no red clique of size s and no blue clique of size t. Then, for a given vertex v, the size of its red
neighborhood is at most r(s, t+ 1)− 1. For if it were r(s, t+ 1), the graph would contain either a blue
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Kt+1, in which we would be done, or a red Ks. But adding the vertex v to this clique would give a
red Ks+1. Similarly, the blue neighborhood of v is at most r(s+ 1, t)− 1. Therefore, we must have

n ≤ 1 + (r(s, t+ 1)− 1) + (r(s+ 1, t)− 1) = r(s, t+ 1) + r(s+ 1, t)− 1.

This implies the required result. 2

In particular, this lemma implies that r(3, 3) ≤ 6. To see that this is sharp, consider the cycle on five
vertices. Its complement is also a five-cycle, so neither contains a triangle. The lemma also implies
that r(3, 4) ≤ 10, but this is not sharp. To improve this bound, note that any vertex in a 2-coloured
K9 must have red degree 5 and blue degree 3. But this is not possible. You cannot have a graph
with an odd number of vertices, where every vertex has odd degree. So there must be some vertex for
which the red degree is 6 or the blue degree is 4. The proof then proceeds the same.

The following corollary, proved by Erdős and Szekeres in 1935, remained the state of the art for some
fifty years.

Theorem 2

r(s+ 1, t+ 1) ≤
(
s+ t

t

)
.

Proof: We prove this result by induction. Note that r(s+ 1, 2) = s+ 1 =
(
s+1
1

)
. Similarly, the bound

is sharp for r(2, t+ 1). Suppose now that r(i+ 1, j + 1) ≤
(
i+j
i

)
for all (i, j) with either i < s or j < t.

Then, by Lemma 1, we have

r(s+ 1, t+ 1) ≤ r(s, t+ 1) + r(s+ 1, t)

≤
(
s+ t− 1
s− 1

)
+
(
s+ t− 1

s

)
=
(
s+ t

s

)
.
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Corollary 1

r(t) = O

(
4t

√
t

)
.

Proof: This follows from an application of Stirling’s formula n! ≈
√

2πn
(

n
e

)n. We get

r(t) ≤
(

2t
t

)
=

(2t)!
(t!)2

≈
√

4πt
(

2t
e

)2t

2πt
(

t
e

)2t =
4t

√
πt
.
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The formula r(s + 1, t + 1) ≤ r(s, t + 1) + r(s + 1, t) is not the only elementary relation between
Ramsey numbers that is known. In order to prove another, we need the following simple lemma, due
to Goodman, which tells one how many monochromatic triangles you may expect in a 2-edge-colouring
of Kn. For a graph G, let dG(v) be the degree of v in G.
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Lemma 2 (Goodman’s formula) Suppose that the edges of Kn are 2-coloured, in red and blue. Let
G be the red graph. Then the number of monochromatic triangles ∆ is given by the formula

∆ =
1
2

(∑
v

(
dG(v)

2

)
+
∑

v

(
n− 1− dG(v)

2

)
−
(
n

3

))
.

Proof: Let G be the complement of G, that is, the blue graph. The formula that we are trying to
prove says that

∆ =
1
2

(∑
v

(
dG(v)

2

)
+
∑

v

(
dG(v)

2

)
−
(
n

3

))
.

To prove the formula, note that a red triangle will contribute 3 to
∑

v

(
dG(v)

2

)
and 0 to

∑
v

(dG(v)
2

)
.

Therefore, since every triangle contributes 1 to
(
n
3

)
, the total contribution to the sum is 1. Similarly,

any blue triangle contributes 1 to the sum. A triangle with 2 red edges and 1 blue edge will contribute
1 to

∑
v

(
dG(v)

2

)
and 0 to

∑
v

(dG(v)
2

)
, so the total contribution is zero. Similarly, triangles with 1 red

edge and 2 blue edges will contribute zero to the sum. 2

One corollary of this result is the following estimate for the number of monochromatic triangles. The
random graph G(n, 1

2) shows that it is essentially sharp.

Corollary 2 Suppose that the edges of Kn are 2-coloured. Then the number of monochromatic trian-
gles ∆ satisfies

∆ ≥ 1
4
n(n− 1)(n− 5)

6
=

1
4

(
n

3

)
+O(n2).

Proof: For any given v, the sum
(
dG(v)

2

)
+
(
n−1−dG(v)

2

)
is minimised by taking dG(v) = (n − 1)/2.

Putting this into the formula yields

∆ ≥ 1
2

(
2
∑

v

(
(n− 1)/2

2

)
−
(
n

3

))

=
1
2

(
2n(n−1

2 )(n−3
2 )

2
− n(n− 1)(n− 2)

6

)

=
n(n− 1)

2

(
n− 3

4
− n− 2

6

)
=

n(n− 1)(n− 5)
24

,

as required. 2

The minimum number of K4s in a 2-colouring is not so well-behaved, as observed by Thomason. In a
random graph, one would expect 1/32 of the K4s to be monochromatic. Thomason gives an example
in which less than 1/33 of the K4s are monochromatic. The best lower bound, due to Giraud, says
that at least 1/46 of them are monochromatic.

With this corollary, we are now ready to prove the promised formula.
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Corollary 3
r(t, t) ≤ 4r(t, t− 2) + 2.

Proof: Suppose that we have a 2-colouring of Kn which contains no monochromatic clique of size
t. For every red edge ab, there are at most r(t − 2, t) − 1 vertices v which are connected to both a

and b by red edges. Otherwise, this set of vertices would contain either a blue Kt or a red Kt−2. But
adjoining a and b to this Kt−2 would yield a red Kt. Similarly, for every blue edge ab, there are at
most r(t, t− 2) vertices v which are connected to both a and b by blue edges. Therefore, the number
of monochromatic triangles is at most 1

3

(
n
2

)
(r(t, t− 2)− 1). Comparing this with Corollary 2, we see

that
1
4
n(n− 1)(n− 5)

6
≤ 1

3

(
n

2

)
(r(t, t− 2)− 1).

Simplifying, we see that n ≤ 4r(t, t− 2) + 1. This implies the result. 2

A careful application of these ideas was used by Thomason to prove a bound of the form r(t) = O
(
4t/t

)
.

The current best bound, due to the author, is

r(t) = t
−c log t

log log t 4t.

This uses ideas from the theory of quasirandomness.
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