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Abstract

We prove that if the group Z,, with p a prime, is coloured with k¥ > 4 different colours such
that each colour appears at least k times, then for any ai,--- ,ag,b in Z, with not all the a;
being equal, we may solve the equation a;z1 + --- + axzy = b so that each of the variables
is chosen in a different colour class. This generalises a similar result concerning three colour
classes due to Jungié, Licht, Mahdian, Nesetfil and Radoiéié.

In the course of our proof we classify, with some size caveats, the sets in Z, which satisfy the
inequality |41 +---+ Ap| < |A1]|+---+]An|- This is a generalisation of an inverse theorem due
to Hamidoune and Rgdseth concerning the case n = 2.

1 Introduction

Throughout this paper it is assumed that p is a prime number and that Z, is the corresponding
cyclic group.

Definition: Let A be a subset of a group G, and let A = C;UCU- - -UC}, be a partition (colouring)
of A. The equation a1x1 + --- + agxr = b with a1,--- ,a; € Z and b € G is said to have a rainbow
solution with respect to this colouring if the equation can be solved in such a way that each of the
variables is chosen within a different colour class.

When A = G = Z, it is possible to say quite a bit about when linear equations have rainbow
solutions, as is evidenced by the following result, due to Jungi¢, Licht, Mahdian, NeSet¥il and
Radoi¢ié¢ [3]:

Theorem 1 (Jungié, Licht, Mahdian, NesSetril, Radoi¢i¢ [3]) Let a1,a2,a3,b € Zyp be such that
arazaz # 0 and, for some i and j, a; # aj. Then every colouring of Z, = C1 U Cy U C3 with
|C1], |Cal, |Cs| > 4 contains a rainbow solution of a1x1 + asxe + aszs = b.

The main result of this paper will be a generalisation of this result to more than three variables.
Qualitatively, the result says that given a natural number k > 4, if we divide Z,, for p a prime,
into k large colour classes then for nearly all linear equations in k variables we are guaranteed a
rainbow solution. More precisely our result states:
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Theorem 2 Fiz k as a natural number with k > 4. Let ay,--- ,ax,b € Zp be such that a; ---ap # 0
and, for some i and j, a; # a;. Then every colouring of Z, = C1U---UCy, with |C1|,|Ca|,- - ,|Ck| >
k contains a rainbow solution of a1x1 + -+ + apxy =b.

The restriction that not all the a; be equal is necessary as well as sufficient, for it is easy to construct
counterexamples in this case, as we shall see in Section 4.

Jungié et al proved their result by applying the following inverse theorem of Hamidoune and Rgdseth

[2]:

Theorem 3 (Hamidoune-Rgdseth [2]) Let S and T be subsets of Zp such that |S| > 3,|T| > 3
and 7 < |S+T| < p—4. Then either |[S+T| > |S|+|T|+ 1 or S and T are subsets of
arithmetic progressions with the same common difference and with lengths at most |S| + 1 and
|T| + 1 respectively.

Our approach will be along similar lines to that used in [3]. We begin (Lemma 1) by proving some
quantitative bounds on when a set A cannot be a large subset of two arithmetic progressions, both
of length at most |A| + r, but with different common differences. We will then use this result to
prove the following generalisation of the Hamidoune-Rgdseth Theorem to more than two summands,
which in turn will be used to prove our result about rainbow solutions to linear equations.

Theorem 4 Let | be a fized natural number with | > 3. Let Ay, Ag,---,A; be subsets of Z,
satisfying |A;| > 1+ 1 for all1 <i <l and |A1 + As +---+ Aj| < p—2. Then either |A; + Ay +
s+ Ay > AL 4| A2+ -+ Al + 1 or all of the A; are contained in arithmetic progressions with
the same common difference and lengths at most |4;| + (I — 1).

With this theorem in place the proof of Theorem 2 becomes relatively straightforward. The main
trick of the argument is to use Theorem 4 to show that for any colour class C' and any coefficient a
involved in the specific equation that we are considering we must have that aC, by which we mean
the set {ac: ¢ € C}, is a large subset of an arithmetic progression. With the size caveats that we
have given this is then seen, by Lemma, 1, to be an impossibility provided our equation has two
coefficients a; and a; such that a; # +a;. The case that remains, where a; = +a; for all coefficients
a; and aj, but where they are not all equal, may then be ruled out by a further argument.

We conclude by making some suggestions for future research regarding rainbow solutions to sets of
equations.

2 A Preliminary Lemma

To begin we have the following lemma (which extends Lemma 4.3 in [3]), which we shall need in
the proofs of both Theorem 2 and Theorem 4:

Lemma 1 Let r € Ny and let A C Zp, with r +2 < |A| < p— (r? + 3r + 2), be contained in an
arithmetic progression of length |A| + r with common difference d. Then, except for the examples
wherer =2, p=17 and A = {a,a+d,a+4d,a+5d}, every arithmetic progression of length |A|+r
containing A has common difference equal to either d or p — d.



Proof: Suppose otherwise. Then A is contained within two arithmetic progressions of length
|A| +r, say S and S’, which have genuinely different common differences. Without loss of general-

ity it may be assumed that S = {z’}L‘i'J_r_l, and that S’ has common difference d with & > d > 1.

We split our considerations into three cases:

Case 1: d > |S|.

Consider the set U = {d +i}2"{'. Then no element of U is in S, since d > |S| and d + 2r + 1 <
£+ (@2r+1) <p(asp>4r+2). On the other hand, every element of U — d is in S, since
2r +1 < |A| +r — 1. But now this implies that there are at least r + 2 elements a of A such that
a is in A, but a + d is not. But it is easily seen that, by assumption, since A is contained in an
arithmetic progression of length |A| + r and common difference d, that there can be at most r + 1
such points, and therefore we have a contradiction.

Case 2: 2r +2<d < |S|.

Consider the set V = {|A| + r +4}27§'. Then, once again, no element of V is in S, since
|A| +7 +2r+1 < p. But, again, every element of V —d is in S, since |A| +r —d > 0 and
|A| +3r +1—d < |A| 4+ r — 1. Therefore, once again there are at least r + 2 elements a of A with
a +d not in A, and as above, this is a contradiction.

Case 3: d <2r+1.

Note that we only need to consider r» > 1, since the r = 0 case is completely covered by the other
two cases.

Consider the process of looping around through the elements of S’ in steps of size d starting at
the first element thereof. Let j be the number of complete loops around Z, undertaken before all

the elements of S’ have been visited. Note that on each complete loop we visit at least [‘D_TWJ

elements of S’ which are not in S.
Since S and S’ have at least |A| elements in common, the maximum number of elements of S’, but
not in S, which can be visited is r. Therefore, if we can find conditions under which we visit more

than r elements, we will be done. To do this, we need to estimate the number of complete loops

7. But we have that on each complete loop at most Pdﬂ-| elements of |A| are visited, and therefore
4]
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d

things together we see then that we just need to verify that the quantity
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Let us suppose that r is fixed in the latter function, which we call f.(d). Then it is straightforward
to verify that this is continuous with no local minima between d = 3 and d = 2r + 1, so it is
minimised at the endpoints of this range. It is then easy to verify that for 3 <d < 2r+1landr >5
we have f,(d) > r.

To check the remaining cases note that we must in fact always have j > 1 and that for d > 5

and r > 3, we must have j > 2. (This follows easily from the inequality j > %) Therefore

we have that the number of points of S’ which are not in S that are visited is at least

r24+2r+3-d
J' d 7
with j =1for2<d<4and j=2ford>5and r > 3. Now we just run through the remaining
cases:
d=2: trivially%>r.
r=2 %d_d>2ford:3.
r=3: 824 > 3ford=3,4, and 2.287¢ > 3 for d = 5,6,7.
r=4: 24 > 4 for d = 3,4, and 2.22% > 4 for d = 5,6, 7, 8.

This still leaves 4 cases to check, viz. (r,d) = (1,3),(2,4),(2,5) and (4,9). We simply use our
inequality for j to show that |A| can only have certain specific sizes in each case, and then consider
each in turn to see that they do not work:

(r,d) = (1,3): we must have |A| = 3 or 4, for otherwise j > 1 and we’re done. In both cases it is
straightforward to see that the only possible counterexamples could be when p = 9 or p = 10, both
of which are of course not prime.

(r,d) = (2,4): we must have |A| = 4, for otherwise j > 1 and we would be done. This yields exactly
one counterexample, when p = 17 and A = {0,1, 4,5}, for then we may take S’ = {1,5,9,13,0,4}.
(r,d) = (2,5): we must have |A| = 4 similarly, and the only resulting configurations must yield
7 > 2, which is a contradiction.

(r,d) = (4,9): we must have |A| = 6 for otherwise j > 2, and we would be done. But in this case,
it is easy to see that for any resulting configurations we must in actual fact have j > 4, which is
also a contradiction. O

The lower bound on the size of |A| in the above lemma is sharp. This follows from considering the
simple example of A = {0,1,--- ,r} and S' ={0,1,--- ,r,(p+1)/2,--- ,(p+1)/2+ (r — 1)}.

The upper bound on the other hand was chosen so as to meet the demands of proving Theorems 2
and 4, and is almost certainly not sharp, but it is quite sufficient for our purposes.

3 Two Inverse Theorems

Before we get started we need to state a couple of theorems from additive number theory that we
will need in the course of the next few sections. The first is the Cauchy-Davenport Theorem, a
standard result about the addition of two sets in Z,:

Cauchy-Davenport Theorem. Let A and B be subsets of Z, with 1 < |A|,|B| and |A+ B| <
p—1. Then |A+ B| > |A| + |B| — 1.



We will also need Vosper’s Theorem, which characterises the examples for which this theorem is
sharp:

Vosper’s Theorem. Let A and B be subsets of Z, with 2 < |A|,|B| and |A+B| < p—2. Then, if
|A+B| = |A|+|B|—1, A and B are both arithmetic progressions with the same common difference.
With these in hand, we will begin by proving a lemma, which we will need in proving our gen-
eralisation of the Hamidoune-R@dseth Theorem, about how arithmetic progressions add to other
sets:

Lemma 2 Let U and V be non-empty subsets of Z, with U an arithmetic progression of common
difference d. Then, if U+ V| < |U|+|V|+¢t, U >t+3 and [U+V|<p—-1, U+ V is an
arithmetic progression with common difference d, and V is contained in an arithmetic progression
of common difference d and with length at most |V| +t+ 1.

Proof: If the set U + V is not an arithmetic progression of common difference d, then it can be
written as the union of separated arithmetic progressions of common difference d, say U + V =
PU---UP,. Now fori =1,--- ,m, let V; = {v € V:U + v C P;}. Plainly these sets form a
partition of V', and also P; = U + V;. Therefore we have, by the Cauchy-Davenport Theorem:

U+V| = [P+ + Py
= [U+Vi|+--+|U+ V|
> m|U|+ Vi|+ -+ V| —m
= m|U|+|V]|—-m
But now [U + V| < |U| + [V| +t, and so we have [U| < 2+L < ¢+ 2, for m > 2. But, |U| was

specifically chosen to be greater than ¢4 3, so this cannot happen. Therefore U 4V is an arithmetic
progression with common difference d.

To prove our result about the structure of V, let us suppose, without loss of generality, that in fact
{U+V|=|U|+|V|+t. Let W ={x € Zp: U+ C U+ V}. Then it is easily seen that W contains
an arithmetic progression P of length |V|+t¢+ 1. But now, we have U+ P| = |U|+|V|+t <p-1.
Therefore W = P, for adding another point would imply, by the Cauchy-Davenport Theorem that

|U + W| > |U + V|, which is impossible. O
Note that this lemma is sharp. For let U = {0,1,--- ,¢+1} and let V ={0,--- ,|V|—2,|V|+t+1}
with |[V|+2t+2 <p. Then [U+V|=|V|+2t+2=|U|+|V|+t,sinceU+V ={0,1,--- ,|V|+t—
L|V|+t+1,---,|V|+2t+2}. But neither is U + V an arithmetic progression nor is V' contained

in an arithmetic progression of length |V| + ¢ + 1.

We now prove our generalisation of the Hamidoune-Rgdseth Theorem (Theorem 4):

Proof: By induction. Assume that the result holds for / — 1 (the base case will itself emerge
from the ordinary Hamidoune-Rgdseth Theorem in the course of the proof). Now, for / summands,

assume that
|[A1+ Ao + -+ + Al < |Ai] + [A2| + -+ + Al

For all 1 <14 <, define ¢;; and €;2 by

l
DA =10 Al +Ail + €,
j=1

JFi



|2Aj| = Z|Aj| + €.

J#i J#i
By assumption ¢;; + €2 < 0, for each ¢, and, by the Cauchy-Davenport Theorem, ¢;; > —1, for
each 7. We split our considerations into two cases, depending on whether two or more of the €;;
are greater than or equal to 0 or not.

Case 1: ¢ > 0 for at least two 3.
Without loss of generality assume that ¢;; > 0 for 4 = 1,2. Then, since ¢ < 0 for 1 = 1,2, the
following inequalities hold:

|As + A3 + -+ + Ay < |Ag| + |A3] +--- + |44,
|[A1 + Az + -+ + Ay < |A1| + |As] +--- + |4

By the inductive hypothesis, Ag, A3, -+ A; are all contained in arithmetic progressions with the
same common difference d, with d < &, and with lengths at most |4;| + (I —2). (Note that when
[ = 3, this is implied by the ordinary Hamidoune-Rgdseth Theorem, since |4;| > 3 +1 > 4, and
therefore |As + Az| > |A2| + |A3| — 1 > 7 and by the Cauchy-Davenport Theorem |As + Az| <
|A1 + Ao + As| — |A1| +1<p—2—4+1=p—5. This is how we get our induction started.)

Similarly, A;, As,--- , A; are all contained in arithmetic progressions with the same common differ-
ence d’, with d’ < &. Now if d # d', it must be that A3z is contained in two arithmetic progressions
of length |As| + (I — 2) but with different common differences. But we have (I —2) + 2 < |A3| and

|[As| < [Ar+-+ Ayl = A = [Ag| = [Ag] — - — A+ (1 - 1)
< p-2-(-1D(I+1)+(1-1)
= p—(’-1+2)
< p—((1-2)24+3(1-2)+2),

and therefore we may apply Lemma 1 to A3 to conclude that d = d’. The only possible trouble
might be when [ = 4, but in this case, our only counterexamples are with sets of size 4, while the
requirements of the theorem stipulate that we only need to consider sets of size greater than or
equal to 5.

Case 2: ¢;; = —1 for all but at most one 1.
Without loss of generality assume that for all ¢ except perhaps I, we have €¢;; = —1. Then it follows
from Vosper’s Theorem (this is why we take |41 + -+ + A;| < p — 2 in the theorem) that A; and
A+ -+ A1+ Aip1 + - - + A; are arithmetic progressions with the same common difference d;
for all 7 < {.
Now the condition
1> A< 144 +1
J#i J#i
(which holds for all 7) implies, using the Cauchy-Davenport Theorem, that
> A< A+ Al + (1 —-2).
J#i J#Ll
But Ay is an arithmetic progression with common difference d;, and therefore it follows from Lemma
4, since |A1| > 141, that Ay +---+A; 1+ A;+1+---+A; is an arithmetic progression with common



difference di. But we already know that it is an arithmetic progression with common difference d;,
and therefore, by the r = 0 case of Lemma, 1, it follows that d; = d; for all 1 < [.

Finally, note that A; + As + --- + A;_1 is an arithmetic progression with common difference d1,
and since

A+ Al <A+ A

<
< JAr+ A+ A+ (0 -2)

and |A; + Ao +--- + Aj_1| > |A41] > 1 + 1, an application of Lemma 2 implies that A; is a subset
of an arithmetic progression of length |4;| + (I — 1) and with common difference dj;. O

Note that with a little more care in the previous proof we could be more specific about what
kind of sets Ay, ,A; are admissible as sets with [A; +--- + A4;| < |A1] + -+ + |4;| under the
conditions of the theorem. Following through with such an argument tells us that in fact we must
have either A; C S;, where the S; are arithmetic progressions of the same common difference, with
|S;| = |A;| +t; and Zé:l ti <l—1,0r A; = {aj,a; +2d,a; + 3d,--- ,a; + |A;|d} for all 4, and some
fixed d.

4 Concluding the Proof

We are now ready to prove Theorem 2 (this is an extension of Theorem 4.1 in [3]):
Proof: To begin note that if for some permutation of the coefficients a1, - ,ax, say af,- - aj,
|a'1C1 +---+ ak,lck_ﬂ >|Ci| 4+ -+ |Cr—1| + 1,

then the Cauchy-Davenport Theorem implies that |a}Ci +--- +a},C| > p, and the theorem would
follow trivially. Therefore assume that for any permutation af,--- ,a) we have

la1C1 4 -+ + aj_ Cp—1| < |C1] 4 -+ 4 |C—a-

Now note that, by assumption, |C;| > (k—1)+1 and plainly we have that |a]C1+---+a)_,;Cr—1| <
p — 2. Therefore Theorem 4 applies and so, for all a; and all sets C;, the set a;C; are contained
in arithmetic progressions of length at most |C;| + (k — 2) with the same common difference. We
consider two cases: firstly that in which there are two coeflicients a; and a; with a; # +a;, and
secondly that where a; = £a; for all ¢ and j, but at least two coefficients are of opposite sign.

Case 1: a; # *a; for some ¢ and j.

Let us assume, without loss of generality, that a; # *as. Letting a} = a1,a}, = a3, we see that
a1C1 and a3Cy are both large subsets of arithmetic progressions with the same common difference.
Moreover, letting a| = ag,al, = a3, we see also that a2C; and a3Cy are large subsets of arithmetic
progressions with the same common difference. Therefore, we conclude that a1C; and asC are
both contained in arithmetic progressions of length |C; |+ (k — 2) with the same common difference,
and so €] must be a large subset of two arithmetic progressions with genuinely different common
differences. But since |C1| > k = (kK —2) + 2 and

|ICi|] = p—|Ca| -+ —|Ckl
< p—(K*—k)
= p—((k-22+3(k—-2)+2),



an application of Lemma, 1 tells us that this cannot be so. Again, our one set of counterexamples
is easily ruled out as a possibility, because at least one of the sets into which we partition Z7 must
have other than four elements.

Case 2: a; = *a; for all ¢ and j, but at least two coefficients have opposite sign.
For a fixed permutation af,--- ,a} of a1, ,ak, we see from

l[a1C1 + a5Co + - - + aj,_1Cx—1| < |C1]| + -+ + |Ck—-1],

and the remark after the proof of Theorem 4, that the a}C;, for 1 <7 < k — 1, are either all of the
form a,C; = {cij,¢; +2d,¢; + 3d,--- ,¢; + |Ci|d}, for some fixed d, or each a,C; is a subset of an
arithmetic progression S; with |S;| = |C;| 4+ t; and Zf:_ll t; < k — 2, where all the S; have the same
common difference d.

But now, if the first case occurs, and a| = —a), say, then we have that C; = {c1,c1 +2d,--- ,¢c1 +
|C1]d} and Co = {c2,c2+d, -+ ,ca + (|Ca| — 2)d, ca + |C2|d}, for some fixed d. But now choosing a
different permutation such that af = af we have |a{C; +a5Cs| = |C1| + |Ca| + 1, with o/ Cy + a5 Cy
an arithmetic progression (provided the sizes of the colour classes are all greater than or equal to
3). Adding on successive a; C;s, it is easy to see that for s <k — 1,

laCy + -+ alCi| = |C1| + -+ + |Ci| + 1,

with af/Cy + - - - + a!/C; an arithmetic progression, and therefore that a{Ci + - - + a}/Cy = Zj.

For the second case, at least one of the Cj, say C is an arithmetic progression. Because this has
size at least k, adding it to other classes has the effect of closing off the gaps in the other classes
(since the gaps have size smaller than k) and the resultant sum is also an arithmetic progression.
Therefore, we see that for all possible permutations af, - - ,aj of the coefficients ay,- - - ,ay, the set
a}C1 + -+ + a},Cy is an arithmetic progression of length at least p — (k — 1). If we can show that
these arithmetic progressions form a cover of Z,, we will be done.

Let Ci be {c1, -+ ,c1 + (|C1| — 1)d}. Write out the elements of Z, by starting at ¢; and writing
down every dth term thereafter, where d is the common difference of all the S;. Denote the first
term and last terms of Cj,1 < ¢ < k, encountered on this path by ¢; + e;d and c¢; + f;d respectively.
Let us now suppose, without any loss of generality, that we have exactly [ coefficients amongst
ai,- -+ ,a, which are between 1 and §. Now if we do not have a cover of Z, then we necessarily
have for all A, B C [k]¥) that

(Zea_ Z fa’)_(zeb_ Z fv)e{-(k-2),- ,k-2}

a€EA o' €Ac beB b eBe

that is, that the first terms in the arithmetic progressions ) .4 Co — > e Cor and Yy p Cp —
> wene Oy differ by at most & — 2.
In particular, for any 7 and s € [k], choose A containing r but not s, and B = (A — {r}) U {s}, so
we have

(er +f7") - (65 +fs) € {—(k—2),--- ok _2}'

Now let us consider what this implies for r = 2 and s = 1, where we take C5 to be the colour class
containing ¢; + |Cy|d. In this case, we know that e; = 0, f; = |C1| — 1, and ey = |C4|. Therefore,
from the above deduction, we see that fo must lie within the set {—(k —1),--- ,k — 3}. But fo
cannot possibly lie within {0,--- ,k — 3}, since all these points are in C;. If it lies amongst the



points {—(k —1),--- ,—1}, then the set So must have size at least p — |C1| — (k — 1), and so C5 has
size at least p — |C1| — (2k — 3). But this then implies that

|C3] + -+ + |Ck| <2k -3,
which is plainly false for k£ > 4. O

The remaining case which is not dealt with is when all of the a; are in fact congruent. But it
is straightforward to see that in this case there are colourings such that an equation of this form
does not necessarily have a solution. For example, partitioning Z, into k£ consecutive segments
(arithmetic progressions of length 1), it is easy to see that the size of Cy + --- + Cj is then only
p — (k — 1), so we cannot possibly have solutions to all equations of the form z; + --- + z = b.
There are of course many more similar examples which work, where each of the C; is chosen so as
to be a large subset of an arithmetic progression with some fixed common difference.

5 Further Research

We have no evidence to suggest that the lower bounds on the sizes of the sets in Theorems 2 and
4 are sharp, and in fact it seems quite unlikely that they are. On the other hand, it seems unlikely
that our method can do much better than the bounds we have given, since the proofs have a strong
dependency upon certain lemmas which require that the relevant sets are large.

If, however, one could find an approach to generalising the Hamidoune-Rgdseth Theorem which
avoided the use of these lemmas, and thus improved the bounds, it would be straightforward to
improve the bounds on Theorem 2. For, if we could impose structure on all the sets in the partition,
then we could use the obvious fact that one of these sets must be large (for p large), and apply our
lemmas to that particular set. So we have the following problem:

Problem 5. What are the optimal bounds for the generalised Hamidoune-Rgdseth Theorem, i.e.
Theorem 4%

The question also arises as to whether or not anything can be said about systems of linear equations
in Z,. In Z,, for n not a prime, this question has been looked at (see for example [1] and [4]),
and numerous examples have been found showing that there are equinumerous configurations in
k = 4,5,6 and k > 10 colours (i.e. colourings of Z,, for some m such that each colour occurs
m times) within which we cannot find rainbow arithmetic progressions of length k, that is an
arithmetic progression with each colour in a different class. This being a typical example of a
system of linear equations, our hopes of saying anything about solving such systems would appear
to be shattered.

However, there have as yet been no examples of k-colourings of Z, for p a prime and with the
colour classes all of nearly equal (and large) sizes containing no rainbow arithmetic progression of
length k. This is not to say that such colourings won’t be found, but the problem of finding such
colourings, or indeed proving that they do not exist, remains open. More specifically, we have the
following open question:

Problem 6. Do 4-colourings of Z,, for p a large prime, always contain a rainbow AP(}) if each
of the colour classes is of size either |§] or [£]2
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