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Abstract. We show that for every non-spherical set X in Ed, there exists a natural
number m and a red/blue-colouring of En for every n such that there is no red copy of
X and no blue progression of length m with each consecutive point at distance 1. This
verifies a conjecture of Wu and the first author.

1. Introduction

Let En denote n-dimensional Euclidean space, that is, Rn equipped with the Euclidean
metric. Given finite sets X1, X2, . . . , Xr ⊂ En, we write En → (X1, X2, . . . , Xr) if every
r-colouring of En contains a copy of Xi in colour i for some i, where a copy for us will
always mean an isometric copy. Conversely, En ↛ (X1, X2, . . . , Xr) means that there is
some r-colouring of En which does not contain a copy of Xi in colour i for any i. The
Euclidean Ramsey problem, the study of which goes back to fundamental work of Erdős,
Graham, Montgomery, Rothschild, Spencer and Straus [5, 6, 7] in the 1970s, asks for a
determination of those X1, X2, . . . , Xr ⊂ En for which En → (X1, X2, . . . , Xr).

In the particular case where X1 = X2 = · · · = Xr = X, we simply write En → (X)r to
denote that every r-colouring of En contains a monochromatic copy of X. Following Erdős
et al. [5], we say that X is Ramsey if for every r there exists n such that En → (X)r. The
problem of determining those X which are Ramsey is perhaps the most notorious question
in this area and there are two rival conjectures for a characterisation.

The first conjecture, already made by Erdős et al. in their first paper [5] on the subject,
says that a finite set X is Ramsey if and only if it is spherical, meaning that it can be
embedded in the surface of a sphere of some dimension. That being spherical is a necessary
condition was already proved in [5] and subsequent results such as that of Frankl and
Rödl [8] saying that all non-degenerate simplices are Ramsey and that of Kř́ıž [11] saying
that regular polygons are Ramsey appear to add further weight.

However, as pointed out by Leader, Russell and Walters [13], all examples which are
known to be Ramsey have the stronger property that they are subtransitive, in the sense that
they are subsets of finite sets which are transitive under the action of an appropriate group
of isometries. This and other considerations then led them to make the rival conjecture
that a finite set X is Ramsey if and only if it is subtransitive. As there are finite sets
which are spherical but not subtransitive (a non-obvious fact proved in [12, 13]), this is
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a strictly stronger conjecture, but, unlike the spherical sets conjecture, both directions of
this conjecture remain open.

A result of Conlon and Fox [2] says that, under the axiom of choice, a finite set X
is Ramsey if and only if for every natural number d and every fixed finite set K ⊂ Ed,
there exists n such that En → (X,K). That is, the problem of determining which sets are
Ramsey can be recast in a somewhat simpler form. In [3], Conlon and Wu conjectured an
even simpler characterisation, that a finite set X is Ramsey if and only if for every natural
number m, there exists n such that En → (X, ℓm), where ℓm is the set consisting of m
points on a line with consecutive points at distance one. One direction of this conjecture,
that if X is Ramsey and m is a natural number, then there exists n such that En → (X, ℓm),
follows from the result of Conlon and Fox (though the idea for this part of their result is
essentially due to Szlam [14]). However, the other direction remains open. Here we make
some progress by proving the opposite direction for non-spherical sets. This verifies another
conjecture made explicitly by Conlon and Wu [3] and would settle their original conjecture
in full if the spherical sets conjecture is true.

Theorem 1. For every finite non-spherical set X, there exists a natural number m such that
En ↛ (X, ℓm) for all n.

The main result of [3] was a proof of this conjecture in the particular case where X is
taken to be ℓ3, the simplest non-spherical set, which already answered a question raised
independently by Conlon and Fox [2] and by Arman and Tsaturian [1]. Their proof is
probabilistic and shows that one may take m ≤ 1050. Through more explicit constructions,
this bound has subsequently been improved, first by Führer and Toth [9] to m ≤ 1177 and
then by Currier, Moore and Yip [4] to m ≤ 20. Both of these papers also proved certain
further special cases of Theorem 1, though it remained wide open in full generality. Our
construction here is again explicit, but the proof that it works makes use of some tools on
equidistribution, namely, Weyl’s equidistribution theorem and the Erdős–Turán–Koksma
inequality.

2. Proof of Theorem 1

2.1. The construction. By a result of Erdős et al [5, Lemma 14], there exist c1, . . . , cs ∈ R
and B > 0 such that every copy {x1, . . . , xs} of the non-spherical configuration X satisfies∑s

j=1 cj |xj |2 = B. Without loss of generality, we can assume that 1 ̸∈ ⟨c1, ..., cs⟩Q, as
otherwise we can rescale the equation by a factor µ ̸∈ ⟨c1, ..., cs⟩Q. Now let b1, ..., br be a
Q-basis for c1, ..., cs and let qj,k ∈ Q be such that cj =

∑r
k=1 qj,kbk. Let M ∈ N be such

that B′ := MB >
∑s

j=1

∑r
k=1 |qj,k| and let aj := Mbj . We may then recast the equation

for copies of X as
s∑

j=1

r∑
k=1

qj,kak|xj |2 = B′. (1)

We can also assume that all the qj,k are integral, as otherwise we can multiply the equation
by their least common multiple. Let p be a prime with p > 2B′. We now colour each point
x ∈ En red if ⌊ak|x|2⌋ ≡ 0 (mod p) for all k ∈ [1, r] and blue otherwise.
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2.2. No red copy of X. Assume that x1, ..., xs are red points satisfying (1). Then

s∑
j=1

r∑
k=1

qj,k⌊ak|xj |2⌋ ≡ 0 (mod p).

On the other hand,∣∣∣∣∣∣
s∑

j=1

r∑
k=1

qj,kak|xj |2 −
s∑

j=1

r∑
k=1

qj,k⌊ak|xj |2⌋

∣∣∣∣∣∣ <
s∑

j=1

r∑
k=1

|qj,k| < B′

and therefore
s∑

j=1

r∑
k=1

qj,k⌊ak|xj |2⌋ ∈ (0, 2B′) ⊆ (0, p),

which is a contradiction.

2.3. No blue copy of ℓm. Let L = {w1, . . . , wm} be a copy of ℓm. It was shown in [3,
Section 3] that there exist β, γ ∈ R depending on the choice of L such that yj = |wj |2 can
be written in the form yj := j2 + βj + γ for all j = 1, . . . ,m. Consider the sequence

Z := (zj)j∈[m] :=

((
a1yj
p

, ...,
aryj
p

))
j∈[m]

in (R/Z)r. For m sufficiently large and, crucially, independent of the choice of β and γ, we
will show that {zj}j∈[m] ∩ [0, 1/p)r ̸= ∅, which implies that there is no blue copy of ℓm in
our construction.

Let Dm(Z) be the discrepancy of Z in (R/Z)r, the supremum over all axis-aligned boxes
B =

∏r
i=1[ai, bi) of ∣∣∣∣A(B;Z)

m
− µ(B)

∣∣∣∣ ,
where A(B;Z) counts the number of points of Z in B and µ(·) is the Lebesgue measure on
(R/Z)r. The key claim is as follows.

Lemma 1.

Dm(Z) <
1

pr
.

In particular, {zj}j∈[m] ∩ [0, 1/p)r ̸= ∅.

In order to prove this, we make use of the Erdős–Turán–Koksma inequality [10].

Lemma 2 (Erdős–Turán–Koksma). For every positive integer N ,

Dm(Z) ≤ Cr

 1

N
+

∑
1≤||h||∞≤N

1

c(h)

∣∣∣∣∣∣ 1m
m∑
j=1

e(⟨h, zj⟩)

∣∣∣∣∣∣
 ,

where c(h) =
∏r

i=1max{1, |hi|} for h = (h1, . . . , hr) ∈ Zr and e(x) = exp(2πix).
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To estimate the
∑m

j=1 e(⟨h, zj⟩) term, we use the following special case of Weyl’s equidis-

tribution theorem [15, Satz 9]).

Lemma 3 (Weyl). Let P (x) = ax2+ bx+ c ∈ R[x] be a quadratic polynomial with irrational
leading coefficient a. Then ∣∣∣∣∣∣

m∑
j=1

e(P (j))

∣∣∣∣∣∣ = oa(m),

where the o term does not depend on b or c.

Note now that ⟨h, zj⟩ describes a quadratic polynomial in R[j] with irrational leading
coefficient

∑r
k=1 hkak. Therefore, we have the following immediate corollary of Lemma 3.

Corollary 1. ∣∣∣∣∣∣
m∑
j=1

e(⟨h, zj⟩)

∣∣∣∣∣∣ = oh(m).

We are now in a position to prove Lemma 1.

Proof of Lemma 1. Choose N > 2Crp
r and then, using Corollary 1, m such that

Cr

∑
1≤||h||∞≤N

1

c(h)

∣∣∣∣∣∣ 1m
m∑
j=1

e(⟨h, zj⟩)

∣∣∣∣∣∣ < 1

2pr
.

The result then follows from Lemma 2. □
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