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Abstract

The Hales–Jewett theorem states that for any m and r there exists an n such that any r-colouring
of the elements of [m]n contains a monochromatic combinatorial line. We study the structure of
the wildcard set S ⊆ [n] which determines this monochromatic line, showing that when r is odd
there are r-colourings of [3]n where the wildcard set of a monochromatic line cannot be the union
of fewer than r intervals. This is tight, as for n sufficiently large there are always monochromatic
lines whose wildcard set is the union of at most r intervals.

1 Introduction

The Hales–Jewett theorem [2] is one of the central results in Ramsey theory. Quoting Graham,

Rothschild and Spencer [1], it “strips van der Waerden’s theorem of its unessential elements and

reveals the heart of Ramsey theory. It provides a focal point from which many results can be derived

and acts as a cornerstone for much of the more advanced work.”

Stating the theorem requires some notation. Given natural numbers m and n, let [m]n be the collection

of all n-letter words, where each letter is taken from the alphabet [m] = {1, 2, ...,m}. Given a word

w from [m]n, a subset S of [n] and an element i of [m], let w(S, i) be the word obtained from w by

replacing the jth letter with i for all j in S. A combinatorial line in [m]n with wildcard set S 6= ∅ is

then a subset of the form {w(S, 1), w(S, 2), . . . , w(S,m)}.

Hales–Jewett theorem. For any natural numbers m and r, there exists a natural number n such

that any r-colouring of the elements of [m]n contains a monochromatic combinatorial line.

For m = 2, the Hales–Jewett theorem is simple to prove. Consider all sequences of length r of the

form 11 . . . 122 . . . 2, that is, a string of 1s followed by a string of 2s. Since there are r + 1 different

sequences, the pigeonhole principle implies that two of them must receive the same colour. If the first

of these sequences switches from 1s to 2s after the ith letter and the second switches after the jth

letter with j > i, then these two sequences form a monochromatic combinatorial line whose wildcard

set is the interval [i + 1, j].

Given a word w from [m]n, disjoint subsets S1, . . . , Sq of [n] and elements i1, . . . , iq of [m], let

w(S1, i1; . . . ;Sq, iq) be the word obtained from w by replacing the jth letter with ik if j is in Sk.

For m = 3, the first step in Shelah’s celebrated proof of the Hales–Jewett theorem [4] is to show that

for n sufficiently large there is a word w ∈ [3]n and disjoint intervals S1, . . . , Sr of [n] such that for any

T ⊆ [r] and any i1, . . . , ir ∈ [3], the word w(S1, j
′
1; . . . ;Sr, j

′
r) obtained by letting j′t = 2 for all t ∈ T

and j′t = it for all t /∈ T has the same colour as the word w(S1, j
′′
1 ; . . . ;Sr, j

′′
r ) defined analogously by
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letting j′′t = 3 for all t ∈ T and j′′t = it for all t /∈ T . That is, regardless of how the intervals S1, . . . , Sr

are filled, we may switch the label on any subset of the intervals from 2 to 3 without changing the

colour of the word.

To complete the proof, we consider the r-colouring of [2]r where the word v = v(1) . . . v(r) receives

the colour of the word w(S1, v(1); . . . ;Sr, v(r)). By the m = 2 case of the theorem, there is a

monochromatic combinatorial line determined by a wildcard set T ⊆ [r]. This implies that there

are i1, . . . , ir ∈ [2] such that the word w(S1, j1; . . . ;Sr, jr) with jt = 1 for all t ∈ T and jt = it for all

t /∈ T has the same colour as the word w(S1, j
′
1; . . . ;Sr, j

′
r) with j′t = 2 for all t ∈ T and j′t = it for all

t /∈ T . But we already know that this latter word has the same colour as the word w(S1, j
′′
1 ; . . . ;Sr, j

′′
r )

with j′′t = 3 for all t ∈ T and j′′t = it for all t /∈ T . Therefore, we have a monochromatic combinatorial

line with wildcard set S = ∪t∈TSt.

In particular, this proof shows that it is possible to find monochromatic combinatorial lines in [3]n

where the wildcard set has a comparatively simple structure - it is the union of at most r intervals.

The main result of this note says that there are situations where one can do no better, suggesting that

the proof strategy described above is, at least in some sense, necessary.

Theorem 1.1. For any n and any odd r > 1, there is an r-colouring of [3]n containing no monochro-

matic combinatorial line whose wildcard set is the union of fewer than r intervals.

2 The proof

Write Zr for the cyclic group with r elements. Fix a vector t = (t1, t2, t3) ∈ Z3
r and, for a word w ∈ [3]n,

let T ′(w) =
∑

j∈[n] tw(j). In words, t assigns a weight to each letter in [3] and T ′(w) is then the sum of

the weights over all letters of w, where the sum is taken modulo r. Let the word w be obtained from

w by contracting each interval on which w is constant to a single letter. Set T (w) = T ′(w). Finally,

we construct the word w+ by inserting a letter 1 at the start and end of w. Our colouring of [3]n will

be T+(w) = T (w+). For example, for w = 11122133, we have w+ = 1111221331, w+ = 12131, and

T+(w) = T (w+) = t1 + t2 + t1 + t3 + t1. We claim that for t1 = t3 = 2 and t2 = −1, the colouring

T+ : [3]n → Zr contains no monochromatic combinatorial line whose wildcard set is the union of fewer

than r intervals.

Let us introduce some more notation. Consider a combinatorial line (x1, x2, x3) with xi = w(S, i),

where S is a union of q disjoint non-consecutive intervals in [n]. Although any word that coincides

with xi outside the set S can be chosen as the representative w, let us set w = x1 to avoid ambiguity.

Outside S, the word w+ consists of a collection of non-empty subwords w0, w1, . . . , wq, where wj−1
precedes wj for all j = 1, . . . , q. In other words, wj is the subword of w+ lying between the jth and

(j + 1)th intervals in S. Note that the subwords w0 and wq are non-empty by the construction of w+.

Denote the first letter of wj by fj and the last letter by `j+1 (such an indexing will be more convenient

below). We now show that the difference T (x+i ) − (T (w0) + · · · + T (wq)) depends only on i and the

letters `j , fj .

Claim 2.1. For any t1, t2, t3 ∈ Zr and i ∈ [3],

T+(xi) = T (x+i ) = T (w0) + hi(`1, f1) + T (w1) + hi(`2, f2) + · · ·+ hi(`q, fq) + T (wq), (1)

where the hi(`, f) are Zr-valued functions specified in the proof.
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Proof. We write yi = x+i for i ∈ [3] so that the identity (1) is just a statement about how T can be

computed from the decomposition of the word yi. Let us first take q = 1. There are essentially two

cases. Firstly, suppose `1 6= f1. For concreteness, we take `1 = 1, f1 = 2. Then y1 = y2 = w0w1

and, therefore, T (y1) = T (y2) = T (w0) + T (w1) and h1(1, 2) = h2(1, 2) = 0. Moreover, h3(1, 2) = t3.

Suppose now that `1 = f1 and consider the special case `1 = f1 = 1. For a word u ending in 1,

let u \ 1 be the word obtained from u by removing its final letter. Then y1 = (w0 \ 1) w1. Hence,

h1(1, 1) = T (y1)−T (w0)−T (w1) = −t1. Moreover, hi(1, 1) = ti for i = 2, 3. Since hi (`, f) = hi (f, `),

all possible cases are summarised in the following table:

(`, f) (1, 1) (2, 2) (3, 3) (2, 3) (3, 1) (1, 2)

h1(`, f) −t1 t1 t1 t1 0 0

h2(`, f) t2 −t2 t2 0 t2 0

h3(`, f) t3 t3 −t3 0 0 t3

The general case now follows by a simple induction. Indeed, suppose that (1) holds for q− 1. We will

verify that it also holds for q. By the q = 1 case discussed above,

T (yi) = T (w0) + hi(l1, f1) + T (w1iw2 . . . iwq). (2)

Since w1 is non-empty, we can apply the induction hypothesis to the term T (w1iw2 . . . iwq), which

completes the proof. A careful reader may notice that in (2), the intervals of the wildcard set S have

been replaced by a single letter i, which just facilitates the notation and makes no difference since T

is computed from a contraction of the word.

Suppose now that t1 = t3 = 2, t2 = −1 and there is a combinatorial line (x1, x2, x3) such that

T+(x1) = T+(x2) = T+(x3). Then, for i ∈ {1, 3},

0 = T+(xi)− T+(x2) =

q∑
j=1

(hi(`j , fj)− h2(`j , fj)) .

In particular, summing these two equalities,

0 = T+(x1) + T+(x3)− 2T+(x2) =

q∑
j=1

(h1(`j , fj) + h3(`j , fj)− 2h2(`j , fj)) .

But we can verify that with t1 = t3 = −2t2 = 2, for each ` and f we have h1(`, f)+h3(`, f)−2h2(`, f) =

2, so 0 = T+(x1) + T+(x3)− 2T+(x2) = 2q. Since r is odd, 2q = 0 in Zr implies q ≥ r, as required.

3 Further remarks

For even r, our result implies that for any n there is an r-colouring of [3]n containing no monochromatic

combinatorial line whose wildcard set is the union of fewer than r − 1 intervals. It remains to decide

whether this can be improved to r intervals. In an earlier version of this paper, we explicitly conjectured

that this was possible when r = 2. Surprisingly, this conjecture was shown to be false by Leader and

Räty [3]. That is, for n sufficiently large, every two-colouring of [3]n contains a monochromatic

combinatorial line whose wildcard set is a single interval. It would be very interesting to extend this

result to all even r.
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Given m and r, let HJ(m, r) be the smallest dimension n such that every r-colouring of [m]n contains

a monochromatic combinatorial line. By following Shelah’s proof of the Hales–Jewett theorem [4], one

can show that for n sufficiently large depending on m and r there is a monochromatic combinatorial

line in [m]n whose wildcard set is the union of at most HJ(m− 1, r) intervals. In our earlier draft, we

conjectured that this was always best possible. Unfortunately, the result of Leader and Räty shows

that this conjecture fails already for m = 3 and r = 2. As such, we have decided to retract our

statement. However, even a marginal improvement on either the upper or lower bound would be

interesting.

Question 3.1. Do there exist m ≥ 4, r ≥ 2 and c > 1 such that there are r-colourings of [m]n con-

taining no monochromatic combinatorial line whose wildcard set is the union of at most cr intervals?

Question 3.2. For which m ≥ 3 and r ≥ 2 is it true that for n sufficiently large, any r-colouring

of [m]n contains a monochromatic combinatorial line whose wildcard set is the union of at most

HJ(m− 1, r)− 1 intervals?
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