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Abstract

A key theme in modern extremal combinatorics is the study of classical combinato-
rial theorems relative to sparse subsets of their natural settings. Here we describe
some of the recent progress in this area and state a number of problems that remain
open and pressing.
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1 Introduction

In 1986, reproving a result of Folkman [F70], Frankl and Rödl [FR86] showed
that there are K4-free graphs with the property that every two-colouring of their
edges contains a monochromatic K3. In the same paper, they also proved the
existence of K4-free graphs G with the property that every subgraph of G con-
taining ( 1

2 + ε)e(G) edges contains a K3, where, because there are always bipartite
subgraphs with at least 1

2e(G) edges, 1
2 is best possible. Underlying these re-

sults are proofs that sparse random graphs satisfy versions of the triangle cases of
both Ramsey’s theorem and Turán’s theorem, two of the basic results in extremal
combinatorics. From this initial seed has grown an entire area studying when
combinatorial theorems hold relative to sparse sets. It is this area, and its many
facets, that we discuss here.

In the random case, long after an important early success by Rödl and
Ruciński [RR93, RR95] regarding Ramsey properties of random graphs, signifi-
cant progress in our understanding was made roughly a decade ago when Conlon
and Gowers [CG16] and, independently, Schacht [S16] (see also [FRS10]) developed
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general techniques for ‘transferring’ combinatorial theorems from their original set-
tings to the random setting. This was soon followed by the development of the
hypergraph container method by Balogh, Morris and Samotij [BMS15] and Saxton
and Thomason [ST15], allowing another approach to these problems and much
more besides. Alongside this, stemming in part from Green and Tao’s seminal
work [GT08] on arithmetic progressions in the primes, there has been considerable
work on combinatorial theorems relative to pseudorandom sets. More recently,
there has been work on combinatorial theorems relative to extremal sets such as
C4-free graphs and Sidon sets, with surprising consequences in extremal and ad-
ditive combinatorics. We will discuss each of these topics, random, pseudorandom
and extremal, in turn.

Since there are already several surveys discussing these and related top-
ics [BMS18, B17, C14, CFZ14b, GS05, RS13], we will not attempt to be com-
prehensive here, focusing instead on some of the more recent developments and
posing or reiterating a number of important problems that remain open. We begin
by looking at the random case.

2 Combinatorial theorems relative to random sets

Given a finite set X and 0 < p ≤ 1, let Xp be the random subset formed by placing
each element of X in Xp independently with probability p. A much-studied special
case of this construction is the binomial random graph Gn,p where each edge of Kn

is chosen to be in Gn,p independently with probability p. The theme of this section
will be the question of determining for which probabilities p a given combinatorial
theorem about a finite set X remains true with high probability relative to the
random subset Xp.

Despite the fact that it is thirty years since it was proved, the exemplar of such
a theorem is still the random Ramsey theorem of Rödl and Ruciński [RR93, RR95],
which determines the threshold for a random graph to be Ramsey with respect to
a fixed graph H. Formally, given a graph H and a natural number r ≥ 2, we say
that a graph G is (H, r)-Ramsey if every r-colouring of the edges of G contains
a monochromatic copy of H. Ramsey’s theorem itself is the statement that Kn

is (H, r)-Ramsey provided n is sufficiently large in terms of H and r. The Rödl–
Ruciński theorem is then as follows, where, here and throughout this survey, we
write v(H) and e(H) for the number of vertices and edges of a graph H.

Theorem 2.1 For any graph H that is not a forest consisting of stars and paths
of length 3 and any integer r ≥ 2, there exist positive constants c and C such that

lim
n→∞

P[Gn,p is (H, r)-Ramsey] =

{
0 if p < cn−1/m2(H),

1 if p > Cn−1/m2(H),

where

m2(H) = max

{
e(H ′)− 1

v(H ′)− 2
: H ′ ⊆ H and v(H ′) ≥ 3

}
.
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This theorem is really two theorems in one, each of which was proved in a
separate paper. The first [RR93] is the 0-statement, stating that the probabil-
ity Gn,p is (H, r)-Ramsey is asymptotically 0 when p < cn−1/m2(H), while the
other [RR95] is the 1-statement, saying that for p > Cn−1/m2(H) the probability
is asymptotically 1. The original proofs of both of these results were quite difficult,
though both have been considerably simplified in recent years [NS16].

An important recent development, resolving a longstanding conjecture of Ko-
hayakawa and Kreuter [KK97], extends the Rödl–Ruciński theorem to the asym-
metric setting. We say that a graph is (H1, . . . ,Hr)-Ramsey if every r-colouring
of the edges of G contains a copy of Hi in colour i for some i. The final result, a
combination of work by Mousset, Nenadov and Samotij [MNS20], Bowtell, Han-
cock and Hyde [BHH25+], Kuperwasser, Samotij and Wigderson [KSW25] and
Christoph, Martinsson, Steiner and Wigderson [CMSW25], is as follows.

Theorem 2.2 For any graphs H1, . . . ,Hr with m2(H1) ≥ m2(H2) ≥ · · · ≥ m2(Hr)
and m2(H2) > 1, there exist positive constants c and C such that

lim
n→∞

P[Gn,p is (H1, . . . ,Hr)-Ramsey] =

{
0 if p < cn−1/m2(H1,H2),

1 if p > Cn−1/m2(H1,H2),

where

m2(H1, H2) = max

{
e(H ′)

v(H ′)− 2 + 1/m2(H2)
: H ′ ⊆ H1 and v(H ′) ≥ 2

}
.

Despite these successes, the situation for hypergraphs remains somewhat
mysterious. Though an analogue of the 1-statement in the Rödl–Ruciński the-
orem is known [CG16, FRS10], there are more situations than in the graph case
where this is not the sharp bound [GNPSST17]. While it might be very difficult,
or even impossible, to determine the threshold for the Ramsey property for hy-
pergraphs in full generality, our knowledge of the graph case is now sufficiently
advanced that it seems a reasonable goal to study the 3-uniform case in more
detail.

Problem 2.3 Determine the threshold for the (H, r)-Ramsey property for all 3-
uniform hypergraphs H and all r ≥ 2.

Another interesting open problem, though perhaps lying further away, is to
show that the threshold for the Ramsey property, even for H = K3 and r = 2, has
a sharp threshold of the form C/

√
n. The fact that the threshold is sharp, in the

sense that there exists some function p(n), not necessarily of the form C/
√
n, such

that the threshold concentrates around this function, for H = K3 and r = 2 is a
theorem of Friedgut, Rödl, Ruciński and Tetali [FRRT06], making fundamental use
of a seminal result of Friedgut [F99] characterising sharp thresholds for monotone
properties. This result has been considerably extended since by Schacht and Schu-
lenburg [SS18] and by Friedgut, Kuperwasser, Samotij and Schacht [FKSS25+].
In particular, the latter paper shows that the (H, r)-Ramsey property has a sharp
threshold for H any clique or cycle and r any number of colours. However, the
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problem of determining the true form of the threshold remains wide open (and
may be very difficult).

Problem 2.4 Show that the (K3, 2)-Ramsey property has a sharp threshold at
C/
√
n for some C > 0.

An analogue of Theorem 2.1 for the Turán property was conjectured by Hax-
ell, Kohayakawa and  Luczak [HKL95, HKL96] in the mid 1990s. Given a graph
H and ε > 0, we say that a graph G is (H, ε)-Turán if every subgraph of G

with at least
(

1− 1
χ(H)−1 + ε

)
e(G) edges contains a copy of H. By the Erdős–

Stone–Simonovits theorem (whose special case with H = Kt is essentially Turán’s
theorem), we know that provided n is sufficiently large in terms of H and ε the
complete graph Kn is (H, ε)-Turán. The conjecture of Haxell, Kohayakawa and
 Luczak, now a theorem proved independently by Conlon and Gowers [CG16] and
by Schacht [S16], states that the Turán property holds down to essentially the
same threshold as the Ramsey property. There is one caveat here, which is that
the result of Conlon and Gowers applied only to strictly 2-balanced graphs, those
H such that m2(H) > m2(H ′) for all proper subgraphs H ′ of H. However, almost
all graphs satisfy this requirement, including all cliques and cycles.

Theorem 2.5 For any graph H and any ε > 0, there exist positive constants c
and C such that

lim
n→∞

P[Gn,p is (H, ε)-Turán] =

{
0 if p < cn−1/m2(H),

1 if p > Cn−1/m2(H).

We note that the 0-statement here is surprisingly straightforward. Indeed,
if the number of copies of H is significantly smaller than the number of edges,
we can remove all copies of H by deleting one edge from each copy. Therefore,
if pe(H)nv(H) � pn2, that is, p � n−(v(H)−2)/(e(H)−1), the (H, ε)-Turán property
cannot hold. Since the same argument applies for any subgraph H ′ of H, it is
easy to see that for p � n−1/m2(H) the random graph Gn,p cannot be (H, ε)-
Turán. Hence, all of the difficulty lies in proving the 1-statement.

The results of [CG16, S16] (see also [CGSS14, FRS10, S14]) prove much
more than Theorem 2.5, allowing one to ‘transfer’ many combinatorial theorems
about bounded-size objects from their natural setting to a sparse random subset
of that setting. Another representative example is the following random version
of Szemerédi’s theorem [Sz75] on arithmetic progressions in dense sets of integers.
To state the result, given an integer k ≥ 3 and δ > 0, we say that a subset
I of the integers is (k, δ)-Szemerédi if any subset of I with at least δ|I| elements
contains an arithmetic progression of length k. Szemerédi’s theorem says that for n
sufficiently large in terms of k and δ the set [n] := {1, 2, . . . , n} is (k, δ)-Szemerédi,
while a striking corollary of Green and Tao’s work on arithmetic progressions in
the primes [GT08] says that for n sufficiently large in terms of k and δ the set of
primes up to n is (k, δ)-Szemerédi.
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Theorem 2.6 For any integer k ≥ 3 and δ > 0, there exist positive constants c
and C such that

lim
n→∞

P[[n]p is (k, δ)-Szemerédi] =

{
0 if p < cn−1/(k−1),

1 if p > Cn−1/(k−1).

Another example is the graph removal lemma, a key corollary of the cele-
brated regularity lemma [Sz78] due to Ruzsa and Szemerédi [RSz78] stating that
any n-vertex graph with o(nv(H)) copies of a fixed graph H can be made H-free
by removing o(n2) edges. This is a fundamental result in extremal combinatorics,
implying, amongst other things, Roth’s theorem [R53], the 3-term progression
case of Szemerédi’s theorem. The fact that it also holds in the sparse context was
first proved for strictly 2-balanced graphs by Conlon and Gowers [CG16] and then
extended to all graphs by Conlon, Gowers, Samotij and Schacht [CGSS14].

Theorem 2.7 For any graph H and any ε > 0, there exist positive constants δ
and C such that if p ≥ Cn−1/m2(H), then the random graph Gn,p a.a.s. has the
property that every subgraph of Gn,p which contains at most δpe(H)nv(H) copies of
H may be made H-free by removing at most εpn2 edges.

It is worth remarking that hypergraph analogues of these results also hold.
For instance, even though we do not know the Turán density of most fixed hy-
pergraphs, the results of [CG16, S16] imply that whatever the Turán density of a
given k-uniform hypergraph H is, it is also the Turán density of H relative to the

binomial random hypergraph G
(k)
n,p down to p roughly n−1/mk(H), where

mk(H) = max

{
e(H ′)− 1

v(H ′)− k
: H ′ ⊆ H and v(H ′) ≥ k + 1

}
.

Similarly, for the hypergraph removal lemma, an important result of Gowers [G07]
and Nagle, Rödl, Schacht and Skokan [NRS06, RS04] known to imply Szemerédi’s
theorem in full generality, there is a sparse analogue which holds down to the
same threshold. We will say more about sparse hypergraph removal lemmas in
the pseudorandom context below.

The approaches taken by Conlon and Gowers [CG16] and by Schacht [S16]
are quite different and each has its own strengths and weaknesses. Remarkably, not
long after their results were made public, a third approach, the hypergraph con-
tainer method, was discovered independently by two groups of authors, Balogh,
Morris and Samotij [BMS15] and Saxton and Thomason [ST15]. This method
has been remarkably influential, with myriad applications across extremal and
probabilistic combinatorics and beyond. We will not attempt to do justice to
this topic here, referring the reader instead to the survey paper [BMS18] and its
references. However, it is worth noting that, unlike the other methods (though
see [CGSS14] for a variant), this technique allowed a full resolution of the K LR
conjecture [KLR97], a technical statement which enables the application of regu-
larity methods in the sparse random setting and which was seen, for many years,
as the most likely route towards proving statements like Theorem 2.5. We refer the
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reader also to [N22] for a surprisingly simple recent proof of the K LR conjecture
by Nenadov.

Though there are several problems where additional ideas are needed (see,
for example, [KS25]), one might reasonably claim that these results effectively
resolve the problem of transferring combinatorial theorems about bounded-size
objects to subsets of random sets. However, many difficult open problems remain
regarding larger objects. It has long been known that many techniques, such as
the regularity method, that are useful for embedding small graphs are also helpful
for embedding large graphs of bounded degree. One might then expect that we
can transfer such results to the sparse random setting in the same way that we
have done for small graphs. This program has been partially successful (see, for
example, [LS12] for work on a sparse random analogue of Dirac’s theorem on
Hamilton cycles and [ABHKP25] for a sparse random analogue of the powerful
blow-up lemma), though many challenges remain. Here we will discuss these
successes and their limitations through the lens of size-Ramsey numbers.

Given a graph H and a natural number r, the size-Ramsey number r̂(H; r)
is the smallest number of edges in an (H, r)-Ramsey graph. A foundational re-
sult of Beck [B83], which has since been extended in many ways (see, for exam-
ple, [LPY25+]), says that for every integer r ≥ 2 there exists a constant C such
that r̂(Pn; r) ≤ Cn. Another key result in the area, due to Kohayakawa, Rödl,
Schacht and Szemerédi [KRSS11], says that if H is any graph with n vertices and

maximum degree ∆, then r̂(H; r) ≤ n2− 1
∆ +o(1). That is, the size-Ramsey num-

ber of bounded-degree graphs is subquadratic in the number of vertices. More
explicitly, they proved the following result about random graphs.

Theorem 2.8 For any integers ∆ ≥ 2 and r ≥ 2, there exists C > 0 such that
if p ≥ C(logN/N)1/∆, then the random graph GN,p with N = Cn a.a.s. has
the property that every r-colouring of the edges of Gn,p has a colour class which
contains every graph on n vertices with maximum degree ∆.

How tight is this bound? This contains two different questions, the first of
which is: how small can we choose p so that the random graph GN,p with N = Cn
continues to be Ramsey with respect to every graph on n vertices with maximum
degree ∆? Following discussions in [CNT22] and [AB25+], we conjecture that
Theorem 2.8 continues to hold for all p ≥ CN−2/(∆+2), which is the threshold
coming from the Rödl–Ruciński theorem for GN,p to be Ramsey for K∆+1. That
is, we conjecture that obtaining a monochromatic copy of K∆+1, the densest graph
with maximum degree ∆, is the main obstacle to obtaining monochromatic copies
of all graphs with maximum degree ∆.

Conjecture 2.9 For any integers ∆ ≥ 2 and r ≥ 2, there exists C > 0 such
that if p ≥ CN−2/(∆+2), then the random graph GN,p with N = Cn a.a.s. has
the property that every r-colouring of the edges of Gn,p has a colour class which
contains every graph on n vertices with maximum degree ∆.

This conjecture was confirmed for ∆ = 3 in [CNT22] and for ∆ = 4, up to a
o(1) factor in the exponent, in [AB25+], with the latter paper also improving the
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bound for general ∆ to p ≥ n−1/(∆−1)+o(1). However, even for ∆ = 3, this is not
the end of the story, since one is not obliged to use vanilla random graphs when
studying size-Ramsey numbers. By making use of a different random graph model
with locally-dense spots, Draganić and Petrova [DP25] were able to improve the
upper bound on the size-Ramsey number of cubic graphs with n vertices from the
Cn8/5 of [CNT22] to n3/2+o(1). But this does not rule out the possibility that the
bound could still be much lower. A first hurdle would be to show that there exists
ε > 0 such that the size-Ramsey number of cubic graphs with n vertices is at most
Cn3/2−ε, but the following key problem, first asked by Rödl and Szemerédi [RSz00],
remains wide open.

Problem 2.10 Prove or disprove that there is a constant ε > 0 and an infinite
sequence of cubic graphs H with r̂(H; 2) ≥ v(H)1+ε.

At present, the best known lower bound for the size-Ramsey number of a
cubic graph with n vertices, due to Tikhomirov [T24] and building on earlier work

of Rödl and Szemerédi [RSz00], stands at nec
√

logn for some c > 0.

3 Combinatorial theorems relative to pseudoran-
dom sets

A pseudorandom subset of a set X is one which behaves, in some sense, like
a random subset. Usually, this is quantified through some family of statistics,
such as near uniform distribution across some collection of subsets or containing
asymptotically the same number of copies of some particular substructures as a
random subset. Though we will not follow up on it here, one remarkable, and
often extremely useful, phenomenon, explored in some depth by Chung, Graham
and Wilson [CGW89] under the name of quasirandomness, is that many such
pseudorandom properties are quantitatively related.

For our purposes here, we will first be interested in a particular form of
pseudorandomness for graphs, originating in work of Thomason [T87a, T87b]. We
say that a graph G is (p, β)-jumbled if

|e(X,Y )− p|X||Y || ≤ β
√
|X||Y |

for any X,Y ⊆ V (G). The random graph Gn,p satisfies this condition with β ≤
C
√
pn, which is essentially best possible, though there are also many explicit

examples which meet this bound. We refer the interested reader to the excellent
survey [KS06] for more on this and on the basic properties of pseudorandom graphs,
as well as useful descriptions of many important families of such graphs.

Given a graph property P, an integer n and a density p, who may ask for a
determination of those values of β such that any (p, β)-jumbled graph on n vertices
satisfies P. For example, it is known that for any integer t ≥ 3 there exists c > 0
such that if β ≤ cpt−1n, then any (p, β)-jumbled graph on n vertices contains
a copy of Kt. For t = 3, this condition is known to be tight, as shown by an
example of Alon [A94] (see also [C17, K11]), and it is a major open problem, with
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profound implications in Ramsey theory [MV24], to show that it is also tight for
all t ≥ 4 (see [BIP20, MP22] for the best current bounds). Even a resolution of
the following first open case would be of considerable interest.

Problem 3.1 Prove or disprove that there is a constant C and an infinite se-
quence of K4-free (p, β)-jumbled graphs on n vertices with p ≥ C−1n−1/5 and
β ≤ C√pn.

For the problem of transferring combinatorial theorems to subgraphs of pseu-
dorandom graphs, a general method, which they call densification, was developed
by Conlon, Fox and Zhao in [CFZ14a]. As an example of their results, we have
the following pseudorandom analogue of Theorem 2.7.

Theorem 3.2 For any integer t and any ε > 0, there exist positive constants δ
and c such that if β ≤ cptn, then any (p, β)-jumbled graph G on n vertices has the

property that any subgraph of G containing at most δp(
t
2)nt copies of Kt may be

made Kt-free by deleting at most εpn2 edges.

This is in fact a special case of a more general statement that applies to all
graphs and not just cliques (see also [ABSS20] for subsequent work with improved
quantification in certain cases). Moreover, with the same conditions on β, it is
possible to prove analogues of Theorems 2.1 and 2.5 and much more besides, in line
with the transference theorems for random sets outlined in the previous section.
However, it is worth stressing that the methods used for pseudorandom graphs
are very different, and necessarily so, to those used in the random case, since,
for instance, one does not have access to the union bound in the pseudorandom
setting.

There is still a gap in these results, even for triangles. For t = 3, Theo-
rem 3.2 (which in this case was first proved by Kohayakawa, Rödl, Schacht and
Skokan [KRSS10]) says that if β ≤ cp3n, then the triangle removal lemma holds
for subgraphs of a (p, β)-jumbled graph on n vertices. However, it may well be
that β ≤ cp2n is sufficient. That is, it may be that almost as soon as triangles are
guaranteed to appear in pseudorandom graphs, they appear in such numbers that
even the triangle removal lemma holds.

Problem 3.3 Prove or disprove that for any ε > 0 there exist positive constants
δ and c such that if β ≤ cp2n, then any (p, β)-jumbled graph G on n vertices has
the property that any subgraph of G containing at most δp3n3 copies of K3 may
be made K3-free by deleting at most εpn2 edges.

It is known that β ≤ cp2n is a sufficient condition for other combinatorial
properties of triangles, including the Ramsey property [CFZ14a] and the Turán
property [SSzV05], to hold relative to (p, β)-jumbled graphs with n vertices. How-
ever, a problem analogous to Problem 3.3 also remains open for the stability prop-
erty, that is, for showing that triangle-free subgraphs of a pseudorandom graph G
with at least ( 1

2 −o(1))e(G) edges must be within o(e(G)) edges of being bipartite.
An extension of these results to hypergraphs was carried out in the follow-up

paper [CFZ15]. For hypergraphs, we need to take a rather different viewpoint
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on pseudorandomness, as there is no clear analogue of the jumbled property (or
the spectral theory from which it naturally arises via the celebrated expander
mixing lemma [AC88]). Instead, if, given a k-uniform hypergraph H, we wish to
prove a H-removal lemma relative to a much larger k-uniform hypergraph G, we
need to assume that G contains asymptotically the same number of copies as in
a random hypergraph with the same density of each member of a certain family
of small fixed subgraphs derived from H. Under such a condition, referred to as
the H-linear forms condition, it is possible to prove a relative hypergraph removal
lemma. Informally, this states that if G satisfies the H-linear forms condition,
then any subgraph of G containing a o(1)-proportion of the copies of H in G
can be made H-free by removing o(e(G)) edges. Since the precise statement is
somewhat complicated, we refer the interested reader to [CFZ15] or the survey
paper [CFZ14b] for more details.

One corollary of this result is an alternative proof of a key step in the proof of
the Green–Tao theorem [GT08] that the primes contain arbitrarily long arithmetic
progressions. Their proof can be viewed as having two main steps. The first step
is to show that a certain set of almost primes, within which the primes form a
dense subset, are pseudorandom in an appropriate sense. The second step is to
show that Szemerédi’s theorem continues to hold relative to such pseudorandom
sets. In particular, since the primes are a dense subset of such a pseudorandom
set, they must contain arbitrarily long arithmetic progressions.

In their paper, Green and Tao define a pseudorandom subset of the integers
to be one that satisfies two different conditions, the linear forms condition and
the correlation condition. Through the same mechanism that allows one to derive
Szemerédi’s theorem from the hypergraph removal lemma, the relative hypergraph
removal lemma in [CFZ15] gives an alternative proof of their second step, the
relative Szemerédi theorem, that only requires a linear forms condition. This
simplification has been important to many of the subsequent results in the area,
including, for instance, work of Tao and Ziegler [TZ18] on polynomial progressions
in the primes.

It may be that even more can be derived from this approach. One particularly
tantalising open problem is to show that there are infinitely many 3-term arith-
metic progressions of Friedlander–Iwaniec primes. A Friedlander–Iwaniec prime
is one of the form x2 + y4, so called because a seminal result of Friedlander and
Iwaniec [FI98] says that, despite their rather low density, there are infinitely many
such primes. In order to show that there are infinitely many 3-term progressions of
these primes using the approach taken above for ordinary primes, one would, be-
sides the (likely considerable) additional difficulties on the number-theoretic side,
need to show that a triangle-removal lemma holds down to density p = n−1/4−ε

for some ε > 0. At the moment, we know, from Theorem 3.2, how to get down to
roughly n−1/5 and Problem 3.3 essentially asks whether it is possible to get down
to roughly n−1/3. Thus, settling that problem might be a first step towards the
following one.

Problem 3.4 Prove that there are infinitely many 3-term arithmetic progressions
of Friedlander–Iwaniec primes.
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4 Combinatorial theorems relative to extremal sets

Given a natural number n and a graph H, the extremal number ex(n,H) is the
largest number of edges in an H-free graph with n vertices. This is a much-
studied function (see, for example, [FS13]), with the basic result, the Erdős–Stone–
Simonovits theorem that we already mentioned earlier, stating that

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
.

For χ(H) ≥ 3, this gives a fairly complete answer to the problem of determining
ex(n,H), but for χ(H) = 2, that is, when H is bipartite, it only shows that
ex(n,H) = o(n2).

A better bound was already given by Kővári, Sós and Turán [KST54] in
1954, who showed that for any bipartite graph H there exist C, δ > 0 such that
ex(n,H) ≤ Cn2−δ. There are still relatively few bipartite graphs for which a more
precise bound is known. However, the advent of the random algebraic method
introduced by Bukh [B15] and developed further by Conlon [C19] and Bukh and
Conlon [BC18] has added many additional cases. For example, the rational ex-
ponents conjecture of Erdős and Simonovits [E81], which states that for every
rational number r ∈ [1, 2] there is a graph H such that ex(n,H) = Θ(nr), is now
known for many exponents (see, for example, [CJ22, JQ23]) and a variant allowing
for finite families instead of single graphs is completely resolved [BC18].

The simplest well-understood case is when H = C4, the cycle of length
four. Here, it has been known [E38] since the 1930s that ex(n,C4) = Θ(n3/2).
Moreover, many of the constructions that give the lower bound are pseudorandom.
Accordingly, in keeping with the theme of the last section, one might ask whether
combinatorial theorems hold relative to C4-free graphs. The answer is yes, at least
to some extent. Conlon, Fox, Sudakov and Zhao [CFSZ21] studied this problem
in some detail, proving several removal-type statements in this context. When it
applies, a sparse C5-removal lemma says that any subgraph of an n-vertex random
or pseudorandom graph with density p which contains o(p5n5) copies of C5 can
be made C5-free by removing o(p3n3) edges. Bearing in mind that the density of
extremal C4-free graphs is roughly p = 1/

√
n, the first main result of [CFSZ21]

says that a C5-removal lemma holds relative to C4-free graphs at that p.

Theorem 4.1 Every n-vertex C4-free graph with o(n5/2) copies of C5 can be made
C5-free by removing o(n3/2) edges.

Another of their removal lemmas has no explicit C4-free assumption in the
statement, though it is in a sense implicit, and the conclusion is about deleting
copies of K3 rather than C5.

Theorem 4.2 Every n-vertex graph with no C5 can be made K3-free by deleting
o(n3/2) edges.

An interesting corollary of this latter theorem concerns hypergraphs. To
state it, we need to know that a (Berge) cycle of length r ≥ 2 in a hypergraph
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is an alternating sequence of distinct vertices and edges v1, e1, . . . , vr, er such that
vi, vi+1 ∈ ei for each i, where indices are taken modulo r. For example, a 2-cycle
consists of a pair of edges intersecting in a pair of distinct vertices. The girth of a
k-uniform hypergraph is then the length of the shortest cycle in the hypergraph.

Theorem 4.3 Every k-uniform hypergraph on n vertices of girth greater than 5
has o(n3/2) edges.

We do not know if this is close to tight, but conjecture that it is.

Conjecture 4.4 There are 3-uniform hypergraphs of girth 6 with n vertices and
n3/2−o(1) edges.

Another corollary of these results (see also [P22] for an alternative approach)
concerns finding solutions to linear equations within Sidon sets, which are in a
sense the number-theoretic analogues of C4-free graphs. Formally, a subset of [n]
is a Sidon set if it contains no non-trivial solutions to the equation x1+x2 = x3+x4.
It is known that such a Sidon set can have size at most (1 +o(1))

√
n and also that

there are Sidon sets of asymptotically this size (though determining the behaviour
of the second-order term remains a deep and interesting open problem [BFR23]).

Theorem 4.5 The maximum size of a Sidon subset of [n] without a solution in
distinct variables to the equation

x1 + x2 + x3 + x4 = 4x5

is at most o(
√
n) and at least n1/2−o(1).

Here, we are simultaneously avoiding

(a) non-trivial solutions to the Sidon equation x1 + x2 = x3 + x4 and
(b) distinct variable solutions to the linear equation x1 + x2 + x3 + x4 = 4x5.

As mentioned above, there exist Sidon sets of size (1+o(1))
√
n and, by a straight-

forward modification of Behrend’s construction [B46] of large sets without 3-term
arithmetic progressions, there are also sets of size n1−o(1) avoiding (b). What
Theorem 4.5 says is that by simultaneously avoiding non-trivial solutions to both
equations, the maximum size is substantially reduced.

In relation to extremal numbers, the well-known compactness conjecture of
Erdős and Simonovits [ES82] states that, for every finite family F of graphs,
ex(n,F) ≥ cF minF∈F ex(n, F ) for some constant cF > 0, where ex(n,F) is the
largest number of edges in an n-vertex graph not containing any graph from F . The
analogous statement has long been known to be false for k-uniform hypergraphs
with k ≥ 3, but, outside of some trivial counterexamples, remains open for graphs.
Theorem 4.5 shows that it also fails for linear equations.

In a subsequent paper, Conlon, Fox, Sudakov and Zhao [CFSZ22] studied to
what extent their techniques could be extended to prove counting (and thereby
removal) lemmas for other F besides C5 relative to C4-free graphs. Their result
gives a recursive class of graphs, formed using “islands” and “bridges”, that are
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countable in this sense. However, their result is likely far from complete and
it remains an interesting open problem to determine exactly which graphs are
countable.

Problem 4.6 Which graphs are countable relative to C4-free graphs? In particu-
lar, are the dodecahedral and Petersen graphs pictured below countable?

Another, arguably more important, open problem is to extend the techniques
of [CFSZ21, CFSZ22] to C2k-free graphs for k ≥ 3. In particular, when k = 3, one
can ask whether a C7-removal lemma holds relative to C6-free graphs, where here
the natural density is at p = n−2/3.

Problem 4.7 Prove that every n-vertex C6-free graph with o(n7/3) copies of C7

can be made C7-free by removing o(n4/3) edges.

If such a statement could be proved, it is likely that one could also prove
an analogue of Theorem 4.3 saying that k-uniform hypergraphs on n vertices of
girth greater than 7 have o(n4/3) edges and an analogue of Theorem 4.5 regarding
solutions of certain linear equations relative to B3-sets.
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[ES82] P. Erdős and M. Simonovits, Compactness results in extremal graph theory,
Combinatorica 2 (1982), 275–288.

[F70] J. Folkman, Graphs with monochromatic complete subgraphs in every edge
coloring, SIAM J. Appl. Math. 18 (1970), 19–24.
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[FS13] Z. Füredi and M. Simonovits, The history of degenerate (bipartite) extremal
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