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Abstract

We show that there is a positive constant c such that any colouring of the cube [3]n in c log log n
colours contains a monochromatic combinatorial line.

1 Introduction

The Hales–Jewett theorem [3] is a central result in Ramsey theory, an abstract version of van der

Waerden’s theorem [5] saying that finite colourings of high-dimensional cubes contain monochromatic

lines. To state the Hales–Jewett theorem formally, we consider the cube [m]n with [m] = {1, 2, . . . ,m}.
A subset L of [m]n is a combinatorial line if there is a non-empty set I ⊆ [n] and ai ∈ [m] for each

i /∈ I such that

L = {(x1, . . . , xn) ∈ [m]n : xi = ai for all i /∈ I and xi = xj for all i, j ∈ I}.

The Hales–Jewett theorem is then as follows.

Hales–Jewett theorem. For any positive integers m and r, there exists a positive integer n such

that any r-colouring of [m]n contains a monochromatic combinatorial line.

If we define HJ(m, r) to be the smallest n such that the Hales–Jewett theorem holds, then the original

proof results in bounds of Ackermann type for HJ(m, r). In the late eighties, Shelah [4] made a major

breakthrough by finding a new way to prove the theorem which yielded primitive recursive bounds.

This also gave the first primitive recursive bounds for van der Waerden’s theorem. In this special case,

Shelah’s bound has since been drastically improved by Gowers [1].

The main result of this note is a reasonable bound for the m = 3 case.

Theorem 1. There exists a constant c such that

HJ(3, r) ≤ 22
cr
.

After proving this theorem, we found that a result of this type was claimed at the end of Shelah’s

seminal paper. However, the brief sketch given there is at best incomplete and the bound for HJ(3, r)

is usually stated as being of tower type in r. For instance, this is the case in a paper of Graham

and Solymosi [2] where they prove a result comparable to Theorem 1 for the coloured version of the

corners theorem, that is, for finding monochromatic (x, y), (x+ d, y), (x, y + d) in any r-colouring of

[n]2. Their result is now a simple corollary of our own. We proceed straight to the details. The main

idea, for those who know Shelah’s proof, is to use a one-sided version of his cube lemma.

∗Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA. E-mail:

dconlon@caltech.edu. Research supported by ERC Starting Grant 676632 and by NSF Award DMS-2054452.

1



2 The proof

For j = 1, . . . , t, let nj = r6
t−j

and sj = n1 + · · ·+ nj . Suppose now that n = st = n1 + · · ·+ nt and

χ is an r-colouring of [3]n. We will show by induction, starting at j = t and working downwards to

j = 0, that there are functions fk : [3]sj →
(
0∪[nk]

2

)
for all k > j such that if w is a word of length sj

and fk(w) = {pk,1, pk,2} with pk,1 < pk,2 for each k > j, then the following holds:

For any ` > j and elements a`+1, . . . , at of [3], the two words vi = vi(`; a`+1, . . . , at), i = 1, 2, have the

same colour, where

vi = w 11 . . . 1︸ ︷︷ ︸
pj+1,2

22 . . . 2︸ ︷︷ ︸
nj+1−pj+1,2

. . . 11 . . . 1︸ ︷︷ ︸
p`,i

22 . . . 2︸ ︷︷ ︸
n`−p`,i

. . . 11 . . . 1︸ ︷︷ ︸
pt,1

atat . . . at︸ ︷︷ ︸
pt,2−pt,1

22 . . . 2︸ ︷︷ ︸
nt−pt,2

.

More precisely, vi is equal to w for the first sj letters; for j < k < `, vi has pk,2 ones followed by

nk − pk,2 twos in the interval [sk−1 + 1, sk]; in [s`−1 + 1, s`], vi has p`,i ones followed by n` − p`,i twos

(this is the only use of the variable i); and, for k > `, the interval [sk−1 + 1, sk] consists of pk,1 ones,

followed by pk,2 − pk,1 copies of ak, then by nk − pk,2 twos.

When j = t, there is nothing to prove. Suppose now that for any word w′ of length sj+1, we have

defined fj+2(w
′), . . . , ft(w

′). Let w be a word of length sj and, for each 0 ≤ q ≤ nj+1, consider the

word

w(q) = w 11 . . . 1︸ ︷︷ ︸
q

22 . . . 2︸ ︷︷ ︸
nj+1−q

and write fk(w(q)) := {pk,1(q), pk,2(q)} for all k > j + 1. Then, for any aj+2, . . . , at ∈ [3], let

w(q; aj+2, . . . , at) = w(q) 11 . . . 1︸ ︷︷ ︸
pj+2,1(q)

aj+2aj+2 . . . aj+2︸ ︷︷ ︸
pj+2,2(q)−pj+2,1(q)

22 . . . 2︸ ︷︷ ︸
nj+2−pj+2,2(q)

. . . 11 . . . 1︸ ︷︷ ︸
pt,1(q)

atat . . . at︸ ︷︷ ︸
pt,2(q)−pt,1(q)

22 . . . 2︸ ︷︷ ︸
nt−pt,2(q)

.

That is, w(q; aj+2, . . . , at) equals w(q) for the first sj+1 letters, then, for each k > j + 1, the interval

[sk−1 + 1, sk] has pk,1(q) ones, followed by pk,2(q)− pk,1(q) copies of ak, then by nk − pk,2(q) twos.

Now, to each w(q), we assign a colour χj+1(w(q)), namely,

t∏
k=j+2

fk(w(q))×
∏

aj+2,...,at∈[3]

χ(w(q; aj+2, . . . , at)).

Note that the number of colours is

t∏
k=j+2

(
nk + 1

2

)
× r3t−j−1 ≤ (nj+2 · · ·nt)2r3

t−j−1
.

Therefore, since nj+1 ≥ (nj+2 · · ·nt)2r3
t−j−1

, we see that there must exist two choices pj+1,1 and pj+2,2

for q with pj+1,1 < pj+2,2 such that χj+1(w(pj+1,1)) = χj+1(w(pj+1,2)).

We now claim that letting fj+1(w) = {pj+1,1, pj+2,2} and, for k > j + 1, fk(w) = fk(w(pj+1,1)) =

fk(w(pj+1,2)) suffices. For ` = j + 1, the vi(j + 1; aj+2, . . . , at) receive the same colour by the choice

of pj+1,1 and pj+1,2. For ` > j + 1, first note that vi(`; a`+1, . . . , at) is the same as v′i(`; a`+1, . . . , at),

where v′i is defined relative to the word w(pj+1,2). But, by induction, the v′i(`; a`+1, . . . , at) receive the

same colour for all choices of ` > j + 1 and all a`+1, . . . , at ∈ [3]. This completes our induction.
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Continuing our induction all the way to j = 0 gives, for all k = 1, . . . , t, numbers pk,1, pk,2 with

0 ≤ pk,1 < pk,2 ≤ nk such that

For any 0 ≤ ` ≤ t and elements a`+1, . . . , at of [3], the two words vi = vi(`; a`+1, . . . , at), i = 1, 2, have

the same colour, where

vi = 11 . . . 1︸ ︷︷ ︸
p1,2

22 . . . 2︸ ︷︷ ︸
n1−p1,2

. . . 11 . . . 1︸ ︷︷ ︸
p`,i

22 . . . 2︸ ︷︷ ︸
n`−p`,i

. . . 11 . . . 1︸ ︷︷ ︸
pt,1

atat . . . at︸ ︷︷ ︸
pt,2−pt,1

22 . . . 2︸ ︷︷ ︸
nt−pt,2

.

In words, for 1 ≤ k < `, vi has pk,2 ones followed by nk − pk,2 twos in the interval [sk−1 + 1, sk]; in

[s`−1+1, s`], vi has p`,i ones followed by n`−p`,i twos; and, for k > `, the interval [sk−1+1, sk] consists

of pk,1 ones, followed by pk,2 − pk,1 copies of ak, then by nk − pk,2 twos.

To conclude the proof, take t = r and consider the words v(q) = v(0; 1, 1, . . . , 1, 3, 3, . . . , 3) (the i is

redundant when ` = 0) where there are q ones followed by r − q threes for some 0 ≤ q ≤ r. By the

pigeonhole principle, there must exist q1 and q2 with q1 < q2 such that χ(v(q1)) = χ(v(q2)). But then

χ(v(q2)) = χ(v2(q2; 3, 3, . . . , 3))

= χ(v1(q2; 3, 3, . . . , 3))

= χ(v2(q2 − 1; 2, 3, 3, . . . , 3))

= . . .

= χ(v2(q1 + 1; 2, 2, . . . , 2, 3, 3, . . . , 3)

= χ(v1(q1 + 1; 2, 2, . . . , 2, 3, 3, . . . , 3)

where there are always r − q2 threes. Here, alternate lines follow from identification between words

and from an application of the conclusion above. But

v1(q1 + 1; 2, 2, . . . , 2, 3, 3, . . . , 3) = v(0; 1, 1, . . . , 1, 2, 2, . . . , 2, 3, 3, . . . , 3),

where there are q1 ones, followed by q2− q1 twos, then r− q2 threes, so, together with v(q1) and v(q2),

where the twos are replaced with threes and ones, respectively, we get the required monochromatic

combinatorial line.

As a closing remark, we note that a similar iteration with Theorem 1 as a base shows that HJ(4, r)

is at most a tower of twos of height O(r), improving also the bound for lines of length four.
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