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Abstract

Sidorenko’s conjecture states that, for all bipartite graphs H, quasirandom graphs contain
asymptotically the minimum number of copies of H taken over all graphs with the same order
and edge density. While still open for graphs, the analogous statement is known to be false for
hypergraphs. We show that there is some advantage in this, in that if Sidorenko’s conjecture does
not hold for a particular r-partite r-uniform hypergraph H, then it is possible to improve the
standard lower bound, coming from the probabilistic deletion method, for its extremal number
ex(n,H), the maximum number of edges in an n-vertex H-free r-uniform hypergraph. With this
application in mind, we find a range of new counterexamples to the conjecture for hypergraphs,
including all linear hypergraphs containing a loose triangle and all 3-partite 3-uniform tight
cycles.

1 Introduction

An r-graphon W : [0, 1]r → [0, 1] is an r-variable symmetric measurable function.1 Given an
r-uniform hypergraph (or r-graph) H, the homomorphism density tH(W ) of H in W is

tH(W ) :=

∫ ∏
u1···ur∈E(H)

W (xu1 , xu2 , . . . , xur)dµv(H).

An r-graph H is said to be Sidorenko if

tH(W ) ≥ tKr(W )e(H) =

(∫
W dµr

)e(H)

(1)

for all r-graphons W : [0, 1]r → [0, 1], where Kr denotes the r-graph with one edge. In graph-
theoretic terms, an r-graph H is Sidorenko if quasirandom r-graphs contain asymptotically the
minimum number of copies of H taken over all r-graphs with the same order and edge density.
A celebrated conjecture of Sidorenko [31, 32] (see also the closely related conjecture of Erdős and
Simonovits [13]) says that a graph H is Sidorenko if and only if it is bipartite. The necessity of the
bipartiteness condition is straightforward to verify, but its sufficiency remains wide open despite
significant attention in recent years [4, 6, 7, 8, 10, 11, 20, 25, 34].
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1We note that this is different from the usual definition of hypergraphons (see, for instance, [12]), where 2r − 2

variables are used to model limits of r-uniform hypergraphs. Such an approach is required to make the space complete,
which is not necessary for our purposes.
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It is also tempting to make an analogous conjecture for r-uniform hypergraphs H, namely, that
H is Sidorenko if and only if it is r-partite. Unfortunately, as already observed in [32], this is false,
with the 3-uniform loose triangle with vertex set {1, 2, . . . , 6} and edges {1, 2, 3}, {3, 4, 5}, {5, 6, 1}
being a counterexample. However, as we will show, there is still something to be gained if the
conjecture fails to hold, in that we can improve the lower bound for the extremal number of any
r-uniform hypergraph H for which Sidorenko’s conjecture is false.

Given a natural number n and an r-graph H, the extremal number ex(n,H) is the maximum
number of edges in an n-vertex H-free r-graph. It is known that for any fixed r-graph H, there
exists a non-negative number π(H) such that ex(n,H) = (π(H) + o(1))

(
n
r

)
and that π(H) = 0 if

and only if H is r-partite. With very few exceptions (see, for example, [17] for classical results
and [5] and its references for more recent developments), the problem of estimating ex(n,H) more
accurately in the degenerate case where H is r-partite is wide open. In general, the best known
lower bound comes from a simple application of the probabilistic deletion method and says that
for any fixed r-partite r-graph H there exists some constant γ > 0 such that

ex(n,H) ≥ γnr−
v(H)−r
e(H)−1 .

Our first result improves this estimate for non-Sidorenko r-graphs.

Theorem 1.1. For any non-Sidorenko r-graph H, there exist constants c, γ > 0 such that

ex(n,H) ≥ γnr−
v(H)−r
e(H)−1

+c
.

One reason this result is interesting is that, by a result of Ferber, McKinley and Samotij [14,
Theorem 9], any polynomial gain over the deletion bound for the extremal number of an r-graph H
implies an optimal counting result for the number of H-free r-graphs on n vertices. Thus, we have
the following corollary of Theorem 1.1.

Corollary 1.2. For any non-Sidorenko r-graph H, there exists C > 0 and an infinite sequence of
positive integers n such that

|Fn(H)| ≤ 2C·ex(n,H),

where Fn(H) is the set of all labelled H-free r-graphs with vertex set {1, 2, . . . , n}.

We note in passing that results similar to Theorem 1.1 and Corollary 1.2 were obtained recently
by Conlon, Pohoata and Zakharov [9] for H = K2,2,...,2, the complete r-partite r-graph with two
vertices in each part. However, since Sidorenko’s conjecture does hold for these graphs through some
standard applications of the Cauchy–Schwarz inequality, their proof proceeds along very different
lines, making use of a multilinear variant of Bukh’s random algebraic method [2].

Motivated by Theorem 1.1 and its application Corollary 1.2, much of this paper is devoted to
finding examples of r-partite r-graphs for which Sidorenko’s conjecture is false. For instance, if we
define the r-uniform loose triangle to be the r-graph with vertex set {1, 2, 3, . . . , 3r− 3} and edges
{1, 2, . . . , r}, {r, r + 1, . . . , 2r − 1}, {2r − 1, . . . , 3r − 3, 1}, then we have the following result. Note
that here a linear r-graph is an r-graph where every pair of edges intersect in at most one vertex.

Theorem 1.3. Any linear r-graph that contains a loose triangle is not Sidorenko.

By the celebrated (6, 3)-theorem of Ruzsa and Szemerédi [30], which states that dense linear
r-graphs contain loose triangles, we have the following corollary.

Corollary 1.4. For any integer r ≥ 3 and any c > 0, there exists k0 such that any linear r-graph
with k ≥ k0 vertices and at least ck2 edges is not Sidorenko.
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While the extremal number is known exactly for some sparse linear r-graphs such as loose paths
and cycles [21], these results, applied in conjunction with Theorem 1.1, give the first polynomial
improvement on the lower bound for the extremal number of a broad range of linear r-graphs.

In a somewhat different direction, we look at the tight cycles C
(r)
` with vertex set {1, 2, . . . , `} and

edges {i, i+1, . . . , i+ r−1} for all i = 1, 2, . . . , `, where addition is taken mod `. From an extremal
viewpoint, these are some of the most closely studied hypergraphs (see, for example, [19, 24, 28, 29]).
We will show that, at least for certain choices of ` and r, they are again not Sidorenko. In the

statement below, we also consider the r-graphs C
(r)
` − e obtained by deleting a single edge e from

C
(r)
` .

Theorem 1.5. C
(3)
k is not Sidorenko for any k ≥ 4, C

(3)
k − e is not Sidorenko for any k ≥ 7 and

C
(r)
2r is not Sidorenko for any odd r ≥ 3.

There are some recent results [1, 19] that determine the Turán densities of C
(3)
k and C

(3)
k −e when

k is sufficiently large and not divisible by 3. Theorem 1.5 gives the first non-trivial improvement

on the lower bounds for the extremal numbers of C
(3)
k and C

(3)
k − e when k is divisible by 3.

We also give some examples of r-graphs with the stronger property that they are not common.
By saying that an r-graph H is common, we mean that tH(W ) + tH(1 −W ) ≥ 21−e(H) for every
r-graphon W : [0, 1]r → [0, 1]. In graph-theoretic terms, an r-graph H is common if the number of

monochromatic copies of H in a two-colouring of the edges of K
(r)
n is asymptotically minimised by a

quasirandom colouring. The study of such graphs is a central topic in Ramsey theory and we refer
the interested reader to [22] for further context and additional references. For us, the important
point is that if an r-graph is Sidorenko, it is automatically common, so non-common r-graphs are
automatically not Sidorenko. As it involves some further notation, we will hold off on giving a
full description of our main result in this direction until Section 4 and instead give an illustrative
example.

Theorem 1.6. For r odd, the grid r-graph Gr whose vertices are the points of the r × r grid and
whose edges are the 2r horizontal and vertical lines of the grid is not common.

Unlike our previous results, this does not allow us to give an improved bound for ex(n,Gr),
since, by considering all of the edges containing a fixed vertex, we get the simple lower bound
ex(n,Gr) ≥

(
n−1
r−1
)
, which is considerably better than the deletion bound. However, the grid graphs

are an interesting and well-studied family (see, for example, [16, 18, 33]), so we believe the fact
that its odd members are not common is an interesting result in its own right.

2 Lower bounds for the extremal number

In this short section, we will use the tensor power trick to prove Theorem 1.1, the statement
that the deletion bound may be improved for counterexamples to Sidorenko’s conjecture. We
will need the following standard result from the theory of graph limits (see, for example, [27]),
obtained by sampling n vertices v1, v2, . . . , vn independently and uniformly at random from [0, 1]
and placing an edge on each vi1 , vi2 , . . . , vir with i1 < i2 < · · · < ir independently with probability
W (vi1 , vi2 , . . . , vir).

Lemma 2.1. Let W be an r-graphon. Then there exists a sequence (Gn)∞n=1 of r-graphs such that
|V (Gn)| = n and tF (Gn) converges to tF (W ) for every fixed r-graph F .
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The tensor product G ⊗ H of two r-graphs G and H is the graph with vertex set V (G) ×
V (H) where ((x1, y1), (x2, y2), . . . , (xr, yr)) ∈ E(G ⊗H) if and only if (x1, x2, . . . , xr) ∈ E(G) and
(y1, y2, . . . , yr) ∈ E(H). For N a positive integer, we may then define G⊗N inductively by G⊗1 = G
and G⊗N = G⊗G⊗N−1. A key property of these tensor powers, which we will need below, is that
tH(G⊗N ) = tH(G)N for any graphs G and H and any positive integer N .

Proof of Theorem 1.1. Let W be an r-graphon for which tH(W ) < tKr(W )e(H). If (Gm)∞m=1 is
a sequence of r-graphs with |V (Gm)| = m given by Lemma 2.1, then, provided m is sufficiently
large, tH(Gm) < tKr(Gm)e(H). Let G be an r-graph from this sequence for which this is the case

and let α0 := tKr(G) = r!e(G)/v(G)r and β0 := tH(G), so that β0 < α
e(H)
0 . We will assume that G

is taken sufficiently large that β0/α0 ≥ v(G)r−v(H).
Set n := v(G)N , α := αN0 and β := βN0 . Then G⊗N is an n-vertex graph with αnr/r! edges and

at most βnv(H) labelled copies of H. Let c′ := e(H) logα0−log β0
log v(G) , so that c′ > 0 and β = αe(H)n−c

′
.

Crucially, the number of copies of H in G⊗N is significantly smaller than the random count of
roughly αe(H)nv(H), allowing us to apply the deletion method more efficiently.

Indeed, if we take a random subgraph (G⊗N )p of G⊗N where every edge appears independently
with probability p, the expected number of edges X in this subgraph is pαnr/r! and the expected
number of copies Y of H is at most (pα)e(H)nv(H)−c′ . Note that the condition β0/α0 ≥ v(G)r−v(H) is

equivalent to α
e(H)−1
0 ≥ v(G)r+c

′−v(H), which in turn implies that αe(H)−1 ≥ nr+c′−v(H). Therefore,
there is some p < 1 such that (pα)e(H)−1 = nr+c

′−v(H)/(2r!). But then

E[Y ] ≤ (pα)e(H)nv(H)−c′ =
pαnr

2r!
=

1

2
E[X],

so, by linearity of expectation, E[X − Y ] ≥ 1
2E[X] = pαnr

2r! . Therefore, there must exist a graph for

which we can delete an edge from every copy of H and still leave at least pαnr

2r! ≥ γn
r− v(H)−r

e(H)−1
+c

edges,
where γ > 0 is an absolute constant and c = c′/(e(H) − 1). This yields the required conclusion
when n is a power of v(G), but, at the possible expense of replacing γ with a smaller number, we
can easily interpolate between these values.

3 Non-Sidorenko hypergraphs

3.1 Linear hypergraphs

Recall that an r-graph is linear if every pair of edges shares at most one vertex. The girth of a
linear r-graph is the length of the shortest (loose) cycle in the graph. We shall prove the following
statement that slightly generalises Theorem 1.3. In the proof, we will also need to know that, for
s ≤ r, the (s− 1)-skeleton of an r-graph H is the s-graph obtained by replacing each r-edge of H
by a copy of Ks

r , the complete s-graph on r vertices, and simplifying multiedges.
For convenience, we will phrase our proof in the language of weighted r-graphs f rather than

r-graphons W . For us, this simply means that we are working with symmetric functions of the
form f : Ωr → R≥0, where Ω is a finite set. The functional tH(f) is then given by replacing the
integral over [0, 1]v(H) by the sum over Ωv(H). We also allow f to take values larger than 1, but,
since the inequality (1) is homogeneous, it is sufficient for f to be bounded and non-negative.

Theorem 3.1. If H is a linear r-graph of odd girth, then H is not Sidorenko.
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Proof. Consider the weighted r-graph on {−1, 1} where the edge (x1, x2, . . . , xr) ∈ {±1}r receives
the weight f(x1, . . . , xr) = 1− c

∑
i<j xixj . For c ≤ 1/

(
k
2

)
, f is a non-negative symmetric function

with tKr(f) = 1. Observe that a monomial in the expansion of
∏
v1...vr∈E(H) f(xv1 , . . . , xvr), the

integrand of tH(f), has zero average whenever it contains a variable of odd degree. Thus, the non-
vanishing terms in the expansion of tH(f) correspond to ‘Berge’ even subgraphs F of the 1-skeleton
of H, those subgraphs F where every vertex has even degree and every (2-)edge e ∈ E(F ) extends
to a unique r-edge in H. Moreover, every such F receives the weight (−c)e(F ). Therefore, if g is the
girth of H and g is odd, tH(f) = 1−Kcg +O(cg+1), where K denotes the number of shortest loose
cycles. By choosing c > 0 small enough, we see tH(f) < 1 = tKr(f)e(H), so H is not Sidorenko.

It is also possible to generalise Theorem 3.1, although we did not find any concrete applications
of this more general result. Indeed, by replacing f with f(x1, . . . , xr) = 1 − c

∑
i1<···<is xi1 · · ·xis

for any s ≤ r, one can show that if the smallest subgraph F of the (s−1)-skeleton of H where every
vertex has even degree and every s-edge e ∈ E(F ) extends to a unique r-edge in H has an odd
number of edges, then H is not Sidorenko. Since, in an s-uniform hypergraph F ,

∑
v∈V (F ) d(v) =

s · e(F ), such a subgraph F can only exist when s is even.

3.2 Tight cycles

Recall that C
(r)
` denotes an r-uniform tight cycle of length `. Since C

(r)
` and C

(r)
` − e can only

be r-partite when ` is a multiple of r, in order to prove Theorem 1.5, it will suffice to study tight

cycles of the form C
(r)
kr .

Given an r-graph H, let κm(H) denote the number of subgraphs of H with m edges and
no degree-one vertices. As captured by the following proposition, the polynomial PH(x) :=∑e(H)

i=1 κi(H)xi will play an important role in the proof of Theorem 1.5.

Proposition 3.2. Let r be odd and H be a subgraph of C
(r)
kr . If H is Sidorenko, then PH(x) ≥ 0

for all x ∈ [−1, 0].

Proof. Suppose that PH takes a negative value on [−1, 0]. Then there exists c ∈ (0, 1) such that
PH(−c) < 0. For ε ∈ (0, 1), let fε be the function on [0, 1] defined by

fε(x) =

{
ε if x ≤ 1

1+ε

−1 otherwise.

Then
∫ 1
0 fεdµ = 0 and, for any fixed integer d > 1 and ε sufficiently small,

∫ 1
0 (fε)

ddµ = (−1)dε +
O(ε2).

Let gε(x1, . . . , xr) :=
∏r
i=1 fε(xi), so that tG(gε) = 0 whenever G has a vertex of degree one.

Moreover, for every n-vertex r-graph G with degree sequence d1, . . . , dn ≥ 2,

tG(gε) = (−1)
∑n

i=1 diεv(G) +O(εv(G)+1) = (−1)e(G)εv(G) +O(εv(G)+1),

since r · e(G) =
∑n

i=1 di and e(G) have the same parity by the assumption that r is odd.
Let hε,c := 1 + cgε, noting that this function is non-negative. By expanding out the expression∏

v1...vr∈E(H) hε,c(xv1 , . . . , xvr) =
∏
v1...vr∈E(H)(1 + cgε(xv1 , . . . , xvr)), we see that

tH(hε,c) = 1 +
∑
G⊆H

ce(G)tG(gε), (2)
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where the sum is taken over all non-empty edge subsets of H, which can be seen as subgraphs G
of H.

In any subgraph of the tight cycle C
(r)
kr , degrees of consecutive vertices of the cycle differ by at

most one. Thus, in a non-empty subgraph G with no vertices of degree one, no isolated vertices
exist and, hence, all but those G with minimum degree at least two vanish in (2). Therefore, κm(H)
counts the number of m-edge subgraphs of H on kr vertices with minimum degree at least two. It
then follows that

tH(hε,c) = 1 +
∑

G⊆H, δ(G)≥2

ce(G)tG(gε)

= 1 + εkr
∑

G⊆H, δ(G)≥2

(−c)e(G) +O(εkr+1) = 1 + εkrPH(−c) +O(εkr+1).

Therefore, for sufficiently small ε > 0, tH(hε,c) < 1. But
∫
hε,c dµ

r = 1, so this contradicts our
assumption that H is Sidorenko.

We will now use Proposition 3.2 to prove the following three results, which together make
up Theorem 1.5.

Theorem 3.3. C
(3)
3k is not Sidorenko for k ≥ 2.

Theorem 3.4. C
(3)
3k − e is not Sidorenko for k ≥ 3.

Theorem 3.5. C
(r)
2r is not Sidorenko for any odd r ≥ 3.

For the proofs, we will need to better understand the functions κm(H) for the r-graphs H under
consideration.

Lemma 3.6. κi(C
(3)
3k ) = 0 for i < 2k and κ2k+i(C

(3)
3k ) = 3k

k+2i

(
k+2i
3i

)
for 0 ≤ i ≤ k.

Proof. A subgraph G of C
(3)
3k with i edges such that each vertex has degree 2 or 3 must be obtained

from C
(3)
3k by removing 3k − i disjoint edges. But the number of disjoint edges cannot exceed k

and the number of ways to select 1 ≤ j ≤ k independent edges in C
(3)
3k is 3k

j

(
3k−1−2j
j−1

)
. Thus,

κi(C
(3)
3k ) = 0 for i < 2k and

κ2k+i(C
(3)
3k ) =

3k

k − i

(
3k − 1− 2(k − i)

k − i− 1

)
=

3k

k − i

(
k + 2i− 1

k − i− 1

)
=

3k

k + 2i

(
k + 2i

k − i

)
=

3k

k + 2i

(
k + 2i

3i

)
for 0 ≤ i ≤ k − 1. Moreover, κ3k(C

(3)
3k ) = 1.

Lemma 3.7. κi(C
(3)
3k − e) = 0 for i < 2k and κ2k+i(C

(3)
3k − e) =

(
k+2i−1

3i

)
for 0 ≤ i ≤ k − 1.

Proof. The statement follows from Lemma 3.6 and the fact that κi(C
(r)
kr − e) = kr−i

kr κi(C
(r)
kr ).

We also need to verify some elementary inequalities.

Lemma 3.8. For integers k ≥ 2 and i ≥ 1,

(k + 2i+ 1)(k + 2i)(k − i)
(3i+ 3)(3i+ 2)(3i+ 1)

≤ k3 + k2

60
.
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Proof. It is easy to check that each of the ratios k+2i+1
3i+3 , k+2i

3i+2 , k−i
3i+1 decreases with i. Hence,

(k + 2i+ 1)(k + 2i)(k − i)
(3i+ 3)(3i+ 2)(3i+ 1)

≤ (k + 3)(k + 2)(k − 1)

120
=
k3 + 4k2 + k − 6

120
.

We therefore need to show that k3 + 4k2 + k − 6 ≤ 2(k3 + k2), which is equivalent to F (k) :=
k3−2k2−k+6 ≥ 0. But this follows since F (2) = 4 and F ′(k) = 3k2−4k−1 = 3k(k−2)+2k−1 > 0
for k ≥ 2.

Lemma 3.9. For integers k ≥ 3 and i ≥ 1,

(k + 2i+ 1)(k + 2i)(k − i− 1)

(3i+ 3)(3i+ 2)(3i+ 1)
≤ 7

600
(k3 − k).

Proof. It is easy to check that each of the ratios k+2i+1
3i+3 , k+2i

3i+2 , k−i−1
3i+1 decreases with i. Hence,

(k + 2i+ 1)(k + 2i)(k − i− 1)

(3i+ 3)(3i+ 2)(3i+ 1)
≤ (k + 3)(k + 2)(k − 2)

120
=
k3 + 3k2 − 4k − 12

120
.

We therefore need to show that k3 + 3k2 − 4k − 12 ≤ 7
5(k3 − k), which is equivalent to F (k) :=

2k3 − 15k2 + 13k + 60 ≥ 0. But this follows since F (3) = 18, F (4) = F (5) = 0 and F ′(k) =
6k2 − 30k + 13 = 6k(k − 5) + 13 > 0 for k ≥ 5.

We are already in a position to prove Theorems 3.3 and 3.4.

Proof of Theorem 3.3. By Proposition 3.2, it will be sufficient to find some x ∈ [−1, 0] such
that P

C
(3)
3k

(x) < 0. The coefficients of P
C

(3)
3k

are given by Lemma 3.6. It is easy to check that

P
C

(3)
6

(x) = x4(3 + 6x+ x2) is negative at x = −2
3 . Thus, we may assume that k ≥ 3. For a fixed k

and 1 ≤ i ≤ k, set

Ai :=
3k

k + 2i

(
k + 2i

3i

)( 30

k3 + k2

)i
.

By Lemma 3.8, for 1 ≤ i ≤ k − 1,

Ai+1

Ai
=

(k + 2i+ 1)(k + 2i)(k − i)
(3i+ 3)(3i+ 2)(3i+ 1)

· 30

k3 + k2
≤ 1

2
.

Set x = 30
k3+k2

. As A2j ≤ 1
2A2j−1 ≤ A2j−1, we get

x−2kP
C

(3)
3k

(−x) = 3 +
k∑
i=1

(−1)iAi ≤ 3−A1 +A2 ≤ 3− 1

2
A1

= 3− 1

2

3k

k + 2

(
k + 2

3

)
30

k3 + k2
= 3− 15

2
< 0,

as required.

Proof of Theorem 3.4. By Proposition 3.2, it will be sufficient to find some x ∈ [−1, 0] such
that P

C
(3)
3k −e

(x) < 0. The coefficients of P
C

(3)
3k −e

are given by Lemma 3.7. It is easy to check that

P
C

(3)
9 −e

(x) = x6(1 + 4x + x2) is negative at x = −2
3 . Thus, we may assume k ≥ 4. For a fixed k

and 1 ≤ i ≤ k − 1, set

Bi :=

(
k + 2i− 1

3i

) (
300

7(k3 − k)

)i
.
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By Lemma 3.9, for 1 ≤ i ≤ k − 2,

Bi+1

Bi
=

(k + 2i+ 1)(k + 2i)(k − i− 1)

(3i+ 3)(3i+ 2)(3i+ 1)
· 300

7(k3 − k)
≤ 1

2
.

Set x = 300
7(k3−k) . As B2j ≤ 1

2B2j−1 ≤ B2j−1, we get

x−2kP
C

(3)
3k −e

(−x) = 1 +

k−1∑
i=1

(−1)iBi ≤ 1−B1 +B2 ≤ 1− 1

2
B1

= 1− 1

2

(
k + 1

3

)
300

7(k3 − k)
= 1− 25

7
< 0,

as required.

For the proof of Theorem 3.5, we need to do a little more work. Consider an m-element subset
A ⊆ Z2r and assume that its elements are cyclically ordered as A = (x0, x1, . . . , xm = x0). We say
that xi is good if xi+1 − xi−1 ∈ {2, . . . , r} and bad otherwise.

Lemma 3.10. The number of m-element subsets A ⊆ Z2r that have at least one bad element is
2r(m− 2)

(
r

m−1
)

for m ≥ 4.

Proof. Suppose A = (x0, x1, . . . , xm = x0) is such a subset. Notice that if xi and xj are two distinct
bad points, then i− j = ±1. Hence, there is either just one bad point or there are two consecutive
bad points. Thus, there exists a unique index j such that xj is good and xj−1 is bad. Without loss
of generality, we may assume that j = 1. x1 can have any of the 2r possible values. We will assume
that x1 = 0 and show that there are then exactly (m−2)

(
r

m−1
)

choices for x0, x2, . . . , xm−1. As x1 is
good, x2− x0 ∈ {2, . . . , r}. As x0 is bad, x1− xm−1 ∈ {r+ 1, . . . , 2r− 1}, so xm−1 ∈ {1, . . . , r− 1}.
If x2 = i, there are r − i choices for x0 and

(
(r−1)−i
m−3

)
choices for x3, . . . , xm−1. Thus, the total

number of choices is

r−1∑
i=1

(r − i)
(

(r − 1)− i
m− 3

)
=

r−1∑
i=1

(m− 2)

(
r − i
m− 2

)
= (m− 2)

(
r

m− 1

)
,

as required.

Note that a subgraph H of the tight cycle C
(r)
2r has no degree-one vertices if and only if the set

A of initial vertices of edges in H contains no bad elements. Thus, we have the following immediate
corollary of Lemma 3.10.

Corollary 3.11.

κi(C
(r)
2r ) =

{
0 if i ≤ 3,(

2r
i

)
− 2r(i− 2)

(
r
i−1
)

if 4 ≤ i ≤ 2r.
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Proof of Theorem 3.5. By Corollary 3.11, since 2r(m− 2)
(

r
m−1

)
= 0 for r + 2 ≤ m ≤ 2r,

P
C

(r)
2r

(x) =
2r∑
i=4

(
2r

i

)
xi −

r+1∑
i=4

2r(i− 2)

(
r

i− 1

)
xi

=

2r∑
i=0

(
2r

i

)
xi −

(
1 + 2rx+ r(2r − 1)x2 +

2

3
r(r − 1)(2r − 1)x3

)

− 2r

r+1∑
i=1

(i− 2)

(
r

i− 1

)
xi + 2r

(
−x+

1

2
r(r − 1)x3

)

= (1 + x)2r + 2r
r+1∑
i=1

(
r

i− 1

)
xi − 2r

r+1∑
i=1

(i− 1)

(
r

i− 1

)
xi

−
(

1 + 4rx+ r(2r − 1)x2 +
1

3
r(r − 1)(r − 2)x3

)
= (1 + x)2r + 2rx(1 + x)r − 2r2x2(1 + x)r−1

−
(

1 + 4rx+ r(2r − 1)x2 +
1

3
r(r − 1)(r − 2)x3

)
.

If r ≥ 16, set x = −1
r . Then (1 + x)2r < e−2 and (1 + x)r + (1 + x)r−1 ≥ 2e−1, so that

P
C

(r)
2r

(x) < e−2 − 4e−1 +
4

3
+

2

3r2
< −0.002849 +

2

3r2
< 0.

If r ≤ 16, set x = −2
r . Then (1 + x)2r < e−4 and

4(1 + x)r + 8(1 + x)r−1 = 4((1 + x)r + (1 + x)r−1) + 4(1 + x)r−1 > 8e−2 + 4e−2 = 12e−2,

so that

P
C

(r)
2r

(x) < e−4 − 12e−2 +
5

3
− 4

r
+

16

3r2
< 0.060959− 4

r
+

16

3r2
< 0.

Therefore, by Proposition 3.2, C
(r)
2r is not Sidorenko for any odd r ≥ 3.

To conclude this section, we note that we have also used Proposition 3.2 to show that C
(r)
kr is not

Sidorenko for all values of k and r with r ≥ 5 odd and kr ≤ 30. This suggests, and we conjecture,

that C
(r)
kr is not Sidorenko for any odd r ≥ 5 and k ≥ 2.

4 Non-common hypergraphs

Recall that an r-graph H is common if tH(W ) + tH(1 − W ) ≥ 21−e(H) for any r-graphon W :
[0, 1]r → [0, 1] and that every Sidorenko hypergraph is automatically common. By substituting
W = 1+f

2 , we can rewrite the requirement for H to be common as tH(1+f)+ tH(1−f) ≥ 2 for any
r-variable symmetric measurable function f : [0, 1]r → [−1, 1]. By expanding out, this inequality
is equivalent to ∑

G⊆H, e(G)≡0 mod 2, e(G)>0

tG(f) ≥ 0. (3)

9



If (3) fails for some function f , then H is not common and, hence, is not Sidorenko.
To state the main result of this section, we need some definitions. Following Antoĺın Camarena

et al. [3], we say that an r-graph H is positive if tH(W ) ≥ 0 for any r-variable symmetric function
W : [0, 1]r → [−1, 1]. When r ≥ 3, we say that an r-graph is 2-connected if the removal of a single
vertex or a single edge does not disconnect it, while, for r = 2, we just mean the usual notion, that
a graph is 2-connected if it is not disconnected by the removal of a single vertex.

Theorem 4.1. Let r be odd or r = 2. If an r-graph H has a non-positive 2-connected subgraph
with 2m edges and every other subgraph with an even number of edges not exceeding 2m is either
non-positive and 2-connected or has a vertex of degree 1, then H is non-common.

When r ≥ 3, examples coming from Theorem 4.1 are quite plentiful. To see this, we will make
use of the following proposition from [33]. Here the Levi graph of an r-graph H is the bipartite
graph L(H) with vertex set V (H)∪E(H) where v ∈ V (H) and e ∈ E(H) are adjacent if and only
if v ∈ e in H. Note that for r ≥ 3 the r-graph H is 2-connected if and only if its Levi graph L(H)
is 2-connected in the usual sense.

Proposition 4.2 ([33], Theorem 1.2). If an r-graph H is positive, then its Levi graph L(H) is
positive. When r is odd, L(H) is positive if and only if H is positive.

Example 4.3. Consider the half-octahedron G, the 3-graph with vertices 1, 2, 3, 4, 5, 6 and edges
{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}. Its Levi graph L(G) has 10 vertices and 12 edges. With a
single exception, all positive graphs with at most 10 vertices are classified in [3] and L(G) is not
one of them. Hence, by Proposition 4.2, G is non-positive. Therefore, if all 4-edge subgraphs of
a 3-graph H are either isomorphic to G or have a vertex of degree 1, then, by Theorem 4.1, H
is non-common and non-Sidorenko. In particular, by Theorem 1.1, the extremal number of the
half-octahedron (or the Pasch configuration, as it sometimes known) is at least γn2+c for some
c, γ > 0, improving on the bound of γn2 which follows from the deletion method or by taking all(
n−1
2

)
edges containing a given vertex.

Example 4.4. Recall that Gr is the grid r-graph whose vertices are the points of the r×r grid and
whose edges are the 2r horizontal and vertical lines of the grid. It was shown in [33, Proposition
1.5] that Gr is not positive for odd r. Since any proper subgraph of Gr has a vertex of degree
1, Theorem 4.1 implies that Gr is non-common for odd r. Moreover, if we add more edges to Gr
without creating new subgraphs whose minimum vertex degree is at least 2, then the resulting
r-graph will remain non-common.

The next statement was proved in [3, Lemma 6] for r = 2, but the proof can be repeated
verbatim for an arbitrary r.

Lemma 4.5 ([3]). An r-graph G is positive if and only if every connected r-graph that occurs
among the connected components of G an odd number of times is positive.

We also note the following result. In the proof, we often consider the tensor product f ⊗ g of
r-variable symmetric functions f and g, defined by

(f ⊗ g)((x1, y1), . . . , (xr, yr)) = f(x1, . . . , xr) g(y1, . . . , yr),

where we identify each ((x1, y1), . . . , (xr, yr)) with a point in [0, 1]r through a measure-preserving
bijection from [0, 1]2r to [0, 1]r.

Proposition 4.6. If the r-graphs G1, . . . , Gk are not positive, then there exists a function f such
that tGi(f) < 0 for all i = 1, . . . , k.
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Proof. We use induction on k. The base case k = 1 is trivial, so we consider the induction step
going from k − 1 to k ≥ 2. For each j = 1, . . . , k, by the induction hypothesis, there exists a
function fj such that tGi(fj) < 0 for all i 6= j. If necessary, we perturb fj by a little bit to ensure
that tGj (fj) 6= 0 while preserving tGi(fj) < 0 for all i 6= j. If tGj (fj) < 0, then fj is the function we
need. Thus, we may assume that tGj (fj) > 0. If k is even, f = f1⊗ · · · ⊗ fk satisfies tGi(f) < 0 for
all i = 1, . . . , k. Suppose then that k is odd. Let G be the union of disjoint copies of G1, . . . , Gk.
By Lemma 4.5, G is not positive, so there exists a function f0 such that tG(f0) < 0. Notice that
tG(f0) =

∏k
i=1 tGi(f0). We may assume that tGi(f0) > 0 for 1 ≤ i ≤ m and tGi(f0) < 0 for

m + 1 ≤ i ≤ k, where m is even. If m = 0, then f0 is the function we need. If m > 0, then
f = f0 ⊗ f1 ⊗ · · · ⊗ fm satisfies tGi(f) < 0 for all i = 1, . . . , k, so we again have the required
function.

The following result and its corollaries are the key to proving Theorem 4.1. Note that we call
an r-variate symmetric measurable function f zero-averaging if

∫
f(x1, . . . , xr−1, xr) dxr = 0 for

any x1, . . . , xr−1.

Proposition 4.7. If H is a non-positive 2-connected graph with an even number of edges, then
there exists a zero-averaging function f : [0, 1]2 → [−1, 1] such that tH(f) < 0.

Proof. Our plan is to construct a {±1}-weighted graph Γ such that every vertex has a vanishing
sum over the weights of its incident edges and tH(Γ) < 0. Let U : [0, 1]2 → [−1, 1] be a measurable
symmetric function, i.e., a signed graphon, that satisfies tH(U) < 0. By using a signed variant
of Lemma 2.1, one may obtain a {±1}-weighted graph G such that tH(G) < 0. Let d := v(G) and
s := v(H) for brevity and write wH(G) = dstH(G). We may then assume that wH(G) < −ds−1/2
by replacing G with a blow-up by a sufficiently large factor. Note that, as H has an even number of
edges, wH(−G) = wH(G), where −G denotes the graph with edge weights of opposite sign from G.

For any sufficiently large even n, there is a d-regular n-vertex bipartite graph F with girth
greater than s (see, for example, [23]). Partition the edges of F into d perfect matchings, colouring
the edges of each matching with one of the d colours from [d]. Now consider the line d-graph of F
whose vertices are the edges of F and whose d-edges are the collections of d edges in F incident
to each vertex of F . A {±1}-weighted d-graph F is defined by assigning +1 or −1 to each edge
in this line d-graph, depending on which side of the bipartition the corresponding vertex of F lies.
The required zero-averaging weighted graph Γ is then obtained by replacing each d-edge in F by
a copy of G, where we map each vertex of V (G) = [d] to the corresponding coloured vertex (with
the colouring inherited from the matchings) and multiply the weight on each edge of G by the
{±1}-weight on the corresponding edge of F .

We claim that tH(Γ) < 0. To prove this, we say that a (weighted) homomorphism from H
to Γ is good if the homomorphic image of H lies in one d-edge of F . The weighted sum of good
homomorphisms is a negative number less than n ·wH(G) < −nds−1/2, where we used the fact that
wH(G) = wH(−G).

On the other hand, there may be some homomorphic images of H that are not entirely covered
by a single d-edge, which we call bad. As the girth of F is larger than the number of vertices in H,
the unique minimal collection of d-edges whose union contains a fixed bad image of H must form
a d-hypertree in F , where uniqueness follows from the fact that F is a linear hypergraph.

As F is linear, deleting a vertex v lying in the intersection of two d-edges in a d-hypertree
disconnects the subgraph of Γ induced on the vertex set of the d-hypertree. In particular, if a bad
image of H contains v, then the image of H is disconnected once v is deleted. As H is a 2-connected
graph, the bad image of H must therefore be degenerate, i.e., there are at least two vertices of H
that are mapped to v.
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Suppose that there are t + 1 edges in a d-hypertree T ⊆ F for some t ≥ 1. Then there are
(t+ 1)d− t vertices in T , exactly t of which have degree two (here we used that each vertex in F
has degree exactly two). If T is a minimal cover of a bad homomorphic image of H, then there are
t disjoint pairs of vertices in H, each of which maps to a unique one of the t vertices of degree two.
Thus, there are at most

(
s
2

)t
((t+ 1)d− t)s−2t bad homomorphic copies of H whose minimal cover

is T .
Given a d-hypertree T with t + 1 edges, one can recover the tree in F corresponding to the

union of the d-edges of T in three steps: replace each d-edge by the corresponding vertex in F ;
connect those vertices that correspond to intersecting d-edges; and turn each degree-one vertex in
a d-edge e of T into a leaf adjacent to the unique vertex of F which corresponds to e. Note that
the leaves added in the last step are determined once the first two steps give a (t + 1)-vertex tree
in F . Thus, there are at most ndt isomorphic images of T in F . Therefore, there are at most
s2t(t+ 1)s−2tnds−t bad homomorphic images of H whose minimal cover is isomorphic to T . Hence,
as 1 ≤ t < s and the number of distinct d-hypertrees with t + 1 edges and maximum degree two
is bounded as a function of t, the number of bad homomorphic images of H is at most Cnds−1

for a constant C = C(s). This is asymptotically smaller than −nds−1/2, the upper bound for the
weighted sum of good homorphisms provided d is sufficiently large, so that tH(Γ) is negative, as
required.

Corollary 4.8. Let r ≥ 3 be odd. If H is a non-positive 2-connected r-graph with an even number
of edges, then there exists an r-variate zero-averaging function h such that tH(h) < 0.

Proof. By Proposition 4.2, the Levi graph L(H) of H is a non-positive 2-connected graph with
an even number of edges. Therefore, by Proposition 4.7, there exists a 2-variate zero-averaging
function f such that tL(H)(f) < 0. Consider the r-variate symmetric measurable function h given
by h(x1, . . . , xr) =

∫ ∏r
i=1 f(xi, y) dy. It is easy to see that h is zero-averaging and tH(h) =

tL(H)(f) < 0.

Proposition 4.9. If G1, . . . , Gk are non-positive 2-connected graphs each with an even number of
edges, then there exists a zero-averaging function f such that tGi(f) < 0 for all i = 1, . . . , k.

Proof. Using Proposition 4.7, we proceed exactly as in the proof of Proposition 4.6.

Proposition 4.10. Let r ≥ 3 be odd. If G1, . . . , Gk are non-positive 2-connected r-graphs each
with an even number of edges, then there exists a zero-averaging function f such that tGi(f) < 0
for all i = 1, . . . , k.

Proof. Using Corollary 4.8, we proceed exactly as in the proof of Proposition 4.6.

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. Let us assume that m in the statement of the theorem is as small as
possible, that is, there are non-positive 2-connected subgraphs G1, . . . , Gk with 2m edges and every
other subgraph with an even number of edges not exceeding 2m has a vertex of degree 1. By
Proposition 4.9 (if r = 2) or Proposition 4.10 (if r is odd), there exists a function f such that
S := tG1(f) + · · · + tGk

(f) < 0 and tG(f) = 0 for any r-graph G that has a vertex of degree 1.
Hence, for ε > 0 sufficiently small,∑

G⊆H, e(G)≡0 mod 2, e(G)>0

tG(εf) = ε2mS +O(ε2m+1) < 0,

so H is not common.
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5 Concluding remarks

We say that an r-graph H is locally Sidorenko if there exists ε > 0 such that tH(W ) ≥ tKr(W )e(H)

for all r-graphons W with ‖W−1/2‖� ≤ ε. That is, H is locally Sidorenko if the required inequality
holds for all r-graphons which are sufficiently close to the uniform graphon 1/2, where closeness is
measured in terms of the cut norm (see, for example, [27]). Since it is probably difficult to give a
complete characterisation of those r-graphs which are Sidorenko, we instead conclude by asking for
a characterisation of locally Sidorenko r-graphs.

Question 5.1. Which r-graphs are locally Sidorenko?

It was shown by Lovász [26] that every bipartite graph is locally Sidorenko and later, by Fox and
Wei [15], that a graph is locally Sidorenko if and only if it is either a forest or has even girth. The
results of Section 3 are all proved by showing that the relevant r-graphs are not locally Sidorenko
and may help give some hints as to what a full characterisation should look like. However, at
present, we have no concrete conjectures, even in the r-partite case most relevant to us. Indeed,
despite Theorem 1.5, it is already open to determine which tight cycles are locally Sidorenko for
r ≥ 4.
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[27] László Lovász. Large networks and graph limits, volume 60 of Amer. Math. Soc. Colloq. Publ.
American Mathematical Society, 2012.

[28] Dhruv Mubayi, Oleg Pikhurko, and Benny Sudakov. Hypergraph Turán problem: some
open questions. AIM workshop problem lists, manuscript. URL: homepages.warwick.ac.
uk/~maskat/Papers/TuranQuestions.pdf.

14

homepages.warwick.ac.uk/~maskat/Papers/ TuranQuestions.pdf
homepages.warwick.ac.uk/~maskat/Papers/ TuranQuestions.pdf


[29] Alexander A. Razborov. On 3-hypergraphs with forbidden 4-vertex configurations. SIAM J.
Discrete Math., 24(3):946–963, 2010.
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