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Abstract

By using random multilinear maps, we provide new lower bounds for the Erdős box problem,
the problem of estimating the extremal number of the complete d-partite d-uniform hypergraph
with two vertices in each part, thereby improving on work of Gunderson, Rödl and Sidorenko.

1 Introduction

Writing K
(d)
s1,...,sd for the complete d-partite d-uniform hypergraph with parts of orders s1, . . . , sd, the

extremal number exd(n,K
(d)
s1,...,sd) is the maximum number of edges in a d-uniform hypergraph on n

vertices containing no copy of K
(d)
s1,...,sd . Already for d = 2, the problem of determining these extremal

numbers is one of the most famous in combinatorics, known as the Zarankiewicz problem. The classic

result on this problem, due to Kővári, Sós and Turán [12], says that

ex2(n,Ks1,s2) = O
(
n2−1/s1

)
for all s1 ≤ s2. However, this upper bound has only been matched by a construction with Ω(n2−1/s1)

edges when s2 > (s1 − 1)!, a result which, in this concise form, is due to Alon, Kollár, Rónyai and

Szabó [1, 11], but builds on a long history of earlier work on special cases (see, for example, the

comprehensive survey [8]).

Generalizing the Kővári–Sós–Turán bound, Erdős [6] showed that

exd(n,K
(d)
s1,...,sd

) = O

(
n
d− 1

s1···sd−1

)
(1)

for all s1 ≤ s2 ≤ . . . ≤ sd. An analogue of the Alon–Kollár–Rónyai–Szabó result, due to Ma, Yuan

and Zhang [14], is also known in this context and says that (1) is tight up to the constant provided

that sd is sufficiently large in terms of s1, . . . , sd−1. The proof of this result is based on an application

of the random algebraic method, introduced by Bukh [2] and further developed in [3] and [4].

Our concern then will be with determining the value of exd(n,K
(d)
s1,...,sd) in the particular case when

s1 = · · · = sd = 2. In the literature, this problem, originating in the work of Erdős [6], is sometimes

referred to as the box problem, owing to a simple reformulation in terms of finding the largest subset

of the grid {1, 2, . . . , n}d which does not contain the vertices of a d-dimensional box (see also [10] for

a connection to a problem in analysis). By (1), we have

exd(n,K
(d)
2,...,2) = O

(
n
d− 1

2d−1

)
. (2)
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While in the case d = 2, it has long been known that ex2(n,K2,2) = Θ(n3/2), with a matching

construction due to Klein [5] even predating the Kővári–Sós–Turán bound, there has been very little

success in finding constructions matching (2) for d ≥ 3. Indeed, it is unclear whether they should even

exist. For d = 3, the best available construction is due to Katz, Krop and Maggioni [10], who showed

that ex3(n,K
(3)
2,2,2) = Ω(n8/3). For general d, there is a simple, but longstanding, lower bound

exd(n,K
(d)
2,...,2) = Ω

(
n
d− d

2d−1

)
(3)

coming from an application of the probabilistic deletion method. Besides the Katz–Krop–Maggioni

construction, the only improvement to this bound is an elegant construction of Gunderson, Rödl and

Sidorenko [9] using random hyperplanes which applies for infinitely many values of d.

Theorem 1 (Gunderson–Rödl–Sidorenko) For any d ≥ 2, let s = s(d) be the smallest positive

integer s (if it exists) such that (sd− 1)/(2d − 1) is an integer. Then

exd(n,K
(d)
2,...,2) = Ω

(
n
d− d−1/s

2d−1

)
.

It is easy to see that the number s = s(d) exists precisely when d and 2d − 1 are relatively prime,

which holds, for instance, when d is a prime number or a power of 2, but does not hold for many other

numbers, such as d = 6, 12, 18, 20, 21. In fact, their result fails to apply for a positive proportion of

the positive integers, as may be seen by noting that if the condition (d, 2d − 1) = 1 fails for a given d,

then it also fails for all multiples of d.

In this paper, we improve on the lower bound from Theorem 1 by establishing the following result,

whose proof relies on a new random algebraic method using multilinear maps rather than high-degree

polynomials.

Theorem 2 For any d ≥ 2, let r and s be positive integers such that d(s− 1) < (2d − 1)r. Then

exd(n,K
(d)
2,...,2) = Ω

(
nd−

r
s

)
.

This not only improves the lower bound for the box problem provided by Theorem 1 for any d which is

not a power of 2, but it also yields a gain over the probabilistic deletion bound (3) for all uniformities d.

To see this, note that if d ≥ 2, then d never divides 2d−1, so we may set r = 1 and s = d2d−1d e >
2d−1
d .

Corollary 1 For any d ≥ 2,

exd(n,K
(d)
2,...,2) = Ω

(
nd−d

2d−1
d
e−1

)
.

By a result of Ferber, McKinley and Samotij [7, Theorem 9], any polynomial gain over the deletion

lower bound for the extremal number of a uniform hypergraph H implies an optimal counting result

for the number of H-free graphs on n vertices. In combination with Corollary 1, this implies the

following result, generalizing a celebrated theorem of Kleitman and Winston [13] on the d = 2 case.
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Corollary 2 For any d ≥ 2, let Fn
(
K

(d)
2,...,2

)
be the set of all (labeled) K

(d)
2,...,2-free graphs with vertex

set {1, . . . , n}. Then there exists a positive constant C depending only on d and an infinite sequence

of positive integers n for which ∣∣∣Fn (K(d)
2,...,2

)∣∣∣ ≤ 2C·exd(n,K
(d)
2,...,2).

For the reader’s convenience, we include below a table comparing the bounds provided by the deletion

bound (3), by Gunderson, Rödl and Sidorenko’s Theorem 1 and by our Corollary 1. A number α on

the dth row of the table means that the corresponding method gives the lower bound

exd(n,K2,...,2) = Ω
(
nd−1/α

)
,

while an empty cell in the GRS column means that the method does not apply for that value of d. In

particular, we note that our method recovers both the fact that ex(n,K2,2) = Θ(n3/2) and the lower

bound ex3(n,K
(3)
2,2,2) = Ω(n8/3) of Katz, Krop and Maggioni.

d Deletion GRS Corollary 1

2 1.50 2.00 2.00

3 2.33 2.50 3.00

4 3.75 4.00 4.00

5 6.20 6.25 7.00

6 10.50 11.00

7 18.14 18.16 19.00

8 31.87 32.00 32.00

9 56.77 56.80 57.00

10 102.30 102.33 103.00

11 186.09 186.10 187.00

12 341.25 342.00

13 630.07 630.08 631.00

14 1170.21 1170.22 1171.00

15 2184.46 2184.50 2185.00

16 4095.93 4096.00 4096.00

17 7710.05 7710.06 7711.00

18 14563.50 14564.00

19 27594.05 27594.05 27595.00

20 52428.75 52429.00

21 99864.33 99865.00

2 New lower bounds for the Erdős box problem

2.1 Linear algebra preliminaries

Let V1, . . . , Vd be finite-dimensional spaces over the field Fq. Following standard convention, we call a

function T : V1×· · ·×Vd → Fq multilinear if, for every i ∈ {1, . . . , d} and every fixed choice of xj ∈ Vj
for each j 6= i, the function T (x1, . . . , xi−1, x, xi+1, . . . , xd), considered as a function on Vi, is linear

over Fq.
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The vector space of all multilinear functions T : V1×· · ·×Vd → Fq can be naturally identified with the

space V ∗1 ⊗ · · · ⊗ V ∗d , where V ∗ denotes the dual space of V . A uniformly random multilinear function

T : V1 × · · · × Vd → Fq is then a random element of the space V ∗1 ⊗ · · · ⊗ V ∗d , chosen according to the

uniform distribution.

If, for each i, we have a subspace Ui ⊂ Vi, then we can define a restriction map

r : V ∗1 ⊗ · · · ⊗ V ∗d → U∗1 ⊗ · · · ⊗ U∗d .

We have the following simple, but important, claim about these restriction maps.

Claim 1 The restriction r(T ) of a uniformly random multilinear function T is again uniformly ran-

dom.

Proof: The map r is linear and surjective and so all T ′ ∈ U∗1 ⊗ · · · ⊗ U∗d have the same number of

preimages in V ∗1 ⊗ · · · ⊗ V ∗d . 2

It will also be useful to note the following simple consequence of multilinearity.

Proposition 1 Suppose that T : V1 × · · · × Vd → Fq is multilinear and, for every i = 1, . . . , d, there

are vectors v0i , v
1
i ∈ Vi such that

T (vε11 , . . . , v
εd
d ) = 1

for all 2d choices of εi ∈ {0, 1}. Then, for any ui which lie in the affine hull of v0i , v
1
i for each

i = 1, . . . , d,

T (u1, . . . , ud) = 1.

Proof: Write ui = α0
i v

0
i + α1

i v
1
i for some α0

i + α1
i = 1. Then, by multilinearity, we have

T (u1, . . . , ud) =
∑

ε1,...,εd∈{0,1}

αε11 · · ·α
εd
d T (vε11 , . . . , v

εd
d )

=
∑

ε1,...,εd∈{0,1}

αε11 · · ·α
εd
d = (α0

1 + α1
1) · · · (α0

d + α1
d) = 1,

as required. 2

2.2 Proof of Theorem 2

Fix positive integers d, r and s and let q be a large prime power. Let V = Fsq and let T1, . . . , Tr ∈ V ∗⊗d
be independent uniformly random multilinear functions. Let H be the d-partite d-uniform hypergraph

between d copies of V whose edge set E consists of all tuples (v1, . . . , vd) ∈ V d such that Ti(v1, . . . , vd) =

1 for all i = 1, . . . , r. Let us estimate the expected number of edges in H.

Claim 2 E [|E|] = (qs − 1)dq−r ∼ qds−r.
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Proof: Note that if one of v1, . . . , vd is zero, then Ti(v1, . . . , vd) = 0, so we may assume that (v1, . . . , vd)

is one of the (qs − 1)d remaining sequences of non-zero vectors and calculate the probability that it

belongs to E . Let Ui = 〈vi〉 ⊂ V , a one-dimensional subspace of V . By Claim 1, the restriction T ′i of Ti
to U1×· · ·×Ud is uniformly distributed in U∗1⊗· · ·⊗U∗d . But the latter space is one-dimensional and so

T ′i (v1, . . . , vd) takes the value 1 with probability q−1. Since T1, . . . , Tr are independent, the functions

T ′1, . . . , T
′
r are independent, so they all are equal to one at (v1, . . . , vd) with probability exactly q−r. 2

We now estimate the expected number of (appropriately ordered) copies of K
(d)
2,...,2 in H.

Claim 3 Let F denote the family of all (v01, v
1
1, . . . , v

0
d, v

1
d) ∈ V 2d where v0j 6= v1j for all j and

Ti(v
ε1
1 , . . . , v

εd
d ) = 1 for all i = 1, . . . , r and all choices of ε1, . . . , εd ∈ {0, 1}. Then E[|F|] ∼ q2ds−2dr.

Proof: If, for some j = 1, . . . , d, the vectors v0j and v1j are collinear, say v1j = λv0j for some λ 6= 1

(but allowing λ = 0), then

T (v01, . . . , v
1
j , . . . , v

0
d) = λT (v01, . . . , v

0
j , . . . , v

0
d),

so these two numbers cannot be equal to 1 simultaneously. Therefore, we may restrict attention to

only those tuples where v0j and v1j are linearly independent for all j = 1, . . . , d.

Fix one of the (qs − 1)d(qs − q)d remaining tuples v̄ = (v01, v
1
1, . . . , v

0
d, v

1
d) and let us compute the

probability that v̄ ∈ F . Let Uj = 〈v0j , v1j 〉 be the two-dimensional vector space spanned by v0j and

v1j . By Claim 1, the restriction T ′i of Ti to U1 × · · · × Ud is uniformly distributed in U∗1 ⊗ · · · ⊗ U∗d .

Moreover, the independence of T1, . . . , Tr implies that T ′1, . . . , T
′
r are also independent. Now observe

that the set of 2d tensors

{vε11 ⊗ · · · ⊗ v
εd
d : εj ∈ {0, 1}}

forms a basis for the space U1 ⊗ · · · ⊗ Ud. Therefore, there exists a unique R ∈ U∗1 ⊗ · · · ⊗ U∗d such

that R(vε11 , . . . , v
εd
d ) = 1 for all εj ∈ {0, 1}. Moreover, since there are q2

d
different choices for the

value of a function in U∗1 ⊗ · · · ⊗ U∗d at the (vε11 , . . . , v
εd
d ) and each such choice determines a unique

function, the probability that T ′i = R is q−2
d
. Since v̄ ∈ F if and only if T ′i = R for all i = 1, . . . , r,

the independence of the T ′i implies that the probability v̄ ∈ F is q−2
dr. Thus,

E[|F|] = (qs − 1)d(qs − q)dq−2dr ∼ q2ds−2dr,

as required. 2

The next step is crucial.

Lemma 1 Let B be the family of all (v1, . . . , vd) ∈ E for which there exists (v′1, . . . , v
′
d) ∈ V d such that

(v1, v
′
1, . . . , vd, v

′
d) ∈ F . Then

E[|B|] ≤ (1 + o(1))q−dE[|F|].

Proof: Given a sequence of affine lines l1, . . . , ld ⊂ V , denote by P (l1, . . . , ld) the set of all sequences

(x1, x
′
1, . . . , xd, x

′
d) ∈ V 2d such that xj and x′j are distinct and lie on lj for all j. Clearly,

|P (l1, . . . , ld)| = qd(q − 1)d ∼ q2d.

Note that:
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1. If (l1, . . . , ld) 6= (l′1, . . . , l
′
d), then P (l1, . . . , ld) ∩ P (l′1, . . . , l

′
d) = ∅, since the lines l1, . . . , ld are

uniquely determined by any member of P (l1, . . . , ld).

2. If P (l1, . . . , ld) ∩ F 6= ∅, then P (l1, . . . , ld) ⊂ F by Proposition 1.

3. Any v̄ ∈ F is contained in P (l1, . . . , ld) for some l1, . . . , ld.

Denote the family of all tuples (l1, . . . , ld) such that P (l1, . . . , ld) ∩ F 6= ∅ by L. By the observations

above, we have that

|L|qd(q − 1)d = |F|.

On the other hand, it is clear that

B =
⋃

(l1,...,ld)∈L

l1 × l2 × . . .× ld,

so that

|B| ≤ qd|L| = (q − 1)−d|F|.

Taking expectations, we obtain the required result. 2

By definition, the subgraph H′ of H with edge set E \ B is K2,...,2-free. By Lemma 1 and Claim 3,

E[|B|] ≤ (1 + o(1))q−dE[|F|] = (1 + o(1))q2ds−2
dr−d.

On the other hand, by Claim 2, E[|E|] ∼ qds−r. By the assumption on r and s from the statement of

Theorem 2, we have

2ds− 2dr − d < ds− r,

which immediately implies that E[|B|] = o(E[|E|]). Therefore, there must exist aK
(d)
2,...,2-free hypergraph

H′ on a ground set of size n = dqs with edge set E ′ satisfying

|E ′| = (1 + o(1))qds−r = (c+ o(1))nd−
r
s ,

where c = d
r
s
−d, completing the proof of Theorem 2.
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[6] P. Erdős, On extremal problems of graphs and generalized hypergraphs, Israel J. Math. 2 (1964),

183–190.

[7] A. Ferber, G. McKinley and W. Samotij, Supersaturated sparse graphs and hypergraphs, Int.

Math. Res. Not. IMRN 2020 (2020), 378–402.
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