
Example sheet 2 - solutions

1. Consider an r-uniform hypergraph on n + 1 vertices which contains no copy of H. Then no

subset of n vertices contains a copy of H either. Hence, any subset of size n contains at most

ex(n,H) edges. Therefore, by averaging over subsets of size n,

ex(n+ 1,H) =
1(

n+1−r
n−r

) ∑
|U |=n

e(U) ≤ n+ 1

n+ 1− r
ex(n,H).

Dividing either side by
(
n+1
r

)
yields

ex(n+ 1,H)(
n+1
r

) ≤ ex(n,H)(
n
r

) .

Therefore, since these ratios are decreasing and bounded below by 0, they must approach a limit.

2. Let X be a set of n points in the plane. Form a graph G by connecting two vertices if and only if

they are distance 1 apart. It is easy to check that the graph contains no copy of K2,3. Therefore

e(G) ≤ ex(n,K2,3) ≤ cn3/2, as required.

3. This is a standard application of the probabilistic method. Consider the random graph Gn,p

where p = cn−
t−2
m−1 . The expected number of edges is at least pn2/8 and the expected number

of copies of H is at most pmnt. For c sufficiently small, we have

pmnt ≤ 1

16
pn2.

Therefore, since E(edges− copies of H) ≥ 1
16pn

2, we may remove all copies of H and still be left

with a graph which has 1
16pn

2 = c
16n

2− t−2
m−1 edges.

4. By the convexity of the function f(x) =
(
x
a

)
and the fact that the average degree of B is at least

a = ε|A|, we conclude that the number of pairs (U, v) with U a subset of A of size a and v a

vertex in B connected to every element of U is at least∑
v∈B

(
d(v)

a

)
≥ |B|

( 1
|B|
∑

v∈B d(v)

a

)
≥ |B|.

Since A has at most 2|A| subsets, the pigeonhole principle implies that for some U ⊂ A of size a

there are at least b = 2−|A||B| elements of B which are connected to every element of U . This

yields the required copy of Ka,b.

For the second part, note that∑
v∈B

(
d(v)

s

)
≥ |B|

(
ε|A|
s

)
≥ |B|(ε|A|/2)s

s!
,

where the inequalities follow from the convexity of f(x) =
(
x
s

)
and the fact that s = c(ε) log n ≤

ε|A|/2. If the graph does not contain Ks,t then we know that every subset of A of size s has at

most t− 1 common neighbours. Therefore,

|B|(ε|A|/2)s

s!
≤ (t− 1)

(
|A|
s

)
< t
|A|s

s!
= n1/2

|A|s

s!
.

But for c(ε) sufficiently small, (ε/2)s|B| ≥ n1/2, so this is a contradiction.
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5. Partition the set of vertices into three sets at random. This easily yields a partition for which

there are at least cδn3 triangles with one vertex in each part. We will therefore, without loss of

generality, assume that we have three vertex sets V1, V2 and V3 and that there are δn3 triangles

with one vertex in each part. Let E23 be the set of edges between V2 and V3 which are contained in

at least δ
2n triangles. Note that |E23| ≥ δ

2n
2. Otherwise, we would have at most |E23|n+n2 δ2n <

δn3 triangles, contradicting our assumption.

Using the second part of the previous question, we may now find a complete graph between two

sets W2 ⊂ V2 and W3 ⊂ V3, where |W2| = |W3| = c(δ) log n. Now consider a complete matching

M between W2 and W3. M will have c(δ) log n edges. Consider the bipartite graph between M

and the set V1, where m and v are joined if any only if they form a triangle together. Since

every edge in M is in E23, there are at least |M | δ2n = δ
2 |M ||V1| edges in the graph. Therefore,

applying the first part of the previous question, we can find a subset M ′ of M of size δ
2 |M | and

a subset of W1 of V1 of size 2−|M
′|n ≥ n1/2, for c(δ) sufficiently small. Let X2 and X3 be the two

endpoints of the matching M ′ and let X1 be a subset of W1 of size |M ′|. The graph between

X1, X2 and X3 is the required blow-up of the triangle.

6. By supersaturation, we know that as soon as we have density 1
2 + ε, we have δn3 triangles.

By the previous question, this implies the existence of a large blow-up. This will contain any

3-chromatic graph provided n is sufficiently large. (Note that this question and the last may be

generalised to give a full proof of Erdős-Stone-Simonovits.)

7. Let H = Kt,t,t, that is, there are three vertex sets of size t and any two vertices in different

parts are connected. Consider also a graph G consisting of two vertex sets U and V of size n/2,

where U is empty and V contains a graph L containing no copy of Kt,t. We know that there

exist such graphs with at least c(n/2)2−2/t edges. We will assume that L has this many edges

and, therefore, that G has 1
4n

2 + c′n2−2/t edges.

It is elementary to check that G contains no copy of H. Indeed, any copy of H clearly cannot be

contained entirely within V . Therefore, there is some vertex in U . But the neighborhood of this

vertex in H contains a copy of Kt,t and the neighborhood of this vertex in G must lie entirely

inside V , so we have a contradiction.

8. Let H be a graph which is not colour-critical, that is, removing any edge still leaves one with a

graph of chromatic number t. Consider the Turán graph, which consists of t− 1 vertex subsets

of size as equal as possible and add a single edge e in one of the vertex sets. We will show that

this graph, which necessarily contains a copy of Kt, does not contain a copy of H. Clearly, any

copy of H must contain the edge e. So for any copy we get two vertices in the same vertex subset

and, by construction, every other vertex must lie in distinct vertex subsets. But then the edge

e is the only obstruction to making the graph (t− 1)-chromatic, so deleting the edge e from H

will yield a graph of chromatic number t− 1. This contradicts the definition of colour-critical.

9. Suppose that we have a hypergraph G with n vertices and cn3−1/t
2

edges not containing Kt,t,t

as a subgraph. Note that the average number of edges containing a 2-edge is 3cn1−1/t
2
. We will

count pairs (e, T ) consisting of edges e and sets of vertices T , of size t, such that every vertex in

T forms an edge with e. The number of such pairs is at least

∑
e

(
d(e)

t

)
≥
(
n

2

)( 1

(n2)

∑
e d(e)

t

)
≥
(
n

2

)(
3cn1−1/t

2

t

)
≥
(
n

2

)
ctnt−1/tt! = c′

nt+2−1/t

t!
.

2



Therefore, since there are
(
n
t

)
possible choices for T , there exists some T1 of size t with common

neighborhood a graph E of size at least c′n2−1/t. Provided c and hence c′ is sufficiently large,

we may now apply the result that we know for ordinary graphs to find sets T2 and T3 of size t

such that there is a complete subgraph of E between them. This completes the proof.

10. I will not write out a full proof of this. Instead, I refer the reader to the survey paper ‘Dependent

random choice’ by Jacob Fox and Benny Sudakov. A complete proof of the required result is

contained in Lemma 2.1 and Theorem 3.4, though I heartily recommend the full paper.
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