
Example sheet 1 - solutions

1. We will prove the result by induction on n. For n = 3, a subgraph with three edges contains one
triangle, as expected. Similarly, for n = 4, it is easily checked that any subgraph with 5 edges
must contain two triangles.

Assume now that a graph with n − 2 vertices and at least b (n−2)2

4 c + 1 edges contains at least
bn−2

2 c triangles. We will prove the required result also holds for n. Suppose that we have a graph

G on n vertices with bn2

4 c+ 1 = b (n−2)2

4 c+ 1 + (n− 1) edges but with fewer than bn2 c triangles.
Let x and y be two vertices which are joined by an edge but are not contained in a triangle. This
is certainly possible, since 3(bn2 c−1) ≤ bn2

4 c+ 1. Therefore, as usual d(x) +d(y) ≤ n. Moreover,
the neighborhoods N(x) and N(y) of x and y must be disjoint. We now know that the graph
H = G − {x, y} contains at least b (n−2)2

4 c + 1 edges. It must therefore contain at least bn−2
2 c

triangles. But the number of edges between N(x) and N(y) is at most b (n−2)2

4 c. Therefore, one
of N(x) and N(y) must contain an edge. This yields one further triangle and proves the result.

To show that the result is sharp, we just take the bipartite graph between sets of size bn2 c and
dn2 e and add one extra edge in the set of size dn2 e.

2. We will prove the result by induction on n. For n = 4 and n = 5, there are no non-bipartite
triangle-free graphs with n vertices and 4 or 6 edges respectively.

Assume now that any non-bipartite graph on n− 2 vertices with more than 1
4(n− 3)2 + 1 edges

contains a triangle. Let G be a non-bipartite graph on n vertices with more than 1
4(n− 1)2 + 1

vertices and assume that it contains no triangles. Let xy be an edge in G. Since G is triangle-free,
N(x) and N(y) both form independent sets. But the union of the two sets cannot be everything,
for otherwise G would have to be bipartite. Therefore d(x) + d(y) ≤ n − 1. This implies that
the number of edges in H = G− {x, y} is more than 1

4(n− 3)2 + 1. If H is not bipartite, then,
by induction, H contains a triangle and we are done. Therefore, the graph H must be bipartite.

If H is bipartite, let A and B be the sets in the partition with |A| ≥ |B|. Neither x nor y can
have neighbours in both A and B. Otherwise, we would have a triangle. Moreover, if x only
has neighbours in A and y only has neighbours in B (or vice versa), the graph G is bipartite.
Therefore, all of the neighbours of x and y lie in A or B. Since |A| ≥ |B|, the maximum number
of edges occurs when all neighbours of x and y are in A. In this case, we have |A||B|+ |A|+ 1
edges. Since |B| = n− |A| − 2, this is maximised by taking |A| = bn−1

2 c.
To show that this is sharp for odd values of n, take two sets, one of size n−1

2 and the other of size
n−3

2 , and place every edge between them. Then take two extra vertices x and y, join them and
connect one (and only one) of them to every vertex in the piece of size n−1

2 , insisting that each
of x and y has at least one neighbor in this set. This yields a graph G which is not bipartite (it
has a 5-cycle), contains no triangle and has 1

4(n− 1)2 + 1 edges.

3. Let < be a uniformly chosen ordering of V . Define

I = {v ∈ V : {v, w} ∈ E ⇒ v < w}.

Let Xv be the indicator random variable which indicates whether or not v ∈ I. That is, it takes
value 1 if v ∈ I and 0 otherwise. Let X =

∑
v∈V Xv = |I|. For each v,

E[Xv] = P[v ∈ I] =
1

d(v) + 1
,

1



since v ∈ I if and only if it is the smallest element among v and its neighbours. Therefore

E[X] =
∑
v∈V

1
d(v) + 1

.

In particular, there exists some ordering for which |I| ≥
∑

v∈V
1

d(v)+1 . But it is easily verified
that the set of elements in I form an independent set.

To deduce Turán’s theorem, suppose that G is a graph with more than
(

1− 1
r−1

)
n2

2 edges. Its

complement G has fewer than(
n

2

)
−
(

1− 1
r − 1

)
n2

2
=

1
r − 1

n2

2
− n

2

edges. Now the function
∑

v
1

d(v)+1 will be minimised when all of the d(v) have size as close as
possible. Therefore, taking d(v) = 1

r−1n− 1− ε for each v, we have

α(G) ≥
∑
v

1
d(v) + 1

≥ n
n
r−1 − ε

> r − 1.

Since an independent set in G is a clique in G, this implies Turán’s theorem.

4. Let S = {x1, . . . , xn}. Consider the graph G formed by joining two vertices if the distance
between them is greater than 1/

√
2. If we can show that G contains no copy of K4, then Turán’s

theorem will imply that there are at most 2
3
n2

2 = n2

3 edges in G, as required.

To prove that G contains no K4, we begin by noting that the convex hull of any four points
forms either a line, a triangle or a quadrilateral. In any of these cases, there will be three points
xi, xj and xk such that the angle xixjxk is at least 90 degrees.

Now, consider the triangle formed by xi, xj and xk. If both d(xi, xj) and d(xj , xk) are greater
than 1√

2
, then d(xi, xk) will be greater than 1, which contradicts the assumption about the set

S. Therefore, at least one of xixj or xjxk is not in G, so the graph does not contain a K4.

To show that it is sharp, let r be a real number with 0 < r <
(

1− 1√
2

)
/4 and let p = bn3 c. Take

an equilateral triangle with side length 1 − 2r and draw a circle of radius r around each of the
vertices. Place x1, . . . , xp in the first circle, xp+1, . . . , x2p in the second circle and x2p+1, . . . , xn
in the third circle. We may also insist that x1 and xn are distance 1 exactly apart to give the
set diameter 1. If xi and xj are in different pairs, they are distance greater than 1√

2
apart and if

they are in the same set their distance is smaller than this. Therefore, there are bn2

3 c pairs with
d(xi, xj) > 1√

2
.

5. We take A = B = N. We connect the vertex 1 in A to everything in B and, for i > 1, we connect
i in A to i− 1 in B. This then satisfies Hall’s condition but contains no matching.

6. The number of monochromatic triangles is at least

1
2

(∑
v

(
rv
2

)
+
∑
v

(
bv
2

)
−
(
n

3

))
,

2



where rv and bv are the red and blue degrees, respectively, of the vertices v over which we are
summing. (To prove this formula, consider, in turn, the contribution of monochromatic and
non-monochromatic triangles to the sum.) This is maximised when rv = bv = (n−1)/2 for all v.
A quick calculation then implies that the number of monochromatic triangles is at least n−5

12

(
n
2

)
,

as required.

7. This clearly reduces to determining the chromatic number of each of the graphs. One may easily
verify that χ(Tetrahedron) = 4, χ(Cube) = 2, χ(Octahedron) = 3, χ(Dodecahedron) = 3 and
χ(Icosahedron) = 4.

8. This follows easily from the definition.

9. By assumption, any set of size n0 containing more than ρ
(
n
2

)
edges contains a copy of H. For at

least ε
2

(
n
n0

)
choices of a set N of size n0, we must have that the number of edges in N is at least(

ρ+ ε
2

) (
n0

2

)
. If, on the contrary, this wasn’t the case, we would have

∑
N

e(G[N ]) ≤
(
n

n0

)(
ρ+

ε

2

)(n0

2

)
+
ε

2

(
n

n0

)(
n0

2

)
= (ρ+ ε)

(
n

n0

)(
n0

2

)
.

On the other hand, we have∑
N

e(G[N ]) =
(
n− 2
n0 − 2

)
e(G) >

(
n− 2
n0 − 2

)
(ρ+ ε)

(
n

n0

)
= (ρ+ ε)

(
n

n0

)(
n0

2

)
,

which would be a contradiction. Now, every set of size n0 with density ρ+ ε
2 contains a copy of

H. Therefore, the number of copies of H is at least(
n− v(H)
n0 − v(H)

)−1 ε

2

(
n

n0

)
=
ε

2

(
n0

v(H)

)−1( n

v(H)

)
.

The required result follows with c(ε) = ε
2

(
n0

v(H)

)−1.

10. Given a bipartite graph G between {1, 2, . . . n} and {1, 2, . . . , n} of density at least δ, we may
describe a subset of [n]2 of density at least δ by including (i, j) if and only if there is an edge
between i and j. If we now apply the multidimensional version of Szemerédi’s theorem with d = 2
and P = {(i, j) : 0 ≤ i, j ≤ t− 1}, we get a subset of the form {(u+ki, v+kj) : 0 ≤ i, j ≤ t− 1}.
This implies the theorem with U = {u + ki : 0 ≤ i ≤ t − 1} and V = {v + kj : 0 ≤ j ≤ t − 1}
being arithmetic progressions of length t with common difference k.
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