Lecture 7

We are now ready to give the promised alternative proof of Erdős-Stone-Simonovits. To begin, we will need a counting lemma which generalises that given earlier for triangles.

Lemma 1 Let $\epsilon > 0$ be a real number. Let G be a graph and suppose that V_1, V_2, \ldots, V_r are subsets of V(G) such that $|V_i| \geq 2\epsilon^{-\Delta}t$ for each $1 \leq i \leq r$ and the graph between V_i and V_j has density $d(V_i, V_j) \geq 2\epsilon$ and is $\frac{1}{2}\epsilon^{\Delta}\Delta^{-1}$ -regular for all $1 \leq i < j \leq r$. Then G contains a copy of any graph H on t vertices with chromatic number r and maximum degree Δ .

Proof Since the chromatic number of H is at most r, we may split V(H) into r independent sets U_1, \ldots, U_r . We will give an embedding f of H into G so that $f(U_i) \subset V_i$ for all $1 \le i \le r$.

Let the vertices of H be u_1, \ldots, u_t . For each $1 \leq h \leq t$, let $L_h = \{u_1, \ldots, u_h\}$. For each $y \in U_j \setminus L_h$, let T_y^h be the set of vertices in V_j which are adjacent to all already embedded neighbours of y. That is, letting $N_h(y) = N(y) \cap L_h$, T_y^h is the set of vertices in V_j adjacent to every element of $f(N_h(y))$. We will find, by induction, an embedding of L_h such that, for each $y \in V(H) \setminus L_h$, $|T_y^h| \geq \epsilon^{|N_h(y)|} |V_j|$. For h = 0 there is nothing to prove. We may therefore assume that L_h has been embedded consistent with the induction hypothesis and attempt to embed $u = u_{h+1} \in U_k$ into an appropriate $v \in T_u^h$. Let Y be the set of neighbours of u which are not yet embedded. We wish to find an element $v \in T_u^h \setminus f(L_h)$ such that, for all $y \in Y$, $|N(v) \cap T_y^h| \geq \epsilon |T_y^h|$. If such a vertex v exists, taking f(u) = v and $T_y^{h+1} = N(v) \cap T_y^h$ will complete the proof.

Let B_y be the set of vertices in T_u^h which are bad for $y \in Y$, that is, such that $|N(v) \cap T_y^h| < \epsilon |T_y^h|$. Note that, by induction, if $y \in U_\ell$, $|T_y^h| \ge \epsilon^\Delta |V_\ell|$. Therefore, we must have $|B_y| < \frac{1}{2}\epsilon^\Delta \Delta^{-1}|V_k|$, for otherwise the density between B_y and T_y^h would be less than ϵ , contradicting the regularity assumption on G. Hence, since $|V_k| \ge 2\epsilon^{-\Delta}t$,

$$\left| T_u^h \setminus \bigcup_{y \in Y} B_y \right| > \epsilon^{\Delta} |V_k| - \Delta \frac{1}{2} \epsilon^{\Delta} \Delta^{-1} |V_k| \ge t.$$

Since at most t-1 vertices have already been embedded, an appropriate choice for f(u) exists. \Box

In fact, there are at least $\frac{1}{2}\epsilon^{\Delta}|V_k|-t$ choices for each vertex u. Therefore, if H has d_i vertices in U_i , the lemma tells us that, for $|V_i| \gg 2\epsilon^{-\Delta}t$, we have at least

$$c_H(\epsilon) \prod_{i=1}^r |V_i|^{d_r}$$

copies of H, where $c_H(\epsilon)$ is an appropriate constant. Like the triangle counting lemma, we could make the constant $c_H(\epsilon)$ reflect the densities between the various V_i , but I simply wanted to note that the graph G contained a positive proportion of the total number of possible copies of H.

We are now ready to give another proof of the Erdős-Stone-Simonovits theorem. That is, we will show that for any r-chromatic graph H and n sufficiently large, $ex(n, H) \leq \left(1 - \frac{1}{r-1} + \epsilon\right) \frac{n^2}{2}$.

Alternative proof of Erdős-Stone-Simonovits Let H be a graph with t vertices, chromatic number r and maximum degree Δ . Suppose that G is a graph on n vertices with at least $\left(1 - \frac{1}{r-1} + \epsilon\right) \frac{n^2}{2}$ edges. We will show how to embed H in G. Let $V(G) = X_1 \cup X_2 \cup \cdots \cup X_M$ be a $\frac{1}{2} \left(\frac{\epsilon}{8}\right)^{\Delta} \Delta^{-1}$ -regular partition of the vertex set of G. We remove edges as in the triangle-removal lemma, removing xy if

- 1. $(x,y) \in X_i \times X_j$, where (X_i,X_j) is not $\frac{1}{2} \left(\frac{\epsilon}{8}\right)^{\Delta} \Delta^{-1}$ -regular;
- 2. $(x,y) \in X_i \times X_j$, where $d(X_i, X_j) < \frac{\epsilon}{4}$;
- 3. $x \in X_i$, where $|X_i| < \frac{\epsilon}{16M}n$.

The total number of edges removed is at most $\frac{\epsilon}{16}n^2$ from the first condition, since if I is the set of (i,j) corresponding to non-regular pairs (X_i,X_j) , we have

$$\sum_{(i,j)\in I} |X_i||X_j| \le \frac{1}{2} \left(\frac{\epsilon}{8}\right)^{\Delta} \Delta^{-1} n^2 \le \frac{\epsilon}{16} n^2.$$

The total number of edges removed by condition 2 is clearly at most $\frac{\epsilon}{4}n^2$ and the total number removed by condition 3 is at most $\frac{\epsilon}{16}n^2$.

Overall, we have removed at most $\frac{3\epsilon}{8}n^2$ edges. Hence, the graph G' that remains after all these edges have been removed has density at least $1 - \frac{1}{r-1} + \frac{\epsilon}{8}$. It must, therefore, contain a copy of K_r . We may suppose that this lies between sets V_1, \ldots, V_r (some of which may be equal). Because of our removal process, $|V_j| \geq \frac{\epsilon}{16M}n$, the graph between V_i and V_j has density at least $\frac{\epsilon}{4}$ and is $\frac{1}{2}\left(\frac{\epsilon}{8}\right)^{\Delta}\Delta^{-1}$ -regular. Therefore, if

$$\frac{\epsilon}{16M}n \ge 2\left(\frac{\epsilon}{8}\right)^{-\Delta}t,$$

an application of the previous lemma with $\frac{\epsilon}{8}$ implies that G contains a copy of H.

Because of the observation made after the previous lemma, we know that, for n large, G not only contains one copy of any given r-chromatic graph H, it must contain $cn^{v(H)}$ copies. This phenomenon, that once one passes the extremal density one gets a very large number of copies rather than one single copy, is known as supersaturation.