
Lecture 7

We are now ready to give the promised alternative proof of Erdős-Stone-Simonovits. To begin, we will
need a counting lemma which generalises that given earlier for triangles.

Lemma 1 Let ε > 0 be a real number. Let G be a graph and suppose that V1, V2, . . . , Vr are subsets
of V (G) such that |Vi| ≥ 2ε−∆t for each 1 ≤ i ≤ r and the graph between Vi and Vj has density
d(Vi, Vj) ≥ 2ε and is 1

2ε
∆∆−1-regular for all 1 ≤ i < j ≤ r. Then G contains a copy of any graph H

on t vertices with chromatic number r and maximum degree ∆.

Proof Since the chromatic number of H is at most r, we may split V (H) into r independent sets
U1, . . . , Ur. We will give an embedding f of H into G so that f(Ui) ⊂ Vi for all 1 ≤ i ≤ r.
Let the vertices of H be u1, . . . , ut. For each 1 ≤ h ≤ t, let Lh = {u1, . . . , uh}. For each y ∈ Uj\Lh,
let T hy be the set of vertices in Vj which are adjacent to all already embedded neighbours of y. That
is, letting Nh(y) = N(y) ∩ Lh, T hy is the set of vertices in Vj adjacent to every element of f(Nh(y)).
We will find, by induction, an embedding of Lh such that, for each y ∈ V (H)\Lh, |T hy | ≥ ε|Nh(y)||Vj |.
For h = 0 there is nothing to prove. We may therefore assume that Lh has been embedded consistent
with the induction hypothesis and attempt to embed u = uh+1 ∈ Uk into an appropriate v ∈ T hu . Let Y
be the set of neighbours of u which are not yet embedded. We wish to find an element v ∈ T hu \f(Lh)
such that, for all y ∈ Y , |N(v) ∩ T hy | ≥ ε|T hy |. If such a vertex v exists, taking f(u) = v and
T h+1
y = N(v) ∩ T hy will complete the proof.

Let By be the set of vertices in T hu which are bad for y ∈ Y , that is, such that |N(v) ∩ T hy | < ε|T hy |.
Note that, by induction, if y ∈ U`, |T hy | ≥ ε∆|V`|. Therefore, we must have |By| < 1

2ε
∆∆−1|Vk|, for

otherwise the density between By and T hy would be less than ε, contradicting the regularity assumption
on G. Hence, since |Vk| ≥ 2ε−∆t,∣∣∣T hu \ ∪y∈Y By∣∣∣ > ε∆|Vk| −∆

1
2
ε∆∆−1|Vk| ≥ t.

Since at most t− 1 vertices have already been embedded, an appropriate choice for f(u) exists. 2

In fact, there are at least 1
2ε

∆|Vk| − t choices for each vertex u. Therefore, if H has di vertices in Ui,
the lemma tells us that, for |Vi| � 2ε−∆t, we have at least

cH(ε)
r∏
i=1

|Vi|dr

copies of H, where cH(ε) is an appropriate constant. Like the triangle counting lemma, we could make
the constant cH(ε) reflect the densities between the various Vi, but I simply wanted to note that the
graph G contained a positive proportion of the total number of possible copies of H.

We are now ready to give another proof of the Erdős-Stone-Simonovits theorem. That is, we will show
that for any r-chromatic graph H and n sufficiently large, ex(n,H) ≤

(
1− 1

r−1 + ε
)
n2

2 .

Alternative proof of Erdős-Stone-Simonovits LetH be a graph with t vertices, chromatic number
r and maximum degree ∆. Suppose that G is a graph on n vertices with at least

(
1− 1

r−1 + ε
)
n2

2

edges. We will show how to embed H in G. Let V (G) = X1 ∪X2 ∪ · · · ∪XM be a 1
2

(
ε
8

)∆ ∆−1-regular
partition of the vertex set of G. We remove edges as in the triangle-removal lemma, removing xy if

1



1. (x, y) ∈ Xi ×Xj , where (Xi, Xj) is not 1
2

(
ε
8

)∆ ∆−1-regular;

2. (x, y) ∈ Xi ×Xj , where d(Xi, Xj) < ε
4 ;

3. x ∈ Xi, where |Xi| < ε
16M n.

The total number of edges removed is at most ε
16n

2 from the first condition, since if I is the set of
(i, j) corresponding to non-regular pairs (Xi, Xj), we have∑

(i,j)∈I

|Xi||Xj | ≤
1
2

( ε
8

)∆
∆−1n2 ≤ ε

16
n2.

The total number of edges removed by condition 2 is clearly at most ε
4n

2 and the total number removed
by condition 3 is at most ε

16n
2.

Overall, we have removed at most 3ε
8 n

2 edges. Hence, the graph G′ that remains after all these edges
have been removed has density at least 1− 1

r−1 + ε
8 . It must, therefore, contain a copy of Kr. We may

suppose that this lies between sets V1, . . . , Vr (some of which may be equal). Because of our removal
process, |Vj | ≥ ε

16M n, the graph between Vi and Vj has density at least ε
4 and is 1

2

(
ε
8

)∆ ∆−1-regular.
Therefore, if

ε

16M
n ≥ 2

( ε
8

)−∆
t,

an application of the previous lemma with ε
8 implies that G contains a copy of H. 2

Because of the observation made after the previous lemma, we know that, for n large, G not only
contains one copy of any given r-chromatic graph H, it must contain cnv(H) copies. This phenomenon,
that once one passes the extremal density one gets a very large number of copies rather than one single
copy, is known as supersaturation.
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