
Lecture 3

For general graphs H, we are interested in the function ex(n,H), defined as follows.

ex(n,H) = max{e(G) : |G| = n,H 6⊂ G}.

Turán’s theorem itself tells us that

ex(n,Kr+1) ≤
(

1− 1
r

)
n2

2
.

We are now going to deal with the general case. We will show that the behaviour of the extremal
function ex(n,H) is tied intimately to the chromatic number of the graph H.

Definition 1 The chromatic number χ(H) of a graph H is the smallest natural number c such that
the vertices of H can be coloured with c colours and no two vertices of the same colour are adjacent.

The fundamental result which we shall prove, known as the Erdős-Stone-Simonovits theorem, is the
following.

Theorem 1 (Erdős-Stone-Simonovits) For any fixed graph H and any fixed ε > 0, there is n0

such that, for any n ≥ n0,(
1− 1

χ(H)− 1
− ε
)
n2

2
≤ ex(n,H) ≤

(
1− 1

χ(H)− 1
+ ε

)
n2

2
.

For the complete graph Kr+1, the chromatic number is r+1, so in this case the Erdős-Stone-Simonovits
theorem reduces to an approximate version of Turán’s theorem. For bipartite H, it gives ex(n,H) ≤
εn2 for all ε > 0. This is an important theme, one we will return to later in the course.

To prove the Erdős-Stone-Simonovits theorem, we will first prove the following lemma, which already
contains most of the content.

Lemma 1 For any natural numbers r and t and any positive ε with ε < 1/r, there exists an n0

such that the following holds. Any graph G with n ≥ n0 vertices and
(
1− 1

r + ε
)
n2

2 edges contains
r + 1 disjoint sets of vertices A1, . . . , Ar+1 of size t such that the graph between Ai and Aj, for every
1 ≤ i < j ≤ r + 1, is complete.

Proof To begin, we find a subgraph G′ of G such that every degree is at least
(
1− 1

r + ε
2

)
|V (G′)|.

To find such a graph, we remove one vertex at a time. If, in this process, we reach a graph with `

vertices and there is some vertex which has fewer than
(
1− 1

r + ε
2

)
` neighbors, we remove it.

Suppose that this process terminates when we have reached a graph G′ with n′ vertices. To show that
n′ is not too small, consider the total number of edges that have been removed from the graph. When
the graph has ` vertices, we remove at most

(
1− 1

r + ε
2

)
` edges. Therefore, the total number of edges

removed is at most
n∑

`=n′+1

(
1− 1

r
+
ε

2

)
` =

(
1− 1

r
+
ε

2

)
(n− n′)(n+ n′ + 1)

2
≤
(

1− 1
r

+
ε

2

)
(n2 − n′2)

2
+

(n− n′)
2

.

1



Also, since G′ has at most n′2

2 edges, we have

|e(G)| ≤
(

1− 1
r

+
ε

2

)
(n2 − n′2)

2
+

(n− n′)
2

+
n′2

2
=
(

1− 1
r

+
ε

2

)
n2

2
+
(

1
r
− ε

2

)
n′2

2
+

(n− n′)
2

.

But we also have |e(G)| ≥
(
1− 1

r + ε
)
n2

2 . Therefore, the process stops once(
1
r
− ε

2

)
n′2

2
− n′

2
< ε

n2

4
− n

2
,

that is, when n′ ≈
√
εrn. From now on, we will assume that we are working within this large well-

behaved subgraph G′.

We will show, by induction on r, that there are r + 1 sets A1, A2, . . . , Ar+1 of size t such that every
edge between Ai and Aj , with 1 ≤ i < j ≤ r + 1, is in G′. For r = 0, there is nothing to prove.

Given r > 0 and s = d3t/εe, we apply the induction hypothesis to find r disjoint sets B1, B2, . . . , Br of
size s such that the graph between every two disjoint sets is complete. Let U = V (G′)\{B1∪ · · · ∪Br}
and let W be the set of vertices in U which are adjacent to at least t vertices in each Bi.

We are going to estimate the number of edges missing between U and B1∪· · ·∪Br. Since every vertex
in U\W is adjacent to fewer than t vertices in some Bi, we have that the number of missing edges is
at least

m̃ ≥ |U\W |(s− t) ≥ (n′ − rs− |W |)
(

1− ε

3

)
s.

On the other hand, every vertex in G′ has at most
(

1
r −

ε
2

)
n′ missing edges. Therefore, counting over

all vertices in B1 ∪ · · · ∪Br, we have

m̃ ≤ rs
(

1
r
− ε

2

)
n′ =

(
1− rε

2

)
sn′.

Therefore,

|W |
(

1− ε

3

)
s ≥ (n′ − rs)

(
1− ε

3

)
s−

(
1− rε

2

)
sn′ = ε

(
r

2
− 1

3

)
sn′ −

(
1− ε

3

)
rs2.

Since ε, r and s are constants, we can make |W | large by making n′ large. In particular, we may make
|W | such that

|W | >
(
s

t

)r
(t− 1).

Every element in W has at least t neighbours in each Bi. There are at most
(
s
t

)r ways to choose a
t-element subset from each of B1∪· · ·∪Br. By the pigeonhole principle and the size of |W |, there must
therefore be some subsets A1, . . . , Ar and a set Ar+1 of size t from W such that every vertex in Ar+1

is connected to every vertex in A1 ∪ · · · ∪ Ar. Since A1, . . . , Ar are already joined in the appropriate
manner, this completes the proof. 2

Note that a careful analysis of the proof shows that one may take t = c(r, ε) log n. It turns out that
this is also best possible (see example sheet).

It remains to prove the Erdős-Stone-Simonovits theorem itself.
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Proof of Erdős-Stone-Simonovits For the lower bound, we consider the Turán graph given by
r = χ(H) − 1 sets of almost equal size bn/rc and dn/re. This has roughly the required number of
vertices and it is clear that every subgraph of this graph has chromatic number at most χ(H)− 1.

For the upper bound, note that if H has chromatic number χ(H), then, provided t is large enough,
it can be embedded in a graph G consisting of χ(H) sets A1, A2, . . . , Aχ(H) of size t such that the
graph between any two disjoint Ai and Aj is complete. We simply embed any given colour class into
a different Ai. The theorem now follows from an application of the previous lemma. 2
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