
Lecture 2

A perfect matching in a bipartite graph with two sets of equal size is a collection of edges such that
every vertex is contained in exactly one of them.

Hall’s (marriage) theorem is a necessary and sufficient condition which allows one to decide if a given
bipartite graph contains a matching. Suppose that the two parts of the bipartite graph G are A and
B. Then Hall’s theorem says that if, for every subset U of A, there are at least |U | vertices in B with
neighbours in U then G contains a perfect matching. The condition is clearly necessary. To prove
that it is sufficient we use the following notation.

For any subset X of a graph G, let NG(X) be the set of neighbours of X, that is, the set of vertices
with a neighbour in X.

Theorem 1 (Hall’s theorem) Let G be a bipartite graph with parts A and B of equal size. If, for
every U ⊂ A, |NG(U)| ≥ |U | then G contains a perfect matching.

Proof Let |A| = |B| = n. We will prove the theorem by induction on n. Clearly, the result is true
for n = 1. We therefore assume that it is true for n− 1 and prove it for n.

If |NG(U)| ≥ |U |+ 1 for every non-empty proper subset U of A, pick an edge {a, b} of G and consider
the graph G′ = G− {a, b}. Then every non-empty set U ⊂ A\{a} satisfies

|NG′(U)| ≥ |NG(U)| − 1 ≥ |U |.

Therefore, there is a perfect matching between A\{a} and B\{b}. Adding the edge from a to b gives
the full matching.

Suppose, on the other hand, that there is some non-empty proper subset U of A for which |N(U)| = |U |.
Let V = N(U). By induction, since Hall’s condition holds for every subset of U , there is a matching
between U and V . But Hall’s condition also holds between A\U and B\V . If this weren’t the case,
there would be some W in A\U with fewer than |W | neighbours in B\V . Then W ∪ U would be
a subset of A with fewer than |W ∪ U | neighbours in B, contradicting our assumption. Therefore,
there is a perfect matching between A\U and B\V . Putting the two matchings together completes
the proof. 2

A Hamiltonian cycle in a graph G is a cycle which visits every vertex exactly once and returns to
its starting vertex. Dirac’s theorem says that if the minimum degree δ(G) of a graph G is such that
δ(G) ≥ n/2 then G contains a Hamiltonian cycle. This is sharp since, if one takes a complete bipartite
graph with one part of size dn2 − 1e (and the other the complement of this), then it cannot contain a
Hamiltonian cycle. This is simply because one must pass back and forth between the two sets.

Theorem 2 (Dirac’s theorem) If a graph G satisfies δ(G) ≥ n
2 , then it contains a Hamiltonian

cycle.

Proof First, note that G is connected. If it weren’t, the smallest component would have size at most
n/2 and no vertex in this component could have degree n/2 or more.

Let P = x0x1 . . . xk be a longest path in G. Since it can’t be extended, every neighbour of x0 and xk

must be contained in P . Since δ(G) ≥ n/2, we see that x0xi+1 is an edge for at least n/2 values of i
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with 0 ≤ i ≤ k − 1. Similarly, xixk is an edge for at least n/2 values of i. There are at most n − 1
values of i with 0 ≤ i ≤ k− 1. Therefore, since the total number of edges of the form x0xi+1 or of the
form xixk with 0 ≤ i ≤ k − 1 is at least n, there must be some i for which both x0xi+1 and xixk are
edges in G.

We claim that
C = x0xi+1xi+2 . . . xkxixi−1 . . . x0

is a Hamiltonian cycle. Suppose not and that there is a set of vertices Y which are not contained in
C. Then, since G is connected, there is a vertex xj and a vertex y in Y such that xjy is in E(G). But
then we may define a path P ′ starting at y, going to xj and then around the cycle C which is longer
than P . This would contradict our assumption about P . 2

A tree T is a connected graph containing no cycles. The Erdős-Sós conjecture states that if a tree T
has t edges, then any graph G with average degree t must contain a copy of T . This conjecture has
been proven, for sufficiently large graphs G, by Ajtai, Komlós, Simonovits and Szemerédi. Here we
prove a weaker version of this conjecture.

Theorem 3 If a graph G has average degree 2t, it contains every tree T with t edges.

Proof We start with a standard reduction, by showing that a graph of average degree 2t has a
subgraph of minimum degree t. If the number of vertices in G is n, the number of edges in G is at
least tn. If there is a vertex of degree less than t, delete it. This will not decrease the average degree.
Moreover, the process must end, since any graph with fewer than 2t vertices cannot have average
degree 2t.

We now use this condition to embed the vertices of the tree greedily. Suppose we have already
embedded j vertices, where j < t+ 1. We will try to embed a new vertex which is connected to some
already embedded vertex. By the minimum degree condition, there are at least t possible places to
embed this vertex. At most t−1 of these are blocked by already embedded vertices, so the embedding
may always proceed. 2
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