Lecture 14

We will now turn our attention to hypergraphs. An r-uniform hypergraph G on vertex set V is a
collection of subsets of V' of size r. The complete r-uniform hypergraph Knr) is a hypergraph on
n vertices where every r-element subset of the vertex set is an edge. Our concern will be with the
following function. Given an r-uniform hypergraph H and a natural number n, let

ex(n,H) = max{e(G) : |G| =n,H ¢ G}.

Sometimes it will be convenient to talk about the Turdn density, rather than the exact extremal
function, for r-uniform hypergraphs H. This is given by
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It is not hard to show that this density is well-defined. For graphs, the Erdds-Stone-Simonovits
theorem tells us that if H has chromatic number ¢, then 7(H) =1 — t_% For hypergraphs, much less

is known. Even in the simple case where H = K| f’), we only know that

5
5 < ealn. K%Y < 0.561666.

The lower bound is not hard to come by. Take three vertex sets Vi, Vo and V3, each of size n/3. We
let an edge wvw be in G if u,v € V; and w € Vi1, for i = 1,2,3, orif u € Vi, v € Vo, w € V3. It
is straightforward to check that this contains no K f’) and that its density is 5/9. The upper bound,
on the other hand, is much more difficult to obtain, using a computational technique known as flag
algebras.

Over the next two lectures we will study the general case m(K7), showing that
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Note that for » = 2 this just reduces to Turan’s theorem.

We will start with the upper bound. It will be convenient in what follows to flip the definition and
to take T'(n,s,r) to be the minimum number of edges in an r-uniform hypergraph G on n vertices
such that any subset with s vertices contains at least one edge. We also define a density version
t(s,r) = limy,— 00 (f)_lT(n, s,r). Note that t(s,r) + W(Kgr)) = 1. Our main result of this lecture will

now be that )
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T P —
(n’s’r)_n—r+1(r—1> (r)’

a result due to de Caen. That t(s,r) > (fjj)_l then follows easily.

To begin, we will prove an inequality which relates the number of copies of cliques with various sizes.
Given an r-uniform hypergraph G on n vertices, let Ny be the number of copies of K LET) in G.

Lemma 1
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Proof Let P be the number of pairs (S,7T), where S and T are sets of size s with |[SNT|=s—1, S
)

spans a copy of K y and T does not. We will count P in two different ways to get a bound.

On the one hand, for each i = 1,..., Ns_1, let a; be the number of copies of KS(T) which contain the
ith copy of Ké?l Note that vazsfl a; = sNg. Therefore,
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where the inequality follows from Cauchy-Schwarz.
On the other hand, let the copies of K§’“) be Bi,..., By, and let b; be the number of K(:r)l containing

s S
B;. For each Bj, there are n — s —b; ways to choose x ¢ B; such that B; U{x} does not span a Ks(i)l
For any such x, there must be some C' C Bj of size r — 1 such that C'U{z} is not an edge. Therefore,
for every y € B;\C, the pair (Bj, B; U {z}\y) is counted by P. Hence,

Ns
P> (n—s—bj)(s—r+1)=(s—r+1)((n—s)Ns— (s +1)Nyy1),
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where we used that Z;V:H bj = (s + 1)Nst1. Comparing the upper and lower bounds gives the result.
O

For graphs, this is known as the Moon-Moser inequality. The hypergraph case is due to de Caen.
From it, we may derive the following lemma.

Lemma 2
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Proof We prove the result by induction on s. For s = r, we have Ny = e(G). This is easily seen to
accord with the inequality.

Suppose, therefore, that the inequality holds for s. We will prove it for s + 1. By the Moon-Moser
inequality and the induction hypothesis,
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It remains to show that
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F(n,s+1,r) > F(n,s,r)+



A long but relatively straightforward computation allows us to show that equality actually holds. The
result follows. O

De Caen’s result now follows easily.
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Proof From the previous lemma and since the F(n,s,r) increase with s, we must have e(G) <

Theorem 1

F(n,s,r) for any Ks(r)—free graph. Therefore,
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as required. O



