
Lecture 14

We will now turn our attention to hypergraphs. An r-uniform hypergraph G on vertex set V is a
collection of subsets of V of size r. The complete r-uniform hypergraph K

(r)
n is a hypergraph on

n vertices where every r-element subset of the vertex set is an edge. Our concern will be with the
following function. Given an r-uniform hypergraph H and a natural number n, let

ex(n,H) = max{e(G) : |G| = n,H 6⊂ G}.

Sometimes it will be convenient to talk about the Turán density, rather than the exact extremal
function, for r-uniform hypergraphs H. This is given by

π(H) = lim
n→∞

ex(n,H)(
n
r

) .

It is not hard to show that this density is well-defined. For graphs, the Erdős-Stone-Simonovits
theorem tells us that if H has chromatic number t, then π(H) = 1− 1

t−1 . For hypergraphs, much less

is known. Even in the simple case where H = K
(3)
4 , we only know that

5
9
≤ ex(n,K(3)

4 ) ≤ 0.561666.

The lower bound is not hard to come by. Take three vertex sets V1, V2 and V3, each of size n/3. We
let an edge uvw be in G if u, v ∈ Vi and w ∈ Vi+1, for i = 1, 2, 3, or if u ∈ V1, v ∈ V2, w ∈ V3. It
is straightforward to check that this contains no K(3)

4 and that its density is 5/9. The upper bound,
on the other hand, is much more difficult to obtain, using a computational technique known as flag
algebras.

Over the next two lectures we will study the general case π(Kr
s ), showing that

1−
(
r − 1
s− 1

)r−1

≤ π(K(r)
s ) ≤ 1−

(
s− 1
r − 1

)−1

.

Note that for r = 2 this just reduces to Turán’s theorem.

We will start with the upper bound. It will be convenient in what follows to flip the definition and
to take T (n, s, r) to be the minimum number of edges in an r-uniform hypergraph G on n vertices
such that any subset with s vertices contains at least one edge. We also define a density version
t(s, r) = limn→∞

(
n
r

)−1
T (n, s, r). Note that t(s, r) + π(K(r)

s ) = 1. Our main result of this lecture will
now be that

T (n, s, r) ≥ n− s+ 1
n− r + 1

(
s− 1
r − 1

)−1(n
r

)
,

a result due to de Caen. That t(s, r) ≥
(
s−1
r−1

)−1
then follows easily.

To begin, we will prove an inequality which relates the number of copies of cliques with various sizes.
Given an r-uniform hypergraph G on n vertices, let Ns be the number of copies of K(r)

s in G.

Lemma 1

Ns+1 ≥
s2Ns

(s− r + 1)(s+ 1)

(
Ns

Ns−1
− (r − 1)(n− s) + s

s2

)
,

provided Ns−1 6= 0.
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Proof Let P be the number of pairs (S, T ), where S and T are sets of size s with |S ∩ T | = s− 1, S
spans a copy of K(r)

s and T does not. We will count P in two different ways to get a bound.

On the one hand, for each i = 1, . . . , Ns−1, let ai be the number of copies of K(r)
s which contain the

ith copy of K(r)
s−1. Note that

∑Ns−1

i=1 ai = sNs. Therefore,

P =
Ns−1∑
i=1

ai(n− s+ 1− ai) = (n− s+ 1)
Ns−1∑
i=1

ai −
Ns−1∑
i=1

a2
i ≤ (n− s+ 1)sNs −N−1

s−1s
2N2

s ,

where the inequality follows from Cauchy-Schwarz.

On the other hand, let the copies of K(r)
s be B1, . . . , BNs and let bi be the number of K(r)

s+1 containing

Bi. For each Bj , there are n− s− bj ways to choose x /∈ Bj such that Bj ∪{x} does not span a K(r)
s+1.

For any such x, there must be some C ⊆ Bj of size r− 1 such that C ∪ {x} is not an edge. Therefore,
for every y ∈ Bj\C, the pair (Bj , Bj ∪ {x}\y) is counted by P . Hence,

P ≥
Ns∑
j=1

(n− s− bj)(s− r + 1) = (s− r + 1)((n− s)Ns − (s+ 1)Ns+1),

where we used that
∑Ns

j=1 bj = (s+ 1)Ns+1. Comparing the upper and lower bounds gives the result.
2

For graphs, this is known as the Moon-Moser inequality. The hypergraph case is due to de Caen.
From it, we may derive the following lemma.

Lemma 2

Ns ≥ Ns−1
r2
(
s
r

)
s2
(

n
r−1

)(e(G)− F (n, s, r)),

where F (n, s, r) = r−1((n− r + 1)−
(
s−1
r−1

)−1
(n− s+ 1))

(
n

r−1

)
.

Proof We prove the result by induction on s. For s = r, we have Ns = e(G). This is easily seen to
accord with the inequality.

Suppose, therefore, that the inequality holds for s. We will prove it for s + 1. By the Moon-Moser
inequality and the induction hypothesis,

Ns+1

Ns
≥ s2

(s− r + 1)(s+ 1)

(
Ns

Ns−1
− (r − 1)(n− s) + s

s2

)
≥ s2

(s− r + 1)(s+ 1)

(
r2
(
s
r

)
s2
(

n
r−1

)(e(G)− F (n, s, r))− (r − 1)(n− s) + s

s2

)

=
r2
(
s+1

r

)
(s+ 1)2

(
n

r−1

)e(G)−
r2
(
s+1

r

)
(s+ 1)2

(
n

r−1

)F (n, s, r)− (r − 1)(n− s) + s

(s− r + 1)(s+ 1)
.

It remains to show that

F (n, s+ 1, r) ≥ F (n, s, r) +
((r − 1)(n− s) + s)

s− r + 1
(s+ 1)

(
n

r−1

)
r2
(
s+1

r

) .

2



A long but relatively straightforward computation allows us to show that equality actually holds. The
result follows. 2

De Caen’s result now follows easily.

Theorem 1

T (n, s, r) ≥ n− s+ 1
n− r + 1

(
s− 1
r − 1

)−1(n
r

)
.

Proof From the previous lemma and since the F (n, s, r) increase with s, we must have e(G) ≤
F (n, s, r) for any K(r)

s -free graph. Therefore,

T (n, s, r) ≥ r−1

(
s− 1
r − 1

)−1

(n− s+ 1)
(

n

r − 1

)
=
n− s+ 1
n− r + 1

(
s− 1
r − 1

)−1(n
r

)
,

as required. 2
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