
Lecture 13

In the last lecture we showed that a C2k+1-free graph with roughly n2

4 edges must be approximately
bipartite. We will now refine this structure to prove that the graph must be exactly bipartite for
C2k+1-free graphs of maximum size.

Theorem 1 For n sufficiently large, ex(n,C2k+1) = bn2

4 c.

Proof Let G be a C2k+1-free graph on n vertices with the maximum number of edges. It will have at
least bn2

4 c edges. Note that it is sufficient to prove the result in the case where G has minimum degree
at least 1

2(1 − 4ε1/2)n. For suppose that we knew the result under this assumption for all n ≥ n0.
As in the previous lemma, we form a sequence of graphs G = G0, G1, . . . , G`. If there is a vertex
in G` of degree less than 1

2(1 − 4ε1/2)|V (G`)|, we remove it, forming G`+1. This process must stop
before we reach a graph G′ with n′ = (1 − 4ε1/2)n vertices. Otherwise, we would have a graph with
n′ vertices and more than (1 + ε)n′2

4 edges. It would therefore, for n sufficiently large, contain a copy
of C2k+1, which would be a contradiction. When we reach the required graph, we will have a graph
with n′ > (1 − 4ε1/2)n vertices, minimum degree at least 1

2(1 − 4ε1/2)n′ and more than bn′2

4 c edges,
so we will have a contradiction if the removal process begins at all. Hence, we may assume that the
minimum degree of G at least 1

2(1− 4ε1/2)n.

By the previous lemma, we know that G is approximately bipartite between two sets of size roughly
n
2 . Consider a bipartition V (G) = A∪B such that e(A)+e(B) is minimised. Then e(A)+e(B) < εn2,
where ε may be taken to be arbitrarily small provided n is sufficiently large. We may assume that A
and B have size

(
1
2 ± ε

1/2
)
n. Otherwise, e(G) < |A||B| + εn2 < n2

4 , contradicting the choice of G as
having maximum size. Let dA(x) = |A∩N(x)| and dB(x) = |B∩N(x)| for any vertex x. Note that for
any a ∈ A, dA(a) ≤ dB(a). Otherwise, we could improve the partition by moving a to B. Similarly,
dB(b) ≤ dA(b) for any b ∈ B.

Let c = 2ε1/2. We claim that there are no vertices a ∈ A with dA(a) ≥ cn. If dA(a) ≥ cn, then
also dB(a) ≥ cn. Moreover, A ∩ N(a) and B ∩ N(a) span a bipartite graph with no path of length
2k − 1 and, therefore, there are at most 4kn edges between them. For n sufficiently large, this gives
(cn)2 − 4kn > e(A) + e(B) missing edges between A and B. Therefore, e(G) < |A||B| ≤ n2

4 , a
contradiction. Similarly, there are no vertices b ∈ B with dB(b) ≥ cn.

Now suppose that there is an edge in A, say aa′. Then

|NB(a) ∩NB(a′)| > d(a)− cn+ d(a′)− cn− |B| >
(

1
2
− 9ε1/2

)
n.

Let A′ = A\{a, a′} and B′ = NB(a) ∩ NB(a′). There is no path of length 2k − 1 of the form
b1a1b2a2 . . . bk−1ak−1bk between A′ and B′. But this implies that there is no path of any type of length
2k (remember that since the graph is bipartite a path must alternate sides). But this implies that the
number of edges between A′ and B′ is at most 4kn. This then implies that the number of edges in the
graph is at most

e(A′, B′) + e(A\A′, V (G)) + e(V (G), B\B′) ≤ 4kn+ 2n+ 10ε1/2n2,

a contradiction for n large. 2
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More generally, there is a result of Simonovits which shows that if H is a graph with χ(H) = t and
χ(H\e) < t, for some edge e, then ex(n,H) = ex(n,Kt) for n sufficiently large. We say that such
graphs are colour-critical. It is easy to verify that odd cycles are colour-critical.
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