
Lecture 11

We now begin the proof proper of the Bondy-Simonovits theorem.

Theorem 1 For any natural number k ≥ 2, there exists a constant c such that

ex(n,H) ≤ cn1+1/k.

Proof Suppose that G is a C2k-free graph on n vertices with at least cn1+1/k edges. Then the average
degree of G is at least 2cn1/k, so there exists some subgraph H for which the minimum degree is at
least cn1/k.

Fix an arbitrary vertex x of H. Let i ≥ 0, let Vi be the set of vertices that are at distance i from x

with respect to the graph H. In particular, V0 = {x} and V1 = N(x). Let vi = |Vi| and let Hi be the
bipartite subgraph H[Vi−1, Vi] induced by the disjoint sets Vi−1 and Vi.

Claim 1 For 1 ≤ i ≤ k − 1, none of the graphs H[Vi] or Hi+1 contain a bipartite cycle of length at
least 2k with a chord.

Proof Suppose, on the contrary, that there is a bipartite cycle with a chord F , of length at least 2k,
in H[Vi]. Let Y ∪ Z be the bipartition of V (F ).

Let T ⊂ H be a breadth first-search tree beginning at x. That is, we begin at the root node x. The
first layer will consist of the neighbours of x, labelling them as we uncover them. At the jth step, we
look at layer j − 1. For the first vertex in the ordering, we look at its neighbours that have not yet
occurred and label them as they occur. Then we do the same in order for every vertex in the (j− 1)st
level. This will give us the jth level with all vertices labelled.

Let y be the vertex which is farthest from x in the tree T and which still dominates the set Y , that is,
every vertex in Y is a descendant of y. Clearly, the paths leading from y to Y must branch at y. Pick
one such branch (leading to a non-trivial subset of Y ), defined by some child z of y and let A be the
set of descendents of z which lie in Y . Let B = (Y ∪ Z)\A. Since Y \A 6= ∅, B is not an independent
set of F .

Let ` be the distance between x and y. Then ` < i and 2k− 2i+ 2` < 2k ≤ v(F ). By the main lemma
from the last lecture, since F is not bipartite with respect to the partition into A and B, we can find
a path P ⊂ F of length 2k − 2i + 2` which starts in a ∈ A and ends in b ∈ B. Since the path has
even length and the partition into Y and Z is bipartite, b must be in Y . Let Pa and Pb be the unique
paths in T that connect y to a and b. They intersect only at y, since a is a descendent of z and b is
not. Also, they each have length i− `. Therefore, the union of the paths P, Pa and Pb forms a C2k in
H, which contradicts our assumption.

The proof follows similarly for Hi+1 if we take Y = V (F ) ∩ Vi. 2

We also know that if a bipartite graph has minimum degree d ≥ 3 then it contains a cycle of length
at least 2d with an extra chord. We may therefore assume that, for 1 ≤ i ≤ k− 1, the average degrees
d(H[Vi]) and d(Hi+1) of H[Vi] and Hi+1 satisfy

d(H[Vi]) ≤ 4k − 4 and d(Hi+1) ≤ 2k − 2.
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For example, if H[Vi] has average degree greater than 4k− 4, it has a bipartite subgraph with average
degree greater than 2k − 2 and, therefore, a bipartite subgraph with minimum degree greater than
k − 1. This would then imply that the graph contained a bipartite cycle of length at least 2k with a
chord, which would contradict the claim. The bound for d(Hi+1) follows similarly.

We will now show inductively that, provided n is sufficiently large,

e(Hi+1)
vi+1

≤ 2k

for every 0 ≤ i ≤ k − 1. For i = 0, this is true, since every edge in V1 is connected to x by only
one edge. Suppose that we want to prove it for some i > 0. Then, by induction and the bound on
d(H[Vi]),

e(Hi+1) =
∑
y∈Vi

dVi+1(y) ≥
(
δ(H)− 4k − 4

2
− 2k

)
vi ≥

(
cn1/k − 4k + 2

)
vi ≥

c

2
n1/kvi ≥ 2kvi.

In particular, Vi+1 6= ∅ and the average degree of vertices of Vi with respect to Hi+1 is at least 2k.
But since d(Hi+1) ≤ 2k − 2, we must have that the average degree of Vi+1 with respect to Hi+1 is at
most 2k − 2, that is, e(Hi+1) ≤ (2k − 2)vi+1, implying the required bound.

Note now that we have
c

2
n1/kvi ≤ e(Hi+1) ≤ 2kvi+1.

Therefore,
vi+1

vi
≥ c

4k
n1/k.

This implies that

vk ≥
( c

4k

)k
n.

This is a contradiction if c ≥ 4k, completing the proof. 2

We have shown that ex(n,C2k) ≤ (4k + o(1))n1+1/k. A slightly more careful rendering of this proof,
due to Pikhurko, allows one to show ex(n,C2k) ≤ (k − 1 + o(1))n1+1/k.
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