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Abstract

The Ramsey number r(H) of a graph H is the smallest number n such that, in any two-colouring
of the edges of Kn, there is a monochromatic copy of H. We study the Ramsey number of graphs H
with t vertices and density ρ, proving that r(H) ≤ 2c

√
ρ log(2/ρ)t. We also investigate some related

problems, such as the Ramsey number of graphs with t vertices and maximum degree ρt and the
Ramsey number of random graphs in G(t, ρ), that is, graphs on t vertices where each edge has been
chosen independently with probability ρ.

1 Introduction

Given a graph H, the Ramsey number r(H) is defined to be the smallest natural number n such
that, in any two-colouring of the edges of Kn, there exists a monochromatic copy of H. That these
numbers exist was first proven by Ramsey [10] and rediscovered independently by Erdős and Szekeres
[5]. Since their time, and particularly since the 1970’s, Ramsey theory has grown into one of the most
active areas of research within combinatorics, overlapping variously with graph theory, number theory,
geometry and logic.

The most famous question in the field is that of estimating the Ramsey number r(t) of the complete
graph Kt on t vertices. Despite some small improvements [2, 11], the standard estimates, that

√
2
t ≤

r(t) ≤ 4t, have remained largely unchanged for over sixty years. What, however, happens if one takes
a slightly less dense graph on t vertices? One would expect, for example, that if H is a graph with only
half the edges of a complete graph then r(H) ≤ (4− ε)t for some positive ε. Curiously, no theorem of
this variety seems to be known. Our aim is to bridge this apparent omission in the theory.

The density of a graph H with t vertices and m edges is given by ρ = m/
(
t
2

)
. We would like to

determine the Ramsey number of a graph H with t vertices and given density ρ. We shall always
assume that H has no isolated vertices. Otherwise, we could have graphs with zero density and
arbitrarily large Ramsey number.

To get a lower bound, consider a graph on t vertices containing a clique with
√
ρ

2 t vertices, with
the remaining edges (around 3ρ

4

(
t
2

)
of them) distributed so that the graph has no isolated vertices. By

the usual lower bound on Ramsey numbers, we see that the Ramsey number of this graph is at least
2
√
ρt/4. We prove an upper bound which comes close to matching this lower bound. In particular, it

gives an exponential improvement on the trivial bound 4t when ρ is a fixed, though small, positive
density.
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1



Theorem 1.1 There exists a constant c such that any graph H on t vertices with density ρ satisfies

r(H) ≤ 2c
√
ρ log(2/ρ)t.

We shall also prove some related results. Given two graphs H1 and H2, the Ramsey number
r(H1, H2) is the smallest natural number n such that, in any red/blue-colouring of the edges of Kn,
there is guaranteed to be a blue copy of H1 or a red copy of H2. The Ramsey number r(Kt, H)
of the complete graph Kt against a graph H with t vertices and maximum degree ρt turns out
to be of particular importance. A method of Graham, Rödl and Ruciński [8] easily implies that
r(Kt, H) ≤ 2cρt log2 t. We replace the log2 t factor with a similar factor depending only on ρ.

Theorem 1.2 There exists a constant c such that any graph H on t vertices with maximum degree
ρt satisfies

r(Kt, H) ≤ 2cρ log2(2/ρ)t.

As a corollary of this result, we can prove an upper bound for the Ramsey number of the complete
graph Kt against a graph H with t vertices and density ρ.

Theorem 1.3 There exists a constant c such that any graph H on t vertices with density ρ satisfies

r(Kt, H) ≤ 2c
√
ρ log3/2(2/ρ)t.

Note that both of these bounds are already quite good. For Theorem 1.2, a random argument gives
a lower bound of the form r(Kt, H) ≥ 2cρ log(2/ρ)t. For Theorem 1.3, note that the Ramsey number
r(Kt,K√ρt/2) ≥ 2c

√
ρ log(2/ρ)t. If we now place the remaining edges to form a graph H on t vertices

with density ρ and no isolated vertices, we have r(Kt, H) ≥ 2c
√
ρ log(2/ρ)t.

A similar question to that we have been looking at, suggested by Erdős [4], is to determine the
Ramsey number of a graph H with a given number of edges. It is an elementary consequence of the
standard bounds for r(t) that if m is the number of edges in the complete graph Kt then r(t) ≤ 2c

√
m.

Erdős conjectured that a similar upper bound should hold for all graphs H, that is, he conjectured
the existence of a constant c such that if H is any graph with m edges then r(H) ≤ 2c

√
m. For

bipartite graphs, this conjecture was verified by Alon, Krivelevich and Sudakov [1]. Furthermore, by
using the machinery of Graham, Rödl and Ruciński [8], they made significant progress towards the
full conjecture, showing that, for any graph H with m edges, r(H) ≤ 2c

√
m logm.

If we substitute m = ρ
(
t
2

)
in the result of Alon, Krivelevich and Sudakov, we find that r(H) ≤

2c
√
ρt log t for any graph H with t vertices and density ρ. Theorem 1.1 improves on this result. Moreover,

putting ρ = m/
(
t
2

)
in Theorem 1.1, we get the following theorem.

Theorem 1.4 There exists a constant c such that any graph H with m edges and density ρ satisfies

r(H) ≤ 2c
√
m log(2/ρ).

In particular, since a graph with no isolated vertices satisfies ρ ≥ 1
t ≥

1
2m , we have another proof

that r(H) ≤ 2c
√
m logm for any graph H with m edges.

Our methods also allow us to study Ramsey numbers of dense random graphs. The binomial
random graph G(t, ρ) is the probability space consisting of all labelled graphs on t vertices where
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each edge is chosen independently with probability ρ. We shall say that the random graph G(t, ρ)
possesses a graph property P almost surely if the probability that G(t, ρ) satisfies P tends to 1 as t
tends to infinity. For sparse random graphs, taken, for d fixed, with probability ρ = d/t, the Ramsey
number of graphs H ∈ G(t, ρ) was studied by Fox and Sudakov [7], who showed that, almost surely,
2c1dt ≤ r(H) ≤ 2c2d log2 dt.

A first estimate for the Ramsey number of dense random graphs follows from Theorem 1.2. This
theorem easily implies that if a graph H on t vertices has maximum degree at most 2ρt, then r(H) ≤
2cρ log2(2/ρ)t. But, provided ρ ≥ c′ log t

t , a random graph H ∈ G(t, ρ) will almost surely have maximum
degree at most 2ρt, from which it follows that r(H) ≤ 2cρ log2(2/ρ)t. For ρ large, we show how this may
be improved still further.

Theorem 1.5 There exist constants c and c′ such that, if H ∈ G(t, ρ) is a random graph with ρ ≥
c′ log3/2 t√

t
, H almost surely satisfies

r(H) ≤ 2cρ log(2/ρ)t.

For the lower bound, note that graphs in G(t, ρ), with ρ ≥ 1
t , almost surely have at least ρ

2

(
t
2

)
edges. The usual random arguments now imply that the Ramsey number of a graph with this many
edges is at least 2cρt. So our results are again very close to being sharp.

We will begin, in Section 2, by discussing an embedding lemma, due to Graham, Rödl and Ruciński
[8], which will be a crucial component in all of our proofs. Roughly speaking, this lemma says that if
the edges of a graph G are well-distributed, in the sense that every two large bipartite graphs have at
least a fixed positive density of edges between them, then G contains a copy of any small graph H. In
Section 3, we will prove Theorems 1.1, 1.2 and 1.3. In Section 4, we prove Theorem 1.5. We conclude
with a number of open questions. Throughout the paper, we systematically omit floor and ceiling
signs. We also do not make any serious attempt to optimize absolute constants in our statements and
proofs. All logs, unless stated otherwise, are taken to the base 2.

2 The embedding lemma

Let G be a graph on vertex set V and let X,Y be two subsets of V . Define e(X,Y ) to be the number
of edges between X and Y . The density of the pair (X,Y ) is

d(X,Y ) =
e(X,Y )
|X||Y |

.

The graph G is said to be bi-(σ, δ)-dense if, for all X,Y ⊂ V with X ∩ Y = ∅ and |X|, |Y | ≥ σ|V |,
we have d(X,Y ) ≥ δ. It was proven by Graham, Rödl and Ruciński [8] that if σ is sufficiently small
depending on δ and the maximum degree of a fixed graph H then a sufficiently large bi-(σ, δ)-dense
graph G must contain a copy of H. For the sake of completeness, we include a proof of their embedding
lemma.

Lemma 2.1 Let δ > 0 be a real number. If G is a bi-(1
4δ

∆∆−2, δ)-dense graph on at least 4δ−∆∆n
vertices then G contains a copy of any graph H on n vertices with maximum degree ∆.

Proof. Let V be the vertex set of G and suppose without loss of generality that |V | = (∆+1)N , where
N ≥ 2δ−∆n. Split V into ∆+1 pieces V1, V2, · · · , V∆+1, each of size N . Since the chromatic number of
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H is at most ∆ + 1, we may split its set of vertices W into ∆ + 1 independent sets W1,W2, · · · ,W∆+1.
We will give an embedding f of H in G so that f(Wi) ⊂ Vi for all 1 ≤ i ≤ ∆ + 1.

Let the vertices of H be {w1, w2, · · · , wn}. For each 1 ≤ h ≤ n, let Lh = {w1, w2, · · · , wh}. For
each y ∈ Wj\Lh, let T hy be the set of vertices in Vj which are adjacent to all already embedded
neighbours of y. That is, letting Nh(y) = N(y) ∩ Lh, T hy is the set of vertices in Vj adjacent to each
element of f(Nh(y)). We will find, by induction, an embedding of Lh such that, for each y ∈ W\Lh,
|T hy | ≥ δ|Nh(y)|N .

For h = 0, there is nothing to prove. We may therefore assume that Lh has been embedded
consistent with the induction hypothesis and attempt to embed w = wh+1 into an appropriate v ∈ T hw.
Let Y be the set of neighbours of w which are not yet embedded. We wish to find an element
v ∈ T hw\f(Lh) such that, for all y ∈ Y , |N(v)∩ T hy | ≥ δ|T hy |. If such a vertex v exists, taking f(w) = v

will then complete the proof.
Let By be the set of vertices in T hw which are bad for y ∈ Y , that is, such that |N(v)∩T hy | < δ|T hy |.

Note that, by the induction hypothesis, |T hy | ≥ δ∆N ≥ 1
2δ

∆∆−1|V |. Therefore, |By| < 1
4δ

∆∆−2|V | ≤
1
2δ

∆∆−1N , for otherwise the density between the sets By and T hy would be less than δ, contradicting
the bi-density condition. Hence, since N ≥ 2δ−∆n,∣∣∣T hw\ ∪y∈Y By∣∣∣ > δ∆N −∆

1
2
δ∆∆−1N ≥ n.

Hence, since at most n vertices have already been embedded, an appropriate choice for f(w) exists. 2

3 Dense graphs

We shall begin by proving Theorem 1.2. The two main ingredients in the proof are Lemma 2.1 and
the observation, due to Erdős and Szemerédi [6], that if one of the colours in a two-coloured graph
is known to have high density then it must contain a much larger clique than one would normally
expect. We will not actually apply the Erdős-Szemerédi result directly, but the underlying moral of
their result is crucial to the proof.

Theorem 3.1 Let H be a graph on t vertices with maximum degree ρt. Then, provided ρ ≤ 1
16 ,

r(Kt, H) ≤ 212ρ log2(2/ρ)t.

Proof. We shall prove, by induction on s, that for s ≥ ρt,

r(Ks, H) ≤
(

2s
ρt

)12ρ log(2/ρ)t

.

The result follows from taking s = t.
The base case, s = ρt, is easy, since

r(Ks, H) ≤ r(Ks,Kt) ≤
(
s+ t

s

)
=
(

(1 + ρ)t
ρt

)
≤
(
e(1 + ρ)

ρ

)ρt
≤
(

2
ρ

)2ρt

.

Suppose, therefore, that the result is true for all s < s0 and we wish to prove it for s0.

4



Let G be a graph on

N =
(

2s0

ρt

)12ρ log(2/ρ)t

vertices whose edges are two-coloured in red and blue. By Lemma 2.1 with δ = ρ, if the red subgraph
is bi-(1

4ρ
ρtt−2, ρ)-dense and N ≥ 4ρ−ρtt2, there is a copy of H in red. We may therefore assume

otherwise. That is, there exist two sets A and B, each of size at least 1
4ρ

ρtt−2N , such that the density
of red edges between A and B is less than ρ. Looking at it another way, the density of blue edges
between A and B is at least 1− ρ.

Note now that there exists A′ ⊆ A such that |A′| ≥ ρ|A| and, for each v ∈ A′, the blue degree
dB(v) of v in B is at least (1− 2ρ)|B|. Suppose otherwise. Then the density of edges between A and
B is less than

(1− ρ)(1− 2ρ) + ρ ≤ 1− ρ,

a contradiction.
Letting P = 12ρ log(2/ρ)t, note that, since (3/2)2 ≥ 2,

|A′| ≥ ρ|A| ≥ 1
4
ρρt+1t−2

(
2s0

ρt

)12ρ log(2/ρ)t

≥ 1
4
ρρt+1t−2

(
2s0
4
3s0

)P ( 4
3s0

ρt

)P

≥ 1
4
ρρt+1t−2

(
3
2

)P ( 4
3s0

ρt

)P
≥ 1

4
ρρt+1t−2

(
2
ρ

)6ρt
(

4
3s0

ρt

)P

≥
(

2
ρ

)2ρt
(

2
(

2
3s0

)
ρt

)12ρ log(2/ρ)t

.

The last line follows since, for 1
t ≤ ρ ≤

1
e (the former being a necessary condition for the graph to have

no isolated vertices), the function ρ−3ρt+1 is increasing and, therefore, the inequality 24ρt−2ρ−3ρt+1 ≥ t2
holds. Therefore, by induction, A′ contains either a blue clique on 2

3s0 vertices or a red copy of H.
Note that the extra (2/ρ)2ρt factor is there to account for the possibility that 2

3s0 is smaller than ρt.
We may assume that A′ contains a blue clique S of size 2

3s0.
By choice, every element of A′ has blue degree at least (1− 2ρ)|B| in B. Hence, the blue density

between S and B is at least 1− 2ρ. Following the usual Kővári-Sós-Turán argument [9], we count the
number of blue copies of the bipartite graph K1,l, where the single vertex lies in B and the collection
of l vertices lies in S. If this set has size at least

(|S|
l

)
r(Ks0−l, H), we are done. To see this, note that

the condition implies the existence of a blue Kl all of whose vertices are joined, in blue edges, to every
vertex in a set of size r(Ks0−l, H). This latter set contains either a red copy of H, in which case we
are done, or a blue Ks0−l. If we add this latter set to the blue Kl we get a blue Ks0 , so we are again
done.

Let l = 1
2s0. We are going to show that for this choice of l, the number of K1,l is at least(|S|

l

)
r(Ks0−l, H). To prove this, let dS(v) be the degree of a vertex v from B in S. Note, by convexity,

that the number of K1,l is at least

∑
v∈B

(
dS(v)
l

)
≥ |B|

( 1
|B|
∑

v∈B dS(v)
l

)
≥ |B|

(
(1− 2ρ)|S|

l

)
.
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Note that, since |S| = 2
3s0 and l = 1

2s0, we have |S| − l = 1
6s0 = 1

4 |S|. Therefore,(
(1− 2ρ)|S|

l

)
/

(
|S|
l

)
=

l−1∏
i=0

(
(1− 2ρ)|S| − i
|S| − i

)
≥

l−1∏
i=0

(
1− 2ρ|S|
|S| − i

)
≥ (1− 8ρ)l.

Therefore, since l ≤ t, ρ ≤ 1
16 and, for 0 ≤ x ≤ 1

2 , we have 1− x ≥ 2−2x,

|B|
((1−2ρ)|S|

l

)(|S|
l

) ≥ 1
4
ρρtt−2(1− 8ρ)t

(
2s0

ρt

)12ρ log(2/ρ)t

≥ 1
4
ρρtt−22−16ρt

(
2
ρ

)12ρt(s0

ρt

)12ρ log(2/ρ)t

≥
(

2
ρ

)2ρt
(

2
(

1
2s0

)
ρt

)12ρ log(2/ρ)t

.

The last line follows since, for 1
t ≤ ρ ≤ 1

2e , the function (2ρ)−9ρt is increasing, and, therefore, the
inequality 2−6ρt−2ρ−9ρt ≥ (2ρ)−9ρt ≥ t2 holds. By the induction hypothesis and the fact that s0 − l =
1
2s0, this is greater than r(Ks0−l, H) and the theorem is therefore proven. 2

By appropriately adjusting a method of Alon, Krivelevich and Sudakov [1], we may now prove
Theorem 1.3 as a corollary of Theorem 3.1.

Corollary 3.2 Let H be a graph on t vertices with density ρ. Then, provided ρ ≤ 1
50 ,

r(Kt, H) ≤ 215
√
ρ log3/2(2/ρ)t.

Proof. There are at most t
√
ρ log(2/ρ) vertices in H with degree greater than t

√
ρ/ log(2/ρ). Oth-

erwise, the graph would contain more than ρ
(
t
2

)
edges, which would be a contradiction. Let H ′ be

the graph formed from H by removing these vertices. By choice, it has maximum degree at most
t
√
ρ/ log(2/ρ).
Consider a complete graph on N = 215

√
ρ log3/2(2/ρ)t vertices whose edges have been two-coloured

in red and blue. We will construct a sequence of subsets of this vertex set U1 ⊃ U2 ⊃ · · · ⊃ Ul and a
string S consisting of Rs and Bs associated with this choice. To begin, let u1 be an arbitrary vertex. If
u1 has at least ρN neighbours in red, let U1 be this set of neighbours and initalise the string as S = R.
If, on the other hand, u1 has at least (1 − ρ)N neighbours in blue, let U1 be this set of neighbours
and initialise the string as S = B. Suppose now that we have chosen Ui. Fix an arbitrary vertex ui+1

in Ui. If ui+1 has at least ρ|Ui| neighbours in red within Ui, we let Ui+1 be this set of neighbours and
append an R to our string S. Otherwise, we let Ui+1 be the set of blue neighbours and append B to
the end of the string.

We stop our process when the string contains either t− 1 occurrences of B or t
√
ρ log(2/ρ) occur-

rences of R. If the first case occurs, there are t− 1 vertices ui1 , ui2 , · · · , uit−1 connected to each other
and every vertex in the final set Ul by blue edges. So, provided Ul is non-empty, we have a blue Kt. If
the second case occurs, there are, similarly, t

√
ρ log(2/ρ) vertices connected to each other and every

vertex in Ul by red edges. Note that, since ρ ≤ 1
2 and 1 − x ≥ 2−2x whenever 0 ≤ x ≤ 1

2 , Ul has size
at least

ρt
√
ρ log(2/ρ)(1− ρ)tN ≥ 2−

√
ρ log3/2(2/ρ)t2−2ρtN ≥ 2−2

√
ρ log3/2(2/ρ)tN.
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Therefore, |Ul| ≥ 213
√
ρ log3/2(2/ρ)t ≥ 212

√
ρ log3/2(2/ρ)t + t. Since H ′ has maximum degree t

√
ρ/ log(2/ρ)

and
√
ρ/ log(2/ρ) ≤ 1

16 whenever ρ ≤ 1
50 , Theorem 3.1 now tells us that the vertex set Ul must contain

either a blue copy of Kt or a red copy of H ′. The extra t is needed so as to account for the fact that
H ′, unlike H, may have some isolated vertices. The result follows by adjoining this copy of H ′, if it
occurs, to the red clique of size t

√
ρ log(2/ρ) which is connected to Ul by red edges. 2

Theorem 1.1 may now be proved in essentially the same manner as Corollary 3.2.

Corollary 3.3 Let H be a graph on t vertices with density ρ. Then, provided ρ ≤ 1
16 ,

r(H) ≤ 215
√
ρ log(2/ρ)t.

Proof. There are at most t
√
ρ log(2/ρ) vertices in H with degree greater than t

√
ρ/ log(2/ρ). Let H ′

be the graph formed from H by removing these vertices. By choice, it has maximum degree at most
t
√
ρ/ log(2/ρ).
Consider a complete graph on N = 215

√
ρ log(2/ρ)t vertices whose edges have been two-coloured in

red and blue. As in the proof of Corollary 3.2, we construct a sequence of subsets of this vertex set
U1 ⊃ U2 ⊃ · · · ⊃ Ul and a string S consisting of Rs and Bs associated with this choice. To begin, let
u1 be an arbitrary vertex. If u1 has at least N/2 neighbours in red, let U1 be this set of neighbours
and initalise the string as S = R. If, on the other hand, u1 has at least N/2 neighbours in blue, let
U1 be this set of neighbours and initialise the string as S = B. Suppose now that we have chosen Ui.
Fix an arbitrary vertex ui+1 in Ui. If ui+1 has at least |Ui|/2 neighbours in red within Ui, we let Ui+1

be this set of neighbours and append an R to our string S. Otherwise, we let Ui+1 be the set of blue
neighbours and append B to the end of the string.

We stop our process when the string contains
√
ρ log(2/ρ)t occurrences of either R or B. In either

case, there are d =
√
ρ log(2/ρ)t vertices ui1 , ui2 , · · · , uid which are all connected to each other and

every vertex in the final set Ul in one particular colour. Suppose, without loss of generality, that this
colour is red. Therefore, if Ul contains a blue clique of size t or a red copy of H ′, we will be done.

To see that this is indeed the case, note that

|Ul| ≥ 2−2
√
ρ log(2/ρ)tN ≥ 213

√
ρ log(2/ρ)t ≥ 212

√
ρ log(2/ρ)t + t.

Since H ′ has maximum degree t
√
ρ/ log(2/ρ) and

√
ρ/ log(2/ρ) ≤ 1

16 whenever ρ ≤ 1
16 , Theorem 3.1

now tells us that the vertex set Ul must contain either a blue copy of Kt or a red copy of H ′. The extra
t is needed so as to account for the fact that H ′ may have some isolated vertices. The result follows
by adjoining this copy of H ′, if it occurs, to the red clique of size t

√
ρ log(2/ρ) which is connected to

Ul by red edges. 2

As we noted in the introduction, substituting ρ = m/
(
t
2

)
and using the fact that, for graphs with

no isolated vertices, t ≤ 2m, this yields another proof that r(H) ≤ 2c
√
m logm for graphs with m edges.

4 Random graphs

In this section, we will prove Theorem 1.5. A key component of our proofs is a lemma saying that one
may partition a graph into two pieces of comparable size such that the maximum degree within each
of the induced subgraphs is approximately half the maximum degree of the original graph. To prove
this, we will need the following estimate for the upper tail of the binomial distribution.
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Lemma 4.1 Let X be a random variable that is binomially distributed with parameters n and p and
let 0 ≤ θ ≤ 1 be a real number. Then P[X ≥ (1 + θ)pn] ≤ e−θ2pn/4.

Proof. A bound for the upper tail follows from the standard Chernoff bound

P[X ≥ (1 + θ)pn] ≤
(

eθ

(1 + θ)1+θ

)pn
.

If, for 0 ≤ θ ≤ 1, we can show that (1 + θ)1+θ ≥ eθ+θ2/4, this bound becomes simply e−θ
2pn/4. Taking

logs to the base e, it is sufficient to show that

(1 + θ) log(1 + θ) ≥ θ +
θ2

4
.

This clearly holds for θ = 0. It is therefore sufficient to show that in the range 0 ≤ θ ≤ 1 the derivative,
1 + log(1 + θ), of the left hand side is at least the derivative, 1 + θ/2, of the right hand side. Again,
these two expressions are equal at θ = 0, so it is sufficient to show that the second derivative, 1/(1+θ),
of the left hand side is greater than or equal to the derivative, 1/2, of the right hand side. But this
follows easily from the condition 0 ≤ θ ≤ 1. 2

We are now ready to prove our partitioning lemma.

Lemma 4.2 Let H be a graph on t vertices with maximum degree δt. Then, provided that δ ≥ 64 log t/t
and t ≥ 16, there is a partition of the graph into two vertex sets V1 and V2 such that, for i = 1, 2,∣∣∣∣|Vi| − t

2

∣∣∣∣ ≤ 2
√
t

and the maximum degree of any vertex into each of the vertex sets V1, V2 is at most

δ

2
t+ 2

√
δt log t.

Proof. We will partition the graph randomly by choosing each vertex to be in V1 independently with
probability 1/2. Applying Lemma 4.1 with p = 1/2, n = t and θ = 4/

√
t (which is less than 1 for

t ≥ 16), we see that, for i = 1, 2,

P[|Vi| − t/2 ≥ 2
√
t] ≤ e−θ2pn/4 = e−2 <

1
4
.

Therefore, since V1 and V2 are complementary, ||Vi| − t/2| ≤ 2
√
t with probability at least 1/2. Now,

for each vertex v, let D(v) be the set of neighbours of v and d(v) be the size of D(v). Let di(v) be the
random variable whose value is the size of Di(v) = D(v) ∩ Vi. By Lemma 4.1 with p = 1/2, n = d(v)
and θ = 4

√
log t/d(v), we see that, provided d(v) ≥ 16 log t (this is the necessary condition to have

θ ≤ 1),

P[di(v)− d(v)/2 ≥ 2
√
δt log t] ≤ e−θ2pn/4 ≤ e−2 log t ≤ 1

t2
.

If, on the other hand, d(v) < 16 log t, the condition δ ≥ 64 log t/t automatically implies that di(v) ≤
d(v) ≤ 2

√
δt log t. Adding over all v and i = 1, 2, we see that di(v) ≤ d(v)/2 + 2

√
δt log t holds in all
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cases with probability at least 1− 2
t > 1/2. Since also ||Vi| − t/2| ≤ 2

√
t with probability greater than

1/2, the result follows. 2

The key property of random graphs that we will need to make use of is that for every vertex set
V of a given size there can only be a few vertices which have greater than the expected degree within
V . The following lemma is sufficient for our purposes.

Lemma 4.3 Let H be a random graph on t vertices formed by taking each edge independently with
probability ρ and let 0 < δ, ε ≤ 1 be real numbers. Then, provided ρ ≥ 24 log t

ε2δt
, H satisfies the following

condition with probability e− log(e/δ)δt. For every vertex set V of size δt, the number of vertices with
more than (1 + ε)ρδt neighbours in V is at most 12 log(e/δ)

ρε2
.

Proof. To prove the bound we again make use of Lemma 4.1. Indeed, given a fixed set V of size
δt and a vertex u, the variable Xu counting the number of edges between u and V is binomial with
probability ρ. Therefore, by the Chernoff bound,

P(Xu ≥ (1 + ε)ρδt) ≤ e−ε2ρδt/4.

Since the Xu are independent, we also see that, for any vertices u1, · · · , ud, the probability that
Xui ≥ (1 + ε)ρδt for all 1 ≤ i ≤ d is at most e−dε

2ρδt/4. The expected number of pairs consisting of a
vertex set V of size δt and a set of d vertices u1, u2, · · · , ud such that, for each 1 ≤ i ≤ d, the number
of neighbours that ui has in V is at least (1 + ε)ρδt is therefore at most(

t

δt

)(
t

d

)
e−dε

2ρδt/4.

Taking d = 12 log(e/δ)
ρε2

≤ log(e/δ)δt
2 log t , we see that this is at most

(e
δ

)δt(et
d

)d
e−dε

2ρδt/4 = elog(e/δ)δtelog(et/d)de−3 log(e/δ)δt

= elog(et/d)de−2 log(e/δ)δt ≤ e− log(e/δ)δt.

The result follows. 2

We will now prove Theorem 1.5. Before we begin, we need a definition. We shall say that a graph
H is (∆, q)-bounded if, apart from an exceptional set of at most q vertices, the maximum degree of
every vertex in H is ∆.

Theorem 4.4 Let H be a random graph on t vertices such that each edge is chosen independently
with probability ρ. Then, provided 215 log3/2 t√

t
≤ ρ ≤ 1

100 , H almost surely satisfies

r(H) ≤ 21100ρ log(2/ρ)t.

Proof. By Lemma 4.3 with δ ≥ t−1/2 and ε = 1, a random graph H, where each edge is chosen with
probability ρ ≥ 24 log t√

t
, will, with probability at least 1 − e−δt ≥ 1 − 1/t2, be such that, for every set

V of size δt, the number of vertices with more than 2ρδt neighbours in V is at most 12 log(e/δ)
ρ ≤

√
t.

9



Adding over all possible sizes of V between
√
t and t, we see that with probability at least 1 − 1/t,

the graph H will be such that, for every set V of size at least
√
t, there are at most

√
t vertices which

have more than 2ρ|V | neighbours in V .
We would also like our graph to satisfy a certain maximum degree condition. To this end, note

that by Lemma 4.1 with n = t, p = ρ and θ = 4
√

log t/ρt, the maximum degree d(v) of any given
vertex v will be such that

P[d(v)− ρt ≥ 4
√
ρt log t] ≤ e−4 log t ≤ 1

t2
.

Therefore, with probability at least 1− 1/t, every vertex in H has degree at most ρt+ 4
√
ρt log t.

Combining the last two paragraphs, we see that, with probability at least 1 − 2/t, H is a graph
with maximum degree ρt+ 4

√
ρt log t such that, for every set V of size at least

√
t, there are at most√

t vertices with more than 2ρ|V | neighbours in V . We will henceforth assume that H is just such a
graph.

We shall prove, by induction, that, for all pairs (s1, s2) such that ρt ≤ s1, s2 ≤ t, if H1 and H2 are
(∆i, qi)-bounded subgraphs of H on s1 and s2 vertices respectively with

∆i = ρsi

(
1 +

log(2t/si)
log(2/ρ)

)
and

qi =
√
t,

then

r(H1, H2) ≤ 2500(s1+s2)ρ log(2/ρ)

(
s1 + s2

ρ2t

)40ρt

.

The theorem follows from taking s1 = s2 = t, noting that the maximum degree of H satisfies

ρt+ 4
√
ρt log t ≤ ρt

(
1 +

log 2
log(2/ρ)

)
,

whenever ρ ≥ 36 log3 t/t.
If s1 = ρt or s2 = ρt the result is easy, since

r(H1, H2) ≤ r(Kρt,Kt) ≤
(

(1 + ρ)t
ρt

)
≤
(
e(1 + ρ)

ρ

)ρt
≤
(

2
ρ

)2ρt

.

Suppose, therefore, that t1 ≥ t2 ≥ ρt and the result is true for all admissible pairs (s1, s2) with s1 ≤ t1
and s2 < t2 or s1 < t1 and s2 ≤ t2. We wish to prove it for the pair (t1, t2).

To begin, we take care of the exceptional sets. Consider a complete graph on

M = 2500(t1+t2)ρ log(2/ρ)

(
t1 + t2
ρ2t

)40ρt

vertices whose edges have been two-coloured in red and blue. We construct a sequence of subsets of
this vertex set U1 ⊃ U2 ⊃ · · · ⊃ Ul and a string S consisting of Rs and Bs associated with this choice.
To begin, let u1 be an arbitrary vertex. If u1 has at least ρN neighbours in red, let U1 be this set of
neighbours and initalise the string as S = R. If, on the other hand, u1 has at least (1−ρ)N neighbours

10



in blue, let U1 be this set of neighbours and initialise the string as S = B. Suppose now that we have
chosen Ui. Fix an arbitrary vertex ui+1 in Ui. If ui+1 has at least ρ|Ui| neighbours in red within Ui,
we let Ui+1 be this set of neighbours and append an R to our string S. Otherwise, we let Ui+1 be the
set of blue neighbours and append B to the end of the string.

We stop our process when the string contains either t1 − 1 occurrences of B or
√
t ≤ ρ

log(2/ρ) t

occurrences of R. If the first case occurs, there are t1−1 vertices ui1 , ui2 , · · · , uit1−1 connected to each
other and every vertex in the final set Ul by blue edges. So, provided Ul is non-empty, we have a blue
Kt1 and we are done. We therefore assume that the second case occurs and that there are

√
t vertices

which are connected to each other and every vertex in Ul by red edges. Note that, since t1 ≤ t, ρ ≤ 1
2

and 1− x ≥ 2−2x whenever 0 ≤ x ≤ 1
2 , Ul has size at least

ρρt/ log(2/ρ)(1− ρ)tM ≥ 2−3ρtM.

If we run the same process again, with the colours reversed, we may find a subset W of Ul and a
set of vertices of size

√
t such that all of these vertices are connected to each other and every element

in W by blue edges. Moreover, we may choose W so that

|W | ≥ 2−3ρt|Ul| ≥ 2−6ρtM.

Note that, since 4
5 t1 + t2 ≤ 9

10(t1 + t2),

2−500(t1+t2)ρ log(2/ρ)|W | ≥ 2−6ρt

(
t1 + t2
ρ2t

)40ρt

= 2−6ρt

(
t1 + t2
4
5 t1 + t2

)40ρt( 4
5 t1 + t2

ρ2t

)40ρt

≥ 2−6ρt(10/9)40ρt

(
4
5 t1 + t2

ρ2t

)40ρt

≥

(
4
5 t1 + t2

ρ2t

)40ρt

.

If we now let H ′1 and H ′2 be the graphs formed from H1 and H2 by removing the exceptional vertices,
it will be sufficient to show that, in any two-colouring of the edges of W , there is a blue copy of H ′1 or
a red copy of H ′2.

Let G be a complete graph on

N = 2500(t1+t2)ρ log(2/ρ)

(
4
5 t1 + t2

ρ2t

)40ρt

vertices whose edges are two-coloured in red and blue. Note that the maximum degree of H ′2 is at
most 2ρt2. Therefore, by Lemma 2.1 with δ = ρ, if the red subgraph is bi-(1

4ρ
2ρt2t−2

2 , ρ)-dense and
N ≥ 4ρ−2ρt2t22, there is a copy of H ′2 in red. We may therefore assume otherwise, that is, there exist
two sets A and B, each of size at least 1

4ρ
2ρt2t−2

2 N , such that the density of blue edges between A and
B is at least 1− ρ. Note that there exists A′ ⊆ A such that |A′| ≥ ρ|A| and, for each v ∈ A′, the blue
degree dB(v) of v in B is at least (1− 2ρ)|B|. Otherwise, the density of edges between A and B would
be less than 1− ρ.

Applying Lemma 4.2, we see that, provided ρ ≥ 64 log t1/t1 and t1 ≥ 16 (both of which hold for
ρ ≥ 16

√
log t/t), we may partition the vertex set of H ′1 into two vertex sets V1 and V2 so that, for

i = 1, 2, ∣∣∣∣|Vi| − t1
2

∣∣∣∣ ≤ 2
√
t1

11



and, since ∆1 is the maximum degree of H ′1, the maximum degree of any vertex of H ′1 into H ′1[Vi] is
at most

∆1

2
+ 2
√

∆1 log t1.

Assume, without loss of generality, that |V1| ≤ |V2|. Note that, for ρ ≥ 64/t, t1 ≥ 64 and therefore
2
√
t1 ≤ t1/4. This implies that t1/4 ≤ |Vi| ≤ 3t1/4. Also, by assumption, ∆1 ≤ ρt1 + log(2t/t1)

log(2/ρ) ρt1.
Therefore, since this expression is at most 2ρt1, the maximum degree ∆(H ′1[Vi]) of H ′1[Vi] satisfies

∆(H ′1[Vi]) ≤
ρt1
2

+
1
2

log(2t/t1)
log(2/ρ)

ρt1 + 2
√

2ρt1 log t1

≤ ρt1
2

+
log(13t/6t1)

log(2/ρ)
ρt1
2
≤ ρt1

2

(
1 +

log(13t/8|Vi|)
log(2/ρ)

)
.

The second line follows since, for t1 ≥ ρt and ρ ≥ 60 log3/2 t/
√
t,

2
√

2ρt1 log t1 ≤ 2
√

2ρt1 log t ≤ log(13/12)
log(2/ρ)

ρt1
2
.

Noting that t1
2 ≤ |Vi|+ 2

√
t1, we have

∆(H ′1[Vi]) ≤ ρ|Vi|
(

1 +
log(13t/8|Vi|)

log(2/ρ)

)
+ 4ρ

√
t1

≤ ρ|Vi|
(

1 +
log(7t/4|Vi|)

log(2/ρ)

)
,

since, for t1 ≥ ρt and ρ ≥ 215 log2 t/t,

4ρ
√
t1 ≤ ρ

t1
4

log(14/13)
log(2/ρ)

≤ ρ|Vi|
log(14/13)
log(2/ρ)

.

We will now show that A′ contains either a red copy of H ′2 or a blue copy of H ′1[V1]. Indeed, note
that (

4
5 t1 + t2

ρ2t

)−40ρt

|A′| ≥ 1
4
ρ2ρt2+1t−2

2 2500(t1+t2)ρ log(2/ρ)

≥ ρ

4t22
2123ρ log(2/ρ)t12500( 3

4
t1+t2)ρ log(2/ρ)

≥ 2500( 3
4
t1+t2)ρ log(2/ρ).

The final line follows since, for ρ ≥ 2
√

log t/t, we have 2ρ log(2/ρ)t1 ≥ 4t22/ρ. Therefore,

|A′| ≥ 2500( 3
4
t1+t2)ρ log(2/ρ)

(
4
5 t1 + t2

ρ2t

)40ρt

> 2500( 3
4
t1+t2)ρ log(2/ρ)

(
3
4 t1 + t2

ρ2t

)40ρt

By induction, since |V1| ≤ 3
4 t1 and H ′1[V1] has maximum degree less than

ρ|V1|
(

1 +
log(2t/|V1|)

log(2/ρ)

)
12



the graph contains either a red copy of H ′2 or a blue copy of H ′1[V1]. Note that if 3
4 t1 is smaller than

ρt, we are still fine, since t2 ≥ ρt and, therefore,(
3
4 t1 + t2

ρ2t

)40ρt

≥ 240ρ log(1/ρ)t ≥ r(Kρt,Kt).

If A′ contains a red copy of H ′2, we are done. We therefore assume that A′ contains at least one blue
copy of H ′1[V1]. Let the vertex set of this copy of H ′1[V1] be S.

By choice, every element of A′ has blue degree at least (1− 2ρ)|B| in B. Hence, the blue density
between S and B is at least 1− 2ρ. Let l =

(
1− log(15/14)

2 log(2/ρ)

)
|S|. We are going to count the number of

blue copies of the bipartite graph K1,l, where the single vertex lies in B and the collection of l vertices
lies in S.

Let dS(v) be the degree of a vertex v from B in S. Note, by convexity, that the number of K1,l is
at least ∑

v∈B

(
dS(v)
l

)
≥ |B|

( 1
|B|
∑

v∈B dS(v)
l

)
≥ |B|

(
(1− 2ρ)|S|

l

)
.

Note that |S| − l = log(15/14)
2 log(2/ρ) |S| and log(15/14) ≥ 1/12. Therefore,

(
(1− 2ρ)|S|

l

)
/

(
|S|
l

)
=

l−1∏
i=0

(
(1− 2ρ)|S| − i
|S| − i

)
≥

l−1∏
i=0

(
1− 2ρ|S|
|S| − i

)
≥ (1− 48ρ log(2/ρ))l.

Therefore, since l ≤ t1, ρ ≤ 1
96 and, for 0 ≤ x ≤ 1

2 , we have 1− x ≥ 2−2x,(
4
5 t1 + t2

ρ2t

)−40ρt

|B|
((1−2ρ)|S|

l

)(|S|
l

) ≥ 1
4
ρ2ρt2t−2

2 (1− 48ρ log(2/ρ))t12500(t1+t2)ρ log(2/ρ)

≥ 1
4
ρ2ρt2t−2

2 2−96ρ log(2/ρ)t12500(t1+t2)ρ log(2/ρ)

≥ t−2
2 22ρ log(2/ρ)t1−22500( 4

5
t1+t2)ρ log(2/ρ)

≥ 2500( 4
5
t1+t2)ρ log(2/ρ).

The last line follows since, for 1√
t
≤ ρ ≤ 1

8 , we have 22ρ log(2/ρ)t−2 ≥ 28
√
t−2 ≥ t2. There is, therefore,

some subset T of S, with size (1 − log(15/14)
2 log(2/ρ) )|S| such that at least 2500( 4

5
t1+t2)ρ log(2/ρ)

( 4
5
t1+t2
ρ2t

)40ρt

vertices in B are connected to each element of T in blue. The set T contains a subgraph K of H ′1[V1].
Let L be the induced subgraph of H ′1 on the complementary vertex set to K. Note that L includes
H ′1[V2] as a subgraph. By the choice of H, since, provided ρ ≥ 96 log t/

√
t,

|S\T | ≥ |S|
24 log(2/ρ)

≥ t1
96 log(2/ρ)

≥ ρt

96 log(2/ρ)
≥
√
t,

there exist at most
√
t exceptional vertices inH ′1 with more than 2ρ|S\T | neighbours in S\T . Moreover,

since every vertex in H ′1 has degree at most

ρ|V2|
(

1 +
log(7t/4|V2|)

log(2/ρ)

)
13



in H ′1[V2] and |V1| ≤ |V2|, the degree in L of the non-exceptional vertices is at most

ρ|V2|
(

1 +
log(7t/4|V2|)

log(2/ρ)

)
+ 2ρ|S\T | ≤ ρ|V2|

(
1 +

log(7t/4|V2|)
log(2/ρ)

)
+ 2ρ|V1|

log(15/14)
2 log(2/ρ)

≤ ρ|V2|
(

1 +
log(15t/8|V2|)

log(2/ρ)

)
.

Note now that the vertex set V (L) of L has size

V (L) = |V2|+ |V1|
log(15/14)
2 log(2/ρ)

≤ |V2|
(

1 +
log(15/14)
2 log(2/ρ)

)
≤ 16

15
|V2|.

Therefore, the degree in L of the non-exceptional vertices is at most

ρ|V (L)|
(

1 +
log(2t/|V (L)|)

log(2/ρ)

)
.

Note also, since |V2| ≤ 3
4 t1, that |V (L)| ≤ 16

15 |V2| ≤ 4
5 t1.

Since there are at most
√
t exceptional vertices, we may apply the induction hypothesis with

s1 = |V (L)| and s2 = t2 to conclude that

r(L,H ′2) ≤ 2500( 4
5
t1+t2)ρ log(2/ρ)

(
4
5 t1 + t2

ρ2t

)40ρt

.

Now, recall that there is a set B′ of vertices in B such that

|B′| ≥ 2500( 4
5
t1+t2)ρ log(2/ρ)

(
4
5 t1 + t2

ρ2t

)40ρt

and, for every x ∈ T and y ∈ B′, the edge xy is blue. Therefore, B′ contains either a blue copy of L
or a red copy of H ′2. In the latter case we are done, so we assume that there is a blue copy of L. But
the set T , to which it is joined exclusively by blue edges, contains a blue copy of its complement K in
H ′1. We therefore have a blue copy of H ′1. 2

5 Conclusion

The most obvious question that remains open is the first we asked. That is, given a graph H on t

vertices with density 1/2, show that its Ramsey number is smaller than (4 − ε)t for some positive ε.
More generally, we have the following problem.

Problem 5.1 For every δ > 0, show that there is ε > 0 such that any graph H of density 1−δ satisfies
r(H) ≤ (4− ε)t.

A second problem, which affects much of the recent work in Ramsey theory, is that our proofs do
not extend to cover the multicolour case. We fully believe that Theorems 1.1 and 1.5 should extend
to the multicolour case, but it seems that a fundamentally new idea will be necessary to get anywhere
near.
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Problem 5.2 Extend Theorems 1.1 and 1.5 to the multicolour case.

It is natural also to try and suggest that the results of this paper be generalised to hypergraphs.
It seems unlikely, however, that such a generalisation is true. Indeed, in [3], the author, together with
Fox and Sudakov, has shown that there are 3-uniform hypergraphs on n vertices whose density tends
to zero as n gets large but whose 4-colour Ramsey number is at least 22cn

. Up to the constant c, this
is the same as the Ramsey number of the complete graph on n vertices. While this does not rule out
some sort of miracle in the 2-colour case, it does seem to make the possibility unlikely.
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[5] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935),
463–470.
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