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Abstract

We show that in every two-colouring of the edges of the complete graph KN there is a monochro-
matic Kk which can be extended in at least (1 +ok(1))2−kN ways to a monochromatic Kk+1. This
result is asymptotically best possible, as may be seen by considering a random colouring. Equiva-

lently, defining the book B
(k)
n to be the graph consisting of n copies of Kk+1 all sharing a common

Kk, we show that the Ramsey number r(B
(k)
n ) = 2kn + ok(n). In this form, our result answers

a question of Erdős, Faudree, Rousseau and Schelp and establishes an asymptotic version of a
conjecture of Thomason.

1 Introduction

The Ramsey number r(H) of a graph H is the smallest natural number N such that every two-

colouring of the edges of the complete graph KN contains a monochromatic copy of H. The problem

of determining Ramsey numbers is notoriously hard. For instance, when H is a complete graph, work

of Erdős and Szekeres [8, 12] in the 1930s and 40s showed that
√

2
t ≤ r(Kt) ≤ 4t, but the only

improvements to these bounds since that time [3, 24] have been to lower order terms.

We investigate the Ramsey numbers of books, a study which bears close relation to the problem of

determining r(Kt). The book B
(k)
n is the graph consisting of n copies of Kk+1, all sharing a common

Kk. Embracing the metaphor, we refer to the common Kk as the spine of the book and the n points

completing each copy of Kk+1 as the pages or leaves.

The Ramsey problem for these books was first studied by Erdős, Faudree, Rousseau and Schelp [10]

and then by Thomason [25]. Both papers contain bounds of the form

2kn+ ok(n) ≤ r(B(k)
n ) ≤ 4kn,

where the lower bound follows from considering the random graph G(n, 1/2) and the upper bound

from a standard neighbourhood chasing argument. In their paper, Erdős et al. asked whether one of

these bounds might be asymptotically correct and Thomason conjectured that the lower bound is. In

fact, he made a very precise conjecture about the value of r(B
(k)
n ), namely, that

r(B(k)
n ) ≤ 2k(n+ k − 2) + 2.

For k = 2, this conjecture is known to hold [23] and is tight for infinitely many values of n. The

main contribution of this paper is a proof of an approximate version of Thomason’s conjecture, thus

answering the question of Erdős et al. (see also [21]).
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Theorem 1 For every natural number k,

r(B(k)
n ) = 2kn+ ok(n).

To see something of why this is interesting, suppose that we have a red/blue-colouring of KN with no

monochromatic copy of Kt. Then this colouring contains no monochromatic book B
(k)
n with n equal to

the off-diagonal Ramsey number r(Kt−k,Kt). Indeed, suppose that the book is red. If the set induced

by the pages contains a blue Kt, we have a contradiction, so it must contain a red Kt−k. But together

with the red spine Kk, this forms a red Kt. Hence, by Theorem 1, if t, and therefore n, is sufficiently

large in terms of k, we have

r(Kt) ≤ r(B(k)
n ) ≤ 2k+1r(Kt−k,Kt) ≤ 2k+1

(
2t− k
t− k

)
,

where the last inequality follows from a classical estimate of Erdős and Szekeres [12]. In particular,

if the theorem applied for t linear in k, this would give an exponential improvement on the upper

bound for diagonal Ramsey numbers. Unfortunately, our Theorem 1 is very far from achieving this

goal, since in order to obtain an error term of the form εn we require n to be at least a tower of twos

whose height is a function of k and 1/ε.

Another motivation for Theorem 1 is its relation to a well-known, but false, conjecture of Erdős [9]

(see also [2]) asserting that every two-colouring of the edges of KN contains at least

(1 + ok(1))21−(k2)
(
N

k

)
monochromatic copies of Kk. That is, he conjectured that a random colouring should asymptotically

minimise the number of monochromatic copies of Kk. While true for k = 3 by a result of Goodman [16],

this conjecture was disproved for k ≥ 4 by Thomason [26]. However, Theorem 1 is equivalent to a

local version of Erdős’ conjecture, saying that there is some monochromatic copy of Kk−1 which is

contained in asymptotically as many monochromatic Kk as in a random colouring. In some ways, this

interpretation is more appealing than the original formulation in terms of books. It also connects our

result with the study of Ramsey multiplicity, which has drawn considerable attention in recent years

(see, for instance, [4, 7, 13, 19, 20]).

2 Preliminaries

In this section, we collect several results that we will need for the proof of Theorem 1.

2.1 Regularity and counting lemmas

One of the main ingredients in our proof is a simple corollary of Szemerédi’s regularity lemma. To

state this fundamental result, we first recall some standard definitions. Given two vertex sets U and

V in a graph, the density d(U, V ) between them is given by d(U, V ) = e(U, V )/|U ||V |. A bipartite

graph between two vertex sets U and V is said to be ε-regular if, for all sets U ′ ⊆ U , V ′ ⊆ V with

|U ′| ≥ ε|U | and |V ′| ≥ ε|V |, |d(U ′, V ′)− d(U, V )| ≤ ε. A partition V (G) = ∪mi=1Vi of the vertex set of

a graph G is said to be equitable if ||Vi| − |Vj || ≤ 1 for all i and j. The regularity lemma is now as

follows.
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Lemma 1 For every 0 < ε < 1 and natural number m0, there exists a natural number M such that

every graph G with at least m0 vertices has an equitable partition V (G) = ∪mi=1Vi with m0 ≤ m ≤ M

parts such that all but εm2 pairs (Vi, Vj) with 1 ≤ i 6= j ≤ m are ε-regular.

We will also need the following lemma from [5]. We say that a subset U of the vertex set of a graph

G is ε-regular if the pair (U,U) is ε-regular.

Lemma 2 For every 0 < ε < 1, there exists a constant δ such that every graph G contains an ε-regular

vertex subset U with |U | ≥ δ|V (G)|.

The key lemma we will need is the following. We note a superficial similarity to a lemma used in the

proof of the induced removal lemma [1], though that lemma requires the stronger condition that every

pair (Wi,Wj) be regular.

Lemma 3 For every 0 < η < 1 and natural number m0, there exists a natural number M such that

every graph G with at least m0 vertices has an equitable partition V (G) = ∪mi=1Vi with m0 ≤ m ≤ M

parts and subsets Wi ⊆ Vi such that Wi is η-regular for all i and, for all but ηm2 pairs (i, j) with

1 ≤ i 6= j ≤ m, (Vi, Vj), (Wi, Vj) and (Wi,Wj) are η-regular with |d(Wi, Vj) − d(Vi, Vj)| ≤ η and

|d(Wi,Wj)− d(Vi, Vj)| ≤ η.

Proof: Apply the regularity lemma, Lemma 1, to G with ε = η · δ(η), with δ as in Lemma 2. This

yields an equitable partition V (G) = ∪mi=1Vi where all but εm2 ≤ ηm2 pairs (Vi, Vj) with 1 ≤ i 6= j ≤ m
are ε-regular. Within each piece Vi, now apply Lemma 2 to find a set Wi of order at least δ(η) which is

η-regular. Note that if (Vi, Vj) is ε-regular, then, since |Wi| ≥ δ|Vi| and ε = η · δ(η), the pairs (Wi, Vj)

and (Wi,Wj) are η-regular with |d(Wi, Vj)− d(Vi, Vj)| ≤ ε ≤ η and |d(Wi,Wj)− d(Vi, Vj)| ≤ η. 2

In order to apply Lemma 3, we need a standard counting lemma (see, for example, [22, Theorem 18]).

We use the shorthand x± δ to indicate a quantity that lies between x− δ and x+ δ.

Lemma 4 For any δ > 0 and any natural number k, there is η > 0 such that if U1, . . . , Uk are (not

necessarily distinct) vertex sets with (Ui, Ui′) η-regular of density di,i′ for all 1 ≤ i < i′ ≤ k, then there

are ∏
i<i′

di,i′
k∏

i=1

|Ui| ± δ
k∏

i=1

|Ui|

copies of Kk with vertex i in Ui for each 1 ≤ i ≤ k.

In practice, we will always use this lemma in the following form.

Lemma 5 For any δ > 0 and any natural number k, there is η > 0 such that if U1, . . . , Uk,

Uk+1, . . . , Uk+` are (not necessarily distinct) vertex sets with (Ui, Ui′) η-regular of density di,i′ for

all 1 ≤ i < i′ ≤ k and 1 ≤ i ≤ k < i′ ≤ k + ` and di,i′ ≥ δ for all 1 ≤ i < i′ ≤ k, then there is a copy

of Kk with vertex i in Ui for each 1 ≤ i ≤ k which is contained in at least

∑̀
j=1

(
k∏

i=1

di,k+j − δ

)
|Uk+j |

copies of Kk+1 with vertex k + 1 in ∪`j=1Uk+j.
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Proof: By Lemma 4 applied with δ′ = δ(
k
2)+1/2 instead of δ, there exists η0 = η(δ′, k) such that the

number of copies of Kk with vertex i in Ui for each 1 ≤ i ≤ k is at most

∏
1≤i<i′≤k

di,i′
k∏

i=1

|Ui|+ δ′
k∏

i=1

|Ui|.

Moreover, by repeated application of Lemma 4 with k + 1 parts, there exists η1 = η(δ′, k + 1) such

that the number of copies of Kk+1 with vertex i in Ui for each 1 ≤ i ≤ k and vertex k+ 1 in ∪`j=1Uk+j

is at least ∑̀
j=1

k∏
i=1

di,k+j |Uk+j |
∏

1≤i<i′≤k
di,i′

k∏
i=1

|Ui| − δ′
∑̀
j=1

|Uk+j |
k∏

i=1

|Ui|.

Therefore, for η = min(η0, η1), there must be some Kk which is in at least

∑`
j=1

∏k
i=1 di,k+j |Uk+j |

∏
1≤i<i′≤k di,i′ − δ′

∑`
j=1 |Uk+j |∏

1≤i<i′≤k di,i′ + δ′
≥

∑`
j=1

(∏k
i=1 di,k+j − δ−(k2)δ′

)
|Uk+j |

1 + δ−(k2)δ′

≥
∑̀
j=1

(
k∏

i=1

di,k+j − δ

)
|Uk+j |

copies of Kk+1, as required. 2

2.2 A coloured extremal result

We will need a coloured version of the celebrated Erdős–Stone theorem [11]. Recall that a blow-up

of a graph H is a graph where each vertex of H is replaced by a vertex set and the bipartite graph

between two such vertex sets is complete whenever the corresponding vertices are joined by an edge.

Lemma 6 For any natural numbers k and t and any δ > 0, there exists a natural number n0 such

that if the edges of the complete graph on n ≥ n0 vertices are coloured in red and blue, then, provided

the blue density is at least 1− 1
k−1 + δ, there is a blue blow-up of Kk with t vertices in each part, where

each part is itself a monochromatic clique.

Proof: Since the blue density is at least 1− 1
k−1 +δ, the Erdős–Stone theorem implies that for n ≥ n0

there is a blue blow-up of Kk with at least r(Kt) vertices in each part. Applying Ramsey’s theorem

within each part then gives the required monochromatic cliques. 2

In practice, we will use a slight variant of this lemma, where the underlying graph is not necessarily

complete.

Lemma 7 For any natural numbers k and t and any δ > 0, there exists a natural number n1 and

ε > 0 such that if the edges of a graph on n ≥ n1 vertices with (1 − ε)
(
n
2

)
edges are coloured in red

and blue, then, provided the blue density is at least 1 − 1
k−1 + δ, there is a blue blow-up of Kk with t

vertices in each part, where each part is itself a monochromatic clique.
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Proof: Suppose first that the ε
(
n
2

)
missing edges are coloured blue, so that the underlying graph is

complete. Then, by Lemma 6, every subset of the graph of order n0 contains the required blow-up of

Kk with monochromatic parts of order t. But then, for n sufficiently large in terms of n0, there must

be at least (
n

n0

)
/

(
n− kt
n0 − kt

)
=

(
n

kt

)
/

(
n0
kt

)
≥ nkt

2nkt0

such blow-ups of Kk. However, at most εn2 ·nkt−2 = εnkt such copies contain an edge from the missing

set. Therefore, for ε < 1/2nkt0 , we must have the required blue blow-up of Kk with at least t vertices

in each part, where each part is a monochromatic clique. 2

2.3 Some technical lemmas

The proof requires a small degree of optimisation, almost all of which is contained in the following two

lemmas.

Lemma 8 For each i = 1, . . . , k, let xi be a real number between 0 and t. Then

1

k

k∑
i=1

(t− xi)k +
k∏

i=1

xi ≥ 2(t/2)k.

Proof: As the result is easily checked for k = 2, 3 and 4, we can assume without loss of generality

that k ≥ 5. Moreover, since (t − t/k)k > 2(t/2)kk for all k ≥ 5, we may assume that none of the xi
are less than t/k.

We claim that the minimum value of
∑

i(t − xi)k subject to the constraint
∏

i xi = z, and assuming

xi ≥ t/k for all i, occurs when all the xi are equal to z1/k. To see this, make the substitution xi = eyi .

The problem then becomes to minimise
∑k

i=1(t− eyi)k subject to the constraint
∑k

i=1 yi = log z. But

the function (t − ey)k is easily seen to be a convex function of y for t/k ≤ ey ≤ t. Therefore, the

minimum occurs when all of the eyi and, hence, all of the xi are equal.

Substituting xi = z1/k for all i, it simply remains to minimise f(z) = (t − z1/k)k + z on the interval

[0, tk]. But f ′(z) = −(t− z1/k)k−1z−(k−1)/k + 1, which equals 0 precisely when z = (t/2)k. Hence, the

minimum value of f(z) is 2(t/2)k, as required. 2

Lemma 9 Suppose that k ≤ ` and, for each i = 1, . . . , `, let xi be a real number between 0 and 1.

Then ∑
1≤i1<···<ik≤`

k∏
j=1

xij ≥
(∑

i xi
k

)
.

Proof: Suppose that
∑

i xi = c and we wish to minimise the left-hand side of the required inequality

under this constraint. We claim that the minimum occurs when all but one of the xi equal 0 or 1,

that is, bcc of the xi are 1, one is {c} = c− bcc and the rest are 0.

Suppose instead that x1 and x2, say, are both different from 0 and 1. Then x1x2 = x1(c−
∑k

i=3 xi−x1),
which has the form −x21+Bx1, where B is a function of x3, . . . , xk and hence constant if these variables

are held constant. But such a polynomial is minimised when x1 is either as large or as small as possible
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within its allowed range. Hence, if x1 and x2 = c −
∑k

i=3 xi − x1 are both different from 0 and 1,

we may vary x1, keeping all xi with 3 ≤ i ≤ k fixed, to make x1x2, and thus
∏k

i=1 xi, smaller. This

contradiction proves the claim, so

∑
1≤i1<···<ik≤`

k∏
j=1

xij ≥
(
bcc
k

)
+ {c}

(
bcc
k − 1

)
≥
(
c

k

)
.

To establish the final inequality, suppose that X is a random subset of a (bcc+ 1)-element set, where

the first element is chosen with probability {c} and all other elements with probability 1. The expected

number of subsets of size k in this random set is then(
bcc
k

)
+ {c}

(
bcc
k − 1

)
.

But it is also equal to

(1− {c})
(
bcc
k

)
+ {c}

(
bcc+ 1

k

)
,

which by convexity of
(
x
k

)
is at least

(
c
k

)
. 2

3 Proof of Theorem 1

Suppose that we have a red/blue-colouring of the edges of the complete graph on N = (2k + ε)n

vertices. Assume that η is taken sufficiently small and m0 sufficiently large in terms of k and ε and

apply Lemma 3 with η and m0 to the red subgraph to obtain an equitable partition ∪mi=1Vi of the vertex

set [N ] with m ≥ m0 and subsets Wi ⊆ Vi such that Wi is η-regular for all i and, for all but ηm2 pairs

(i, j) with 1 ≤ i 6= j ≤ m, (Vi, Vj), (Wi, Vj) and (Wi,Wj) are η-regular with |d(Wi, Vj)− d(Vi, Vj)| ≤ η
and |d(Wi,Wj) − d(Vi, Vj)| ≤ η, where d(U, V ) measures the red density between vertex sets U and

V . Because the colours are complementary, the same conclusion holds for the blue subgraph. For

convenience of notation, we will assume below that all Vi have precisely the same order N/m.

We now form a coloured reduced graph with vertex set v1, . . . , vm. To each vi, we assign a colour

ci, either red or blue, depending on which colour has the higher density inside Wi, breaking ties

arbitrarily. By the pigeonhole principle, at least m/2 of the ci are the same colour, say red. We now

colour the edges of the reduced graph, leaving an edge uncoloured if (Wi, Vj), (Vi, Vj) and (Wi,Wj)

are not all η-regular with |d(Wi, Vj)−d(Vi, Vj)| ≤ η and |d(Wi,Wj)−d(Vi, Vj)| ≤ η. Otherwise, we fix

a constant δ (which will be taken sufficiently small in terms of k and ε) and colour the edge vivj red

if the red density between Vi and Vj is at least 1 − δ and blue if the blue density is at least δ, again

breaking ties arbitrarily. Note that there are at most ηm2 ordered pairs (i, j) whose corresponding

edge is uncoloured. Therefore, by deleting at most
√
ηm vertices, we may assume that each vertex

is adjacent to at most
√
ηm uncoloured edges. In what follows, when referring to the reduced graph,

we will assume that these vertices have been removed. Note that at least s = d(1/2 −√η)me of the

remaining vertices have colour red.

Suppose now that there is a red vertex va in the reduced graph which has degree at least ` := 2−km

in red, with neighbours vb1 , . . . , vb` . Since the density of red edges in Wa is at least 1/2, we may apply

Lemma 5 with U1 = · · · = Uk = Wa and Uk+j = Vbj for j = 1, . . . , ` to conclude that, for η sufficiently
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small in terms of δ, there is a red Kk which is contained in at least

∑̀
j=1

(d(Wa, Vbj )
k − δ)|Vbj | ≥ ((1− δ − η)k − δ)`N

m
= ((1− δ − η)k − δ)2−kN

red Kk+1. Provided η and δ are sufficiently small in terms of k and ε, this quantity is at least n, so we

obtain the required book B
(k)
n . We may therefore assume that we are in the other case, where every

red vertex in the reduced graph has blue degree at least m− `− 2
√
ηm ≥ (1− 2−k − 2

√
η)m.

The degree of each red vertex is therefore at least (1 − 2−k − 2
√
η)m in blue. If we restrict to a

set S consisting of s of the red vertices, the blue degree of each vertex inside this set is at least

s− (2−k + 2
√
η)m ≥ (1− 2−(k−1) − 16

√
η)s. Since 1− 2−(k−1) − 16

√
η > 1− (k − 1)−1 + β for some

β > 0 depending only on k and the number of uncoloured edges is at most ηm2 ≤ 8ηs2, Lemma 7

implies that for m sufficiently large and η sufficiently small in terms of k and t, where t is a constant

to be fixed below, the reduced graph contains a blue blow-up of Kk with at least t vertices in each

part, where each part is itself a monochromatic clique.

We now claim that none of these monochromatic cliques can be blue. Indeed, suppose otherwise and

C is a blue clique of order t. If any of the vertices in C, say va, is such that
∑

j d(Wa, Vj) ≥ 1
2m, where

the sum is taken over all j such that (Wa, Vj) is η-regular, then we have

∑
j

d(Wa, Vj)
k ≥ m

(∑
j d(Wa, Vj)

m

)k

≥ 2−km.

Again, since the density of red edges in Wa is at least 1/2, we may apply Lemma 5 with U1 = · · · =
Uk = Wa and Uk+j equal in turn to each of the Vj for which (Wa, Vj) is η-regular to conclude that,

for η sufficiently small in terms of δ, there is a red Kk which is contained in at least∑
j

(d(Wa, Vj)
k − δ)|Vj | ≥ (2−k − δ)N

red Kk+1. Provided η and δ are sufficiently small in terms of k and ε, this quantity is at least n, so

we again obtain the required book B
(k)
n .

Therefore, writing d(U, V ) for the blue density between sets U and V , we must have
∑

j d(Wa, Vj) ≥
(12 − 2

√
η)m for all va ∈ C, where the sum is now over all j such that vj is in the reduced graph.

Writing dC(Vj) =
∑

va∈C d(Wa, Vj), we see, by applying Lemma 9 and summing over all j such that

vj is in the reduced graph, that

∑
j

∑
(a1,...,ak)∈(Ck)

k∏
i=1

d(Wai , Vj) ≥
∑
j

(
dC(Vj)

k

)
≥ m

(∑
j dC(Vj)/m

k

)
.

Therefore, since
∑

j dC(Vj) ≥ 1
2(1− 4

√
η)m|C|, we have, for t = |C| ≥ (1 + ξ)k/(ξ − 4

√
η), that

∑
j

∑
(a1,...,ak)∈(Ck)

k∏
i=1

d(Wai , Vj) ≥
(1

2(1− 4
√
η)|C|

k

)
≥
(

1

2
(1− ξ)

)k (|C|
k

)
≥ 2−k(1− kξ)

(
|C|
k

)
,
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where we used that 1
2(1− 4

√
η)|C| − i ≥ 1

2(1− ξ)(|C| − i) for 0 ≤ i ≤ k. Hence, there exists a choice

of a1, . . . , ak such that ∑
j

k∏
i=1

d(Wai , Vj) ≥ 2−k(1− kξ)m.

Since, in the reduced graph, each vai has at most
√
ηm neighbours vj such that (Wai , Vj) is not

η-regular, if we now sum only over those j such that (Wai , Vj) is η-regular for all i, we have that

∑
j

k∏
i=1

d(Wai , Vj) ≥ 2−k(1− kξ)m− k√ηm.

We now apply Lemma 5 with Ui = Wai for each 1 ≤ i ≤ k and Uk+j equal in turn to each Vj with

(Wai , Vj) η-regular for all 1 ≤ i ≤ k to conclude that, for η sufficiently small in terms of δ, there is a

blue Kk which is contained in at least

∑
j

(
k∏

i=1

d(Wai , Vj)− δ)|Vj | ≥ (2−k(1− kξ)− k√η − δ)N

blue Kk+1. Provided η, δ and ξ are sufficiently small (and t is sufficiently large) in terms of k and ε,

this quantity is again at least n.

This completes the proof of the claim. We may therefore assume that all of the cliques are red and

focus on the subgraph of the reduced graph consisting of the k red cliques C1, . . . , Ck, each of order t,

where every edge between Ci and Cj with i 6= j is blue.

Now, for each vertex v in the reduced graph, let ei(v) be the weighted blue degree of v in each Ci.

That is, ei(v) =
∑

w∈Ci
d(v, w). By Lemma 8, 1

k

∑
v

∑
i(t− ei(v))k +

∑
v

∏
i ei(v) ≥ 2(t/2)km′, which

implies that either
∑

v

∑
i(t− ei(v))k ≥ (t/2)kkm′ or

∑
v

∏
i ei(v) ≥ (t/2)km′, where m′ = (1−√η)m.

In the second case, we see that there must exist a choice of vertices vc1 , . . . , vck with vci ∈ Ci such that

∑
j

k∏
i=1

d(Wci , Vj) ≥
∑

j

∑
c1,...,ck

∏
i d(Wci , Vj)

tk
=

∑
j

∏
i(
∑

ci∈Ci
d(Wci , Vj))

tk
=

∑
v

∏
i ei(v)

tk
≥ 2−km′.

Since there are at most k
√
ηm vertices vj such that (Wci , Vj) is not η-regular for all 1 ≤ i ≤ k, we may

apply Lemma 5 with Ui = Wci for i = 1, . . . , k and Uk+j equal in turn to each Vj such that (Wci , Vj)

is η-regular for each 1 ≤ i ≤ k to conclude that, for η sufficiently small in terms of δ, there is a blue

Kk which is contained in at least

∑
j

(

k∏
i=1

d(Wci , Vj)− δ)|Vj | ≥ (2−k(1−√η)− k√η − δ)N

blue Kk+1, again giving the required book for η and δ sufficiently small in terms of k and ε.

In the first case, there exists a Cr such that
∑

v(t − er(v))k ≥ (t/2)km′. There must therefore exist

(not necessarily distinct) vertices d1, . . . , dk ∈ Cr such that

∑
j

k∏
i=1

d(Wdi , Vj) ≥
∑

j

∑
d1,...,dk

∏
i d(Wdi , Vj)

tk
=

∑
j(
∑

d∈Cr
d(Wd, Vj))

k

tk
=

∑
v(t− er(v))k

tk
≥ 2−km′.
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If we again remove the at most k
√
ηm vertices vj such that (Wdi , Vj) is not η-regular for all 1 ≤ i ≤ k,

we may apply Lemma 5 with Ui = Wdi for i = 1, . . . , k and Uk+j equal in turn to each Vj such that

(Wdi , Vj) is η-regular for each 1 ≤ i ≤ k to conclude that, for η sufficiently small in terms of δ, there

is a red Kk which is contained in at least

∑
j

(
k∏

i=1

d(Wdi , Vj)− δ)|Vj | ≥ (2−k(1−√η)− k√η − δ)N

red Kk+1, giving the required book in this final case provided η and δ are again small enough in terms

of k and ε. This completes the proof.

4 Concluding remarks

One obvious question is whether a multicolour analogue of Theorem 1 might hold. This is certainly not

the case when the number of colours is large. To see this, we use the fact that there exist q-colourings

of the complete graph on vertex set {1, 2, . . . , 2qk/4} with no monochromatic Kk (see, for example, [6,

Section 2.1]). Fix such a colouring χ. We consider the (q+1)-coloured complete graph whose vertex set

is split into t = 2qk/4 vertex sets V1, . . . , Vt, each of order n, where every edge between Vi and Vj receives

the colour χ(i, j) and edges internal to any Vi all receive a (q + 1)st colour. This colouring contains

no monochromatic B
(k)
n , so the (q + 1)-colour Ramsey number r(B

(k)
n ; q + 1) ≥ 2qk/4n, far greater

than the (q+ 1)kn bound one might hope for. More generally, we have r(B
(k)
n ; q+ 1) ≥ (r(k; q)− 1)n,

so, if true, the problem of showing that r(B
(k)
n ; 3) ≤ 3kn + ok(n) is at least as hard as showing that

r(k) ≤ 3k+o(k).

It is also tempting to generalise Theorem 1 to hypergraphs. To this end, we define B
(k,s)
n to be the s-

uniform hypergraph consisting of n copies of K
(s)
k+1, all sharing a common K

(s)
k . The natural conjecture

would then be that

r(B(k,s)
n ) = 2( k

s−1)n+ ok,s(n).

However, this is false for s ≥ 4. To see this, suppose that s ≥ 3, k is a multiple of s and there is

a 2-colouring χ of the s-uniform hypergraph on vertex set {1, 2, . . . , r − 1} with no monochromatic

K
(s)
k/s. Consider the complete s-uniform hypergraph whose vertex set is split into r − 1 vertex sets

V1, . . . , Vr−1, each of order n. To colour this hypergraph, suppose that {v1, . . . , vs} is an edge and

vj ∈ Vij for all 1 ≤ j ≤ s. If the ij are all distinct, we colour the edge by χ(i1, . . . , is) and if the ij
are all the same, we colour the edge red. Otherwise, we colour the edge blue. Since the colouring χ

contains no monochromatic K
(s)
k/s, at least s elements of the spine of any monochromatic B

(k,s)
n are

contained in the same set Vi. But this implies that the book must be red and, therefore, entirely

contained within Vi, which is not large enough to contain it, a contradiction. Since we may take r to

be r(K
(s)
k/s), this implies that

r(B(k,s)
n ) ≥ (r(K

(s)
k/s)− 1)n.

The value of r(K
(s)
k ) is known to be at least an (s− 2)-fold exponential in k (see, for example, [6]), so

this disproves the conjecture for s ≥ 4. The s = 3 case remains unresolved, though a negative answer

would again follow from improved lower bounds for r(K
(3)
k ).

As a final remark, we note that there is a strong analogy between Theorem 1 and Green’s popular

progression theorem [17] (see also [18]). This says that for every ε > 0 there exists n0 such that
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if n ≥ n0 and A is a subset of {1, 2, . . . , n} of size αn, then there is d 6= 0 such that A contains

at least (α3 − ε)n arithmetic progressions of length 3 with common difference d. That is, there are

asymptotically at least as many arithmetic progressions of length 3 in A with common difference d as

there would be in a random subset of {1, 2, . . . , n} of the same size. A surprising recent result of Fox,

Pham and Zhao [14, 15] says that n0 grows as a tower-type function of ε, showing that an application

of the (arithmetic) regularity lemma in Green’s proof is in some sense necessary. It would be very

interesting if a similar phenomenon held for our result, though this seems unlikely to the author.
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[19] H. Hatami, J. Hladký, D. Král’, S. Norine and A. Razborov, Non-three-colorable common graphs

exist, Combin. Probab. Comput. 21 (2012), 734–742.
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