
A new upper bound for the bipartite Ramsey problem

David Conlon∗

Abstract

We consider the following question: how large does n have to be to guarantee that in any
two-colouring of the edges of the complete graph Kn,n there is a monochromatic Kk,k? In the
late seventies, Irving [5] showed that it was sufficient, for k large, that n ≥ 2k−1(k−1)−1. Here
we improve upon this bound, showing that it is sufficient to take

n ≥ (1 + o(1))2k+1 log k,

where the log is taken to the base 2.

1 Introduction

One of the classic questions of graph theory is to determine accurate bounds on the Ramsey
number r(k), the smallest number n such that, in any two-colouring of the complete graph on
n vertices, there is guaranteed to be a clique of size k all of whose edges are the same colour. It
is only known ([7], [2]) that
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and it seems unlikely at present that either of these bounds can be significantly improved (an
improvement of the exponentiated constant in either bound would be a major result).

The most natural bipartite analogue of this problem, introduced by Beineke and Schwenk
[1], is to determine b(k), which we define to be the smallest number n such that, in any two-
colouring of the bipartite graph Kn,n, there is guaranteed to be a monochromatic biclique Kk,k.
The known bounds in this case ([4], [5]) are, for k ≥ 21,
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≤ b(k) < 2k−1(k − 1).

While the proof of the lower bound is, like Spencer’s lower bound [7] for ordinary Ramsey
numbers, an application of the Lovász Local Lemma, the upper bound, due to Irving [5], is
proved in a very different fashion to its counterpart. Indeed, the only Ramsey property that
is necessary for the proof is the fact that one or other of the colour classes has density greater
than 1

2 , and from there on the proof is that of a Turán-type theorem (or, as such theorems are
usually called in the bipartite setting, a Zarankiewicz-type theorem).

In this note we make the following improvement upon Irving’s bound:

Theorem 1

b(k) ≤ (1 + o(1))2k+1 log k,

where the log is taken to the base 2.
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The proof splits into two pieces, the first of which is to observe that in order for a two-
coloured bipartite graph Km,n to necessarily contain a monochromatic Kk,k, it is only necessary
that one of m and n be very large. The other may be as small as k2. A Turán version of this
observation is the subject of the next section. Then, in section 3, we will show how this result
may be applied to improve upon Irving’s bound.

2 The Turán argument

The following lemma, which we will need to apply twice to prove our theorem, has many
predecessors in the literature, perhaps the earliest being [6]. Note that when we say a function
is oa→∞;b,c,···(1), we mean that as a tends to infinity the function tends to 0, but in a way which
is perhaps dependent upon the parameters b, c, · · · .

Lemma 1 Let ω(r) be a function of r that tends to infinity with r and suppose that G is a
subgraph of the graph Km,n with density p, where ε ≤ p ≤ 1, for some fixed ε. Then, provided
that

m ≥ r2ω(r) and n ≥ (1 + or→∞;ω,ε(1))p−r(s− 1),

the graph G must contain a complete subgraph Kr,s.

Proof: Suppose that we have a bipartite graph Km,n, based on the two vertex sets M and N ,
which does not contain a complete Kr,s. We shall show that this cannot be the case.

To begin, note that there can be at most(
m

r

)
(s− 1)

Kr,1s (with the set of r vertices always chosen to be a subset of M), since there at most
(
m
r

)
choices for the r vertices, and each such choice can be contained in at most s − 1 subgraphs
(otherwise we would have a Kr,s).

On the other hand, the number of Kr,1s is given by

∑
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Applying Jensen’s inequality tells us that∑
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Therefore we have that
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which implies that
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Simplifying, and using the fact that m ≥ r2ω(r), we see that

n ≤ (1 + or→∞;ω,ε(1))p−r(s− 1).

But this contradicts our assumption about n, so we’re done. 2

It is worth noting that a simple probabilistic argument gives us a subgraph of Km,n, where

m = r2 and n = (1 + or→∞(1))
p−rs

e(er)r/s
,

with density p or more which contains no Kr,s. We therefore see that Lemma 1 gives quite a
good bound, especially when s is large compared with r.

3 The Ramsey argument

Note that all logs taken in this section we will be assumed to be to the base 2.

Proof: [Proof of Theorem 1] Suppose that we have a two-colouring of the edges of the complete
graph Kn,n, based on the two vertex sets M and N . Then, for each vertex in M , we may choose
an associated colour, red or blue, such that our vertex is connected by edges in this colour to
at least half the vertices of N . Let the set of vertices whose associated colours are red or blue
be MR and MB respectively. Then one of these sets, say MR, has size greater than 1

2 |M |.
Now consider the red bipartite graph (which necessarily has density greater than 1

2 ) lying
between MR and N . An application of Lemma 1, with ω(k) = log k, tells us that we can find a
red biclique Kk2 log k,k−2 log k provided that

|MR| ≥ (1 + o(1))2k−2 log kk2 log k and |N | ≥ k2 log k,

both of which are easily seen to hold true provided that n ≥ (1 + o(1))2k+1 log k.
Now, let M ′ be the set of k2 log k vertices in MR which are contained in our red biclique,

and let N ′ be the set of vertices in N which are not contained in this biclique. Consider the
induced red bipartite subgraph on the vertex sets M ′ and N ′. The degree of each vertex in M ′

is (since each such vertex is also in MR) at least

|N |
2
− (k − 2 log k),

so that the density of the induced subgraph is at least

1
2
− k

2k
.

Therefore, applying Lemma 1 to this bipartite graph, we see that since

|M ′| ≥ k2 log k and |N ′| ≥ (1 + o(1))2k+1 log k,

we can find a red Kk,2 log k. Adding the vertices in N\N ′ to this graph then produces a complete
red Kk,k, as required. 2

4 Conclusion

A more general version of the bipartite Ramsey problem is to determine b(k, l), the smallest
number n such that in any two-colouring of Kn,n there is guaranteed to be a monochromatic
Kk,l. Applying Lemma 1 in the obvious way allows us to show that, for k ≤ l,

b(k, l) ≤ (1 + ok→∞(1))2k(l − 1).
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Thomason, however, has found a different approach [8], which allows one to show that

b(k, l) ≤ 2k(l − 1) + 1.

We cannot do better than this bound in general, though we do have the following natural
analogue of Theorem 1 which does better than Thomason’s result for a fairly wide range of
values of k and l:

Theorem 2 Suppose that l ≥ k. Then

b(k, l) ≤ (1 + ok→∞(1))2k (l − k + 2 log k) ,

where the log is taken to the base 2.

The form of this result suggests a connection with the result of Füredi [3] on upper bounds
for Zarankiewicz numbers. Recall that the Zarankiewicz number z(n, n, k, l) is the maximum
number of edges that one can have in a bipartite graph, both of whose vertex sets are of size n,
without containing a Kk,l. What Füredi’s result states is that

lim
n→∞

z(n, n, k, l)
n2−1/k

≤ (l − k + 1)1/k,

improving upon the classical result, due to Kővári, Sós and Turán [6], that

lim
n→∞

z(n, n, k, l)
n2−1/k

≤ l1/k.

Our result bears the same relation to Füredi’s theorem as Irving’s bound does to that of Kővári,
Sós and Turán. However, whereas Irving’s bound (other than the extra factor of 2) can be
derived from a direct application of the latter, our result can only be derived from Füredi’s by
an appropriate reworking of his method (the error terms in the theorem itself being too large
to make it directly applicable). Although the connection only emerged after the fact, the proof
of Theorem 1 is such a reworking.
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