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Abstract
For infinitely many natural numbers n, we construct 4-colorings of [n] = {1,2,...,n}, with

equinumerous color classes, that contain no 4-term arithmetic progression whose elements are
colored in distinct colors. This result solves an open problem of Jungié et al. [JL+03], Axenovich
and Fon-der-Flaass [AF04].

1 Introduction

Throughout the paper, we will use AP(k) to denote a k-term arithmetic progression. Moreover,
a coloring of [n] will be called equinumerous if all the color classes have the same cardinality. A
famous result of van der Waerden [vW27] states that for every pair of positive integers k and r, there
exists a positive integer W := W (k, ), such that every r-coloring of integers in [W] = {1,2,..., W}
contains a monochromatic AP (k). This theorem was generalized in numerous ways [GRS90, LR03],
one being the following “density”-type theorem of Szemerédi [Sz75]: for every k € N and a real
number § > 0, there exists a positive integer N, such that every S C [N], with |S| > dN, contains
an AP(k).

In [JL4+03], Jungi¢ et al. initiated the search for a rainbow counterpart of van der Waerden’s
theorem. Namely, given positive integers k and r, what conditions on the r-coloring of [n] guarantee
a rainbow AP(k), that is, an arithmetic progression of length & all of whose elements are colored in
distinct colors? If every integer in [n] is colored by the largest power of three that divides it, then
one immediately obtains an r-coloring of [n] with r < |logsn + 1] and without rainbow AP(3).
So, while Szemerédi’s theorem states that a large cardinality in only one color class ensures the
existence of a monochromatic AP(k), one needs all color classes to be “large” to force a rainbow
AP (k).

Jungié et al. [JL+03] proved that every 3-coloring of N with the upper density of each color class
greater than 1/6 yields a rainbow AP(3). Using some tools from additive number theory, they
obtained similar (and stronger) results for 3-colorings of Z, and Z,, some of which were recently
extended by Conlon [C05]. In [JRO3] Jungi¢ and Radoi¢i¢ studied the more difficult interval case
and showed that every equinumerous 3-coloring of [n] contains a rainbow AP(3). Finally, Axenovich
and Fon-Der-Flaass cleverly combined the previous methods with some additional ideas to obtain
the following theorem, conjectured in [JL+03].

*Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, England. E-mail:
D.Conlon@dpmms . cam.ac.uk.

tDepartment of Mathematics, Simon Fraser University, Canada. E-mail: vjungic@sfu.ca.

iDepartment of Mathematics, Rutgers University, Piscataway, NJ 08854, USA. E-mail: rados@math.rutgers.edu.
Research supported by DMS-0503184



Theorem 1 [AF04]| For every n > 3, every partition of [n] into three color classes A, B, and C
with min(|A|,|B|, |C|) > r(n), where

_J n+2)/6] ifn#2 (mod6)
r(n) = { (n+4)/6 ifn=2 (mod 6) (1)

contains a rainbow AP(3).

For n # 2 (mod 6), the following coloring

A ifi=1 (mod 6)
c(i):=¢ B ifi=4 (mod 6)
C otherwise

shows that Theorem 1 is the best possible. When n = 6m + 2, m € N, the coloring ¢ shows the
tightness of Theorem 1:

A ifi<2m+1 andiis odd
c(i):=<¢ B ifi>4m+ 2 and i is even
C otherwise

Axenovich and Fon-Der-Flaass also demonstrated that for £ > 5, no matter how large the smallest
color class is, there is a k-coloring of [n] with no rainbow AP(k). Therefore, no statement similar
to Theorem 1 holds for five or more colors. Their construction goes as follows: Let n = 2mk, k > 5.
Subdivide [n] into k consecutive intervals of length 2m each, say Si,...,Sk, and let ¢t = |k/2].
Then, it is easy to see that the coloring

j ifieSjand j#t,j#At+2
c(i) =< t if i € Sy U Sy12 and i is even,
t+2 ifie S;USio and i is odd.

is equinumerous (the size of each color class is n/k) and does not contain a rainbow AP(k). Notice
that this coloring has large blocks of consecutive integers with the same color.

However, the question about the existence of equinumerous 4-colorings of [n] without rainbow
AP(4)s remained unresolved. In [AF04] a 4-coloring of [n], n = 10m + 1, with the smallest color
class of size 2m = (n — 1)/5 and no rainbow AP(4) was constructed.

In this note, we settle the question.

Theorem 2 For every positive integer n, n =0 (mod 8), there exists an equinumerous 4-coloring
of [n] with no rainbow AP(4).

In the next section, we present our construction. It is important to note that in this coloring there
is a color which appears on consecutive integers. An important step in establishing the existence
of a rainbow AP(3) in every equinumerous 3-coloring of [n] is proving that at least one of the
colors is recessive, i.e., it does not appear on consecutive integers. Therefore, a natural way to
possibly force the existence of a rainbow AP(4) is to assume that every color is recessive. This
is our motivation for the second construction, presented in Section 3, where (to our surprise) for



every n = 0 (mod 24), we construct an equinumerous 4-coloring of [n] with no rainbow AP(4) and
no two consecutive integers having the same color.

In fact, our example provides an equinumerous colouring, in four colours, of Zss which does not
contain an AP(4). This is easily seen to extend to Zog4j for any k € N, and thus also curtails any
hope of a Zj, analogue of Theorem 1 for AP(4)s.

2 Proof of Theorem 2

Let n = 8m, m € N. Define the coloring A as follows: for every i € [n], let

A ifi=1 (mod4)andi<4m; orifi =3 (mod4) and i > 4m

AG) = B ifi=2 (mod4)andi<4m; orifi=0 (mod 4) andi > 4m
’ C ifi=3 (mod4)andi<4m; orifi=0 (mod 4) and i <4m

D ifi=1 (mod4)andi>4m; orifi =2 (mod 4) and i > 4m

It is immediately clear that every color class has exactly 2m elements, so A is equinumerous. The
proof that A does not contain a rainbow AP(4) will be a straightforward case analysis. Suppose that
{z,y,z,w} form a rainbow AP(4); more precisely, A(z) = A, A(y) = B, A(z) = C, and A(w) = D.
Then, z < 4m < w. We will assume that z < 4m, the other case is symmetric. Therefore, we have
the following three possibilites:

Case 1. z < y < 4m. Since A(z) = A and A(y) = B, then z = 1 (mod 4) and y = 2 (mod 4).
There are three subcases according to the order of z, ¥, and z.

Subcase la. z < y < z < 4m < w.

Since z + z = 2y (mod 4), we have z = 3 (mod 4). Then, z +w = y + z (mod 4) implies w = 0
(mod 4), which is a contradiction with A(w) = D.

Subcase 1b. z < z <y < 4m < w.

Then, z + y = 2z (mod 4) yields 2z = 3 (mod 4), which is impossible.

Subcase 1c. z <z <y < 4m < w.

Then, z + w = 2y (mod 4) yields w = 3 (mod 4), which is a contradiction with A(w) = D.

Case 2. y < z < 4m. Again, A(z) = A and A(y) = B imply z = 1 (mod 4) and y = 2 (mod 4).
There are three subcases according to the order of z, ¥, and z.

Subcase 2a. y < z < z < 4m < w.

Since y + z = 2z (mod 4), we have z = 0 (mod 4). Then, y + w = z + z (mod 4) implies w = 3
(mod 4), which is a contradiction with A(w) = D.

Subcase 2b. y < z <z < 4m < w.

Then, y + z = 2z (mod 4) yields 2z = 3 (mod 4), which is impossible.

Subcase 2¢c. z <y <z <4m < w.

Then, y + w = 2z (mod 4) yields w = 0 (mod 4), which is a contradiction with A(w) = D.

Case 3. z < 4m < y. Since A\(z) = A and A(y) = B, then £ = 1 (mod 4) and y = 0 (mod 4).
Now, there are four subcases according to the order of z and z, and of y and w.

Subcase 3a. z <z <4dm <y < w.



Then, z + y = 2z (mod 4) yields 2z =1 (mod 4), which is impossible.
Subcase 3b. z <z <4m <w < y.

Since z+w = 2z (mod 4), we have w =1 (mod 4), and, hence, z = 1 (mod 4). Then, z+y = z4+w
(mod 4) implies y =1 (mod 4), which is a contradiction.

Subcase 3c. z <z <4dm <y < w.

This case is impossible, since y + z = 2z = 2 (mod 4) and y = 0 (mod 4) yield z = 2 (mod 4),
which contradicts A(z) = C.

Subcase 3d. z <z <4m < w < y.
Then, z + y = 2w (mod 4) yields 2w = 1 (mod 4), which is impossible. O

3 A construction with recessive colors

First, we introduce a new notation: Given a 4-coloring v = (v(0),v(1),...,v(k—1)) € {4, B,C, D}*
of Zy, let 7 denote the 4-coloring of N such that for every ¢ € N, 7(i) = v(i (mod k)).
Now, let n = 24m, m € N. Define the 4-coloring u of [n] as follows: for every i € [n], let

A ifi=3,6,9,16,18,20 (mod 24)
. B ifi=1,8,10,12,19,22 (mod 24)
#0) =9 ¢ ifi=57131521 23 (mod 24)
D ifi=0,2,4,11,14,17 (mod 24)

In other words, p([n]) is a prefix of 7(N) of length n, where v denotes the 4-coloring of Zos given
by:
v:=(B,D,A,D,C,A,C,B,A,B,D,B,C,D,C,A,D,A,B,A,C,B,C, D).

It is immediately clear that every color class of y has exactly 6m elements, so u is equinumerous.
Moreover, no two consecutive integers receive the same color. What remains to be checked is the
non-existence of a rainbow AP(4). Since p([n]) is a prefix of 7(N), it suffices to show that there
does not exist a rainbow AP(4) in v, that is, a 4-tuple (z,y,z,w), x,y, z,w € Za4, and a common
difference d € Zoy, such that

y=z+d (mod24), z=z+2d (mod 24), and w=z+3d (mod 24),

with v(z), v(y), v(z), v(w), being pairwise distinct. Notice that any such 4-tuple (with common
difference d) yields (w, z,y, z), another 4-tuple with the same property, whose (common) difference
is 24 — d. Hence, we can restrict our attention to 4-tuples with difference at most 12.

Next, it is easy to resolve the cases when the difference is an even number. Indeed, suppose there
exists a rainbow AP(4) (z,y, z, w) in Zoy, whose difference d is an even number. Observe that v(i) =
C if and only if i = 5 (mod 8), or i = 7 (mod 8). So, if z is an even number, then every element
of the 4-tuple (z,y,z,w) is even and, thus, is not colored with C. This contradicts (z,y,z,w)
being rainbow. If z is an odd number, then {z (mod 8),y (mod 8),z (mod 8),w (mod 8)} is one
of the following: {1,1,1,1}, {3,3,3,3}, {5,5,5,5}, {7,7,7,7} (when d =0 (mod 8), z = 1,3,5,7
(mod 8)); {1,3,5,7} (when d = 2,6 (mod 8), z = 1,3,5,7 (mod 8)); {1,5,1,5} (when d = 4
(mod 8), z = 1,5 (mod 8)); or {3,7,3,7} (when d = 4 (mod 8), z = 3,7 (mod 8)). Therefore,
either two or none of the elements of the rainbow (z,y,z,w) receive color C' in v, which is a
contradiction.



Finally, assume that the common difference d is odd. Our coloring v of Zss does not contain a
rainbow AP(4) if and only if none of the sequences {T(i + jd)}52,, i € [24], contains all the colors
(A, B, C, and D) in four consecutive positions. We partition our analysis into three cases.

Case 1. d € {1,5}.

The case d = 1 is trivial, as every sequence {D(i+j)}72,, ¢ € [24], is just a suffix of 7(N), which does
not contain all the colors in four consecutive positions. If d = 5, then every sequence {7(i+5j )};?‘;0,

i € [24], is a suffix of V/(N), where ¢/ is the same coloring as v, except that the colors A and D are
interchanged.

Case 2. d € {7,11}.
If d = 7, then every sequence {U(i + 75)}32, i € [24], is a suffix of ¥(N), where

’y = (B’ B’ C’ B’ C’ B’ B’ ‘D7 A’ A’ C’ A7 C’ A’ A’ B’ ‘D’ D, 07 ‘D’ C’ D, ‘D7 A)'

Clearly, no four consecutive positions receive pairwise distinct colors.
The case d = 11 is similar: every sequence {7(i + 115)}32,, @ € [24], is a suffix of 7/(N), where ' is
the same coloring as 7y, except that the colors A and D are interchanged.

Case 3. d € {3,9}. Unlike in the previous cases, each sequence {7(i + dj)}?‘;o is periodic modulo
8, rather than 24, since the greatest common divisor of d and 24 is 3.

If d = 3, then every sequence {7(i + 3j) 201 € [24], is a suffix of one of the following three
sequences: S(0(N), )(N), SB)(N), where

s .= (B,D,C,B,C,A,B,B),
p? .= (D,C,B,D,D,D,A,C),
BB .= (A,A4,A,B,C, A C,D).

Clearly, no four consecutive positions receive pairwise distinct colors.

The case d =9 is similar; the reader can easily check that each sequence {v(i + 95)}72,, ¢ € [24],
is a suffix of one of the above three sequences. O

4 Concluding remarks

We are still puzzled by the contrast discovered in [JL+03, AF04] and further sharpened in this
note; namely, every equinumerous k-coloring of [kn| contains a rainbow AP(k) if and only if £ = 3.
We are not anywhere close to understanding this phenomenon.
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