
Training Kanter’s bit generator
by natural gradient descent

Daniel Wagenaar
�

10th September 1998

Natural gradient descent (NGD) learning is compared with or-
dinary gradient descent (OGD) for Kanter’s bit generator. An-
alytic results for one or two input bits and one output bit show
that the generalization error decreases exponentially with time
for NGD learning, while OGD atudents attain an error that only
decreases inversely proportional to learning time. Similar results
are found numerically for two input bits and more output bits. In
some cases students end up in local minima. In this study NGD
suffered slightly more from this problem than OGD, but we sus-
pect that in other models it could just as easily work out the other
way round. For more than two input bits no analytic results are
obtained, and various options for future research with numerical
methods are suggested.

�������	��
��
���������������������������! 	�

Daniel Wagenaar, Training Kanter’s bit generator by natural gradient descent
— MSc project for Information Processing and Neural Networks

Centre for Neural Networks, King’s College London, September 1998

Supervisor: Dr A. C. C. Coolen

CONTENTS

Introduction 4

Conventions 6

1 Natural gradient descent and Kanter’s bit generator 7
1.1 Ordinary and natural gradient descent . 7
1.2 Bit generation . 8
1.3 The metric for the bit generator . 9
1.4 The N � 1 bit generator . 9

2 The N � 2 bit generator 12
2.1 Input distribution . 12
2.2 Metric . 13
2.3 Natural gradient descent learning . 14
2.4 N � 2 bit generator with ordinary gradient descent 14
2.A Calculations . 16

3 Predicting further into the future for N � 2 18
3.1 Generalized definition of training error . 18
3.2 Metric for n

� 1 . 19
3.3 Simulations . 19
3.A Calculations . 23

4 The road to larger N 25
4.1 The metric in w-space . 25
4.2 Alternative approaches . 26

Conclusions and outlook 29

Bibliography 30

3

INTRODUCTION

Gradient descent has since long been an important training technique for neural networks. Its
aim is to find a minimum of the generalization error by repeatedly making small changes to the
weights of a student neural networks each of which reduces the error. In its most basic form,
the weight changes prescribed by gradient descent are

dwi

dt
��� α

∂Eg
�
w �

∂wi �
where wi are N weights, Eg is the error function and α is a constant which is called the learning
rate.

It was soon found however, that this form of gradient descent was far from optimal in
the sense of achieved learning times. Various schemes were investigated, for example time
dependent learning rates α � t � or choosing the learning rate independently for each layer of
multi-layered networks.

In 1985 Amari proposed a novel technique for choosing the learning rate using concepts
from Riemannian geometry [1, 2]. It involves independently scaling each weight change in-
versely with the impact such a change would make on the probability distribution of network
outputs1) . This method of ‘natural’ gradient descent has been found to offer significant im-
provement over ordinary gradient descent in terms of learning time for feed forward networks
[3, 4, 5].

In this thesis I shall investigate the merits of using natural gradient descent as a learning rule
for Kanter’s ‘bit generator’ [6], a device that produces an infinite sequence of bits from a
small number of initial values. Each bit is computed by feeding the previous N bits through a
stochastic binary neuron. For example, with N � 3, the sixth bit is computed by feeding the
third, fourth and fifth bits through the neuron.

This is perhaps the simplest model that can be used for time series prediction, an art which
has applications ranging from forecasting stock values to controlling the equipment on inten-
sive care units. In any practical application, one would clearly use a somewhat higher dimen-
sional system: instead of single bits, one would typically generate (vectors of) real numbers,
and one would probably feed them through slightly more complex networks as well. However,
in this pilot study we have opted to concentrate on the simplest model. We hope that our results
may be a first step towards insight into the more realistic systems.

Still, although it looks very simple, the bit generator has quite non-trivial dynamics. Some
very interesting research into this subject has been done by Kanter et al. For example, it can
produce pseudo-periodic cycles of various lengths [7].

1)In chapter one I shall be more precise.

4

INTRODUCTION 5

The present work will not focus on the sequence itself but on the dynamics of learning:
given a part of a ‘teacher’ bit sequence, we wish to train a ‘student’ bit generator to correctly
predict the next few bits when presented with any piece of N bits from the sequence. This is
done by minimizing the training error — that is, the probability that the student incorrectly
predicts a small number of bits from the training sample given the previous N bits. For noise
free bit generators, Kanter et al show that for any N there is a p less than N such that a student
which is trained to perfection on a training sample of length N � p (i.e. a sample containing p
predictable bits) can faultlessly predict the rest of the sequence, but an analogous result has not
been found for noisy bit generators.

The structure of the rest of this text is as follows: chapter one will begin with a short review of
the mathematics of natural gradient descent, after which the learning process of the N � 1 bit
generator will be analyzed as a simple example. In chapter two we shall calculate the geometry
and error dynamics of the N � 2 bit generator when a single bit is to be predicted. Chapter
three looks at prediction of more than a single bit for N � 2. In Chapter four I briefly discuss
some of the possible methods to proceed beyond N � 2. Conclusions are presented in the final
chapter.

CONVENTIONS

The following notational conventions are used in this text:

� The number of input bits will always be denoted by N.

� The number of bits to be predicted will be denoted by n.

� Vectors in weight space shall have upper indices, so w � � wi � i � 1 � � � N . Normally, w will be
a student weight vector while w̃ will be a teacher weight vector.

� Learning time will be denoted by t and should not be confused with indices into the bit
sequence, for which we shall use j, k, ����� .

� Spin1) indices will be counted from the beginning of the sequence or from the beginning
of the student’s input.

� No sums over indices will be left implicit, but the ranges of summation will not normally
be mentioned, so ∑i � wi � 2 � ∑N

i � 1 � wi � 2.

� Except where mentioned, σ and τ will be spin variables, so ∑τ
� ∑τ ���
	 1 � 1 � .

� We shall use standard Riemannian geometry conventions in that � gi j � is the matrix in-
verse of � gi j � . Where appropriate metrics will be adorned with an additional label speci-

fying in which parametrization it is supposed to be computed, so g

x �

ττ � � ∑ � p ∂ log p
∂xτ

∂ log p
∂xτ � ,

while g

w �

i j
� ∑ � p ∂ log p

∂wi
∂ log p

∂w j .

� The notation E
������� � will be used to denote expectation values. The probability distribution

with which this expectation value is to be taken will be mentioned in the surrounding text.

� To reduce notational clutter we often write � F � σ1 � ����� � σm ��� σ3 � � � ��� σm
, instead of the more

explicit 1
2m � 2 ∑σ3 � � � � � σm

F � σ1 � ����� � σm � . Note that in this particular example σ1 and σ2 are
not averaged out.

1)The terms ‘bit’ and ‘spin’ will be used without distinction. Thus, our ‘bits’ take values � 1.

6

CHAPTER 1

NATURAL GRADIENT DESCENT AND KANTER’S BIT GENERATOR

After a brief overview of the mathematics of natural gradient descent, we shall obtain a general
expression for the metric of Kanter’s bit generator. In the final section we shall compute the
metric for just one input bit, and find the generalization error as a function of learning time.

1.1 Ordinary and natural gradient descent

As mentioned in the introduction,

dwi

dt
��� α

∂Eg
�
w �

∂wi �
or its discretized form

wi �� wi � α
∂Eg
�
w �

∂wi � (1.1)

is by no means the optimal variant of gradient descent learning. One theoretical argument
to prove this statement is the following: the changes prescribed by (1.1) strongly depend on
the way the network is parametrized. This immediately proves that it cannot be the optimal
way to update the weights: since a reparametrization clearly does not really alter the learning
task, the quickest training path (the one that optimally uses the available information) must be
independent of the way the student is parametrized.

A way to create a parametrization invariant version of gradient descent was suggested by
Amari in [1] using concepts from Riemannian geometry1): technically, the problem with (1.1)
is that a covariant vector is subtracted from a contravariant vector. A much better behaved
learning rule would be

wi �� wi � α ∑
j

gi j ∂Eg
�
w �

∂w j � (1.2)

where the matrix � gi j � — the inverse metric — takes care of the parametrization dependence.
With the proper choice of metric, (1.2) is called natural gradient descent (NGD). For contrast,
I shall refer to (1.1) as ordinary gradient descent (OGD).

It has recently been proven [10] that the only metric which makes the learning rule inde-
pendent of both the parametrization of the weight space and of the input-output space is the
Fisher metric:

gi j � w � � ∑� pw ��� � ∂ log � pw ��� � �
∂wi

∂ log � pw ��� � �
∂w j � (1.3)

1)For a gentle introduction to Riemannian geometry, textbooks on general relativity, such as [8] are a good
starting point. My short thesis on the applications of Riemannian geometry in neural networks [9] may also be of
use.

7

8 NATURAL GRADIENT DESCENT AND KANTER’S BIT GENERATOR

Thus (1.2) — with gi j the matrix inverse of (1.3) — is shown to be the optimal gradient descent
rule. Note in particular that time dependent learning rates cannot offer any further improve-
ments for NGD learning1) .

Before we go on to investigate the metric for the bit generator, we shall give a more explicit
definition of the way the bit sequences are generated.

1.2 Bit generation

Kanter’s bit generator produces a sequence of bits as a function of some binary inputs and a
number of weights: the inputs are N spins, σ1 � ����� � σN taking values � 1, the output consists of
an infinite sequence of spins, σN � 1 � σN � 2 � ����� . Each spin is calculated by feeding the previous
N bits through a neuron:

σk � sgn

�
tanh

�
β

N

∑
i � 1

wiσk 	 i � � ηk � � (1.4)

where wi, i � 1 ����� N are real valued connection weights, β can be viewed as an inverse temper-
ature and ηk are random variables, independently drawn from the uniform

� � 1 � 1 � distribution.
The probability to find a given subsequence of length n may now be computed as

pn
w � σN � 1 � ����� � σN � n � σ1 � ����� � σN � �

N � n

∏
m � N � 1

pw � σm � σm 	 N � ����� σm 	 1 � � (1.5)

where

pw � σm � σm 	 N � ����� � σm 	 1 � �
1
2 � 1

2 σm tanh � β
N

∑
i � 1

wiσm 	 i � � (1.6)

In its simplest form2) the student’s training error on a sample � σ̃1 � ����� � σ̃N � p � is defined as the
probability that the student incorrectly predicts a randomly picked spin from the sequence given
full information of the previous spins:

Et �
1
2 � 1

2
1
p

N � p

∑
k � N � 1

σ̃kE ˜� � σk � � (1.7)

where E ˜� � σk � is the expectation value of the student’s k-th spin given that its previous N spins
are taken from the teacher sequence:

E ˜� � σk � � ∑
σk

σk pw � σk � σk 	 N � σ̃k 	 N � ����� � σk 	 1 � σ̃k 	 1 � �

In the limit p � ∞ the training error reduces to a generalization error.

1)This is only true in cases where the full generalization error can be known. For on-line learning — where
the generalization error is estimated on the basis of a single measurement — there is as yet no proof that natural
gradient descent is optimal.

2)That is, for a student that predicts a single bit. In chapter three a more general case will be considered.

1.3 THE METRIC FOR THE BIT GENERATOR 9

1.3 The metric for the bit generator

An important difference between our learning task and most others, is that the probability
distribution of inputs is explicitly dependent on the teacher bit sequence. This in turn makes
the metric dependent on the teacher. Fortunately, the full distribution of pairs of input and
student output can be decomposed as

pw � w̃ � σ1 � ����� � σN � 1 � � p(input)
w̃ � σ1 � ����� � σN � pw � σN � 1 � σ1 � ����� � σN � �

where the input distribution pw̃ � σ1 � ����� � σN � equals the frequency with which the subsequence
� σ1 � ����� � σN � occurs within the (infinite length) teacher bit sequence, and thus clearly depends
on the teacher weights w̃ (only). The output conditional distribution pw � σN � 1 � σ1 � ����� � σN � on
the other hand, depends only on the student weights w.

We thus get the following general expression for the metric:

gi j � w; w̃ � � ∑
σ1 � � � � � σN

p(input)
w̃ � σ1 � ����� � σN � ∑

σN � 1

pw � σN � 1 � σ1 � ����� � σN � �

� ∂
∂wi log pw � σN � 1 � σ1 � ����� � σN � ∂

∂w j log pw � σN � 1 � σ1 � ����� � σN � � (1.8)

To obtain a more explicit expression, we have to insert

p(input)
w̃ � σ1 � ����� � σN � �

� lim
n � ∞ ∑

σ̃1 � � � ��� σ̃N � n � 1

pw̃ � σ̃N � 1 � ����� � σ̃N � n 	 1 � σ̃1 � ����� � σ̃N � 1n
n 	 1

∑
k � 0

δσ1 � σ̃k � 1

�����
δσN � σ̃k � N (1.9)

and (1.5) with w replaced by w̃ into (1.8).
Strictly speaking, (1.9) also depends on the initial values � σ̃1 � ����� � σ̃N � of the teacher se-

quence, but for finite temperature and teacher weights we can expect the effects of these initial
values to have finite range, leaving the input distribution independent of them. We shall come
back to this point later on.

1.4 The N � 1 bit generator

As promised, we shall now calculate the metric and error evolution for the N � 1 bit generator.
We could work with w1 and w̃1, but the calculations turn out to be much easier in terms of the
variables

x � tanh βw1 and x̃ � tanh βw̃1 �
We then have

px � σk � σk 	 1 � �
1
2 � 1

2 σkσk 	 1x �
This can straightforwardly by used to find

px � σk � σ1 � � ∑
σ2 � � � � � σk � 1

k

∏
l � 2

px � σl � σl � 1 � �
1
2 � 1

2 σkσ1xk 	 1 �

10 NATURAL GRADIENT DESCENT AND KANTER’S BIT GENERATOR

For generic x, (that is � x � � 1) this reduces to a half in the large k limit, so the probability (1.9) of
finding any given input value also reduces to a half: not only is the student’s input distribution
independent of the initial values of the teacher sequence (as expected), but — in this simple
case — it is independent of the teacher’s weights as well.

Inserting these results into (1.8) yields

g

x �

11 �
1

1 � x2 �

The metric in w-space can subsequently be computed using1)

g

w �

11 �

�
dx

dw1 � 2

g

x �

11 �

yielding

g

w �

11 �
β2

cosh2 βw1
�

1.4.1 Learning

For simplicity, we shall consider the limit of infinite length training samples only. Given that σ̃k

becomes uniformly distributed for large k, we find that the training error (1.7) becomes equal
to the generalization error

Eg �
1
2 � 1

2 lim
k � ∞

1
2 ∑

σ̃k � 1

∑̃
σk

σ̃k pw̃ � σ̃k � σ̃k 	 1 � ∑
σk

σk pw � σk � σk 	 1 � σ̃k 	 1 � �
1
2 � 1

2 x̃x (1.10)

in this limit.
The natural gradient descent learning rule updates x according to

dx
dt

� � αg11

x � dE

dx
�

1
2 α

x̃
1 � x2 � (1.11)

where α is an arbitrary (but constant) learning rate.
(1.11) is easily solved, yielding x � tanh � 1

2 αx̃ � t � t0 ��� , where the integration constant t0 is
determined by the value of x at t � 0. Inserting this result into (1.10) yields

Eg � t � �
1
2 � 1

2 � x̃ � tanh � 1
2 α � x̃ � � t � t0 � �

for the N � 1 bit generator with natural gradient descent learning. Asymptotically the optimal
error E∞ �

1
2 � 1

2 � x̃ � is approached as

Eg � t ��� E∞ � � x̃ � e 		� x̃ �αt � (1.12)

1)The general rule (for any number of dimensions) is:

g
 w �i j � ∑
k
 l ∂xk

∂wi
∂xl

∂w j g
 x �kl �

1.4 THE N � 1 BIT GENERATOR 11

This must be compared to natural gradient descent learning, which states that the weights
should be updated according to

dw
dt

��� α
dEg

dw
�

As before, the calculation is most easily performed in x-space: using dw
dt �

dw
dx

dx
dt we obtain

dx
dt �

1
2 αβ2x̃ � 1 � x2 � 2

. Since (1.10) tells us that x �
1 	 2E

x̃ , this is equivalent to

dEg

dt
��� αβ2

4
x̃2 � 1 �

�
1 � 2Eg

x̃ � 2 � 2

� (1.13)

To find the asymptotics, we make the Ansatz that in the limit t � ∞ the optimal error E∞ is
again reached, and expand (1.13) in terms of u � Eg � E∞:

du
dt

� � αβ2

4
x̃2 � 4u � � x̃ � � 4u2 � x̃2 � 2

� � 4αβ2u2 � O � u3 � �
Thus for large t:

Eg � t ��� E∞ �
1

4αβ2 t
(1.14)

for ordinary gradient descent learning.
Thus natural gradient descent learning is asymptotically dramatically faster in this case.

While it is impossible to directly compare (1.12) and (1.14) for finite times because α can be
chosen independently for NGD and OGD learning, a reasonable choice for fair comparison
seems to set αNGD equal to αβ2 �� OGD, since this ensures that the first few NGD steps are of
comparable size to those of OGD. With this choice NGD is seen to outperform OGD even for
relatively short learning times.

CHAPTER 2

THE N � 2 BIT GENERATOR

Explicit calculation of the error evolution becomes very difficult for generic N. In fact, even
finding a simple expression1) for the metric is not easy. For this reason we concentrate on N � 2
in this chapter and the next. Some expeditions into N � 2 territory are described in chapter four.

As before a change of variables makes the computation much easier. In this case we pick

x
�

� tanh β � w1 � w2 � �
In terms of these (1.6) becomes

px � σm � σm 	 2 � σm 	 1 � �
1
2 � 1

2 σmσm 	 1xσm � 1σm � 2 � (2.1)

where we write xτ � x � if τ � 1, or x 	 if τ � � 1.
Before we can calculate the error dynamics, or even the metric, we must know the student’s

input distribution, which is determined by the teacher bit sequence.

2.1 Input distribution

The input distribution is derived from (1.9) for N � 2:

p(input) � σ1 � σ2 � � lim
n � ∞ ∑

σ̃1 � � � � � σ̃n � 1

px̃ � σ̃3 � ����� � σ̃n � 1 � σ̃1 � σ̃2 � 1n
n 	 1

∑
m � 0

δσ1 � σ̃m � 1δσ2 � σ̃m � 2 �

which — using δσ � σ � �
1
2 � 1

2 σσ
�
— may be written as

p(input) � σ1 � σ2 � � lim
n � ∞

1
n

n 	 1

∑
m � 0

E
� � 12 � 1

2 σ1σ̃m � 1 � � 12 � 1
2 σ2σ̃m � 2 � �

� lim
n � ∞

1
4n

n 	 1

∑
m � 0

�
1 � σ1E

�
σ̃m � 1 � � σ2E

�
σ̃m � 2 � � σ1σ2E

�
σ̃m � 1σ̃m � 2 � � � (2.2)

The (somewhat technical) calculation of E
�
σ̃m � and E

�
σ̃mσ̃m � 1 � can be found in the appendix to

this chapter. It results in:

p(input) � σ1 � σ2 � �
1
4

�
1
4

σ1σ2
ỹ �

1 � ỹ 	 � (2.3)

where ỹ
�

�
1
2 � x̃ � � x̃ 	 � , x̃

�
� tanh β � w̃1 � w̃2 � , and w̃i are the teacher weights.

Note that (2.3) does not depend on the teacher’s initial values, but does depend on the
teacher’s weights, unlike before.

1)That is, an expression without any explicit summations over spin variables left in it.

12

2.2 METRIC 13

Figure 2.1: A graphical representation of the
metric in x

�
-space: the width and height of the

boxes are proportional to the components g
���

and g ��� of the inverse metric respectively.
Thus the width (height) of the boxes equals the
change in x

�
(x �) that corresponds to a step of

fixed Riemannian length. Note that this repre-
sentation is possible due to the fact that gττ �
is diagonal, which ensures that the remaining
components are positive.

2.2 Metric

With the input distribution done, calculating the metric is straightforward:

g

x �

ττ � � ∑
σ1 � σ2

�
1
4

�
σ1σ2

4
ỹ �

1 � ỹ 	 � ∑
σ3

p � σ3 � σ1 � σ2 � ∂ log p � σ3 � σ1 � σ2 �
∂xτ

∂ log p � σ3 � σ1 � σ2 �
∂xτ �

�

� �
1 � σ1σ2

ỹ �
1 � ỹ 	 � � 1 � σ2σ3xσ1σ2 � σ2σ3δσ1σ2 � τ

1 � σ2σ3xτ
σ2σ3δσ1σ2 � τ �
1 � σ2σ3xτ ���

σ1 � σ2 � σ3

�
δττ �

1 � � xτ � 2 � 1
2 � 1

2 τ
ỹ �

1 � ỹ 	
	 � (2.4)

A graphical representation of this metric is drawn in figure 2.1. It is clearly seen that near the
boundaries x �

� � 1 and x 	
� � 1 an infinitesimal step in coordinate space corresponds to a

much larger Riemannian distance than near the centre. This reflects the fact that it is impossible
for � x � � to be larger than one: the latter would correspond to non-physical values for wi. Another
clearly visible aspect of this metric is the fact that g � � depends only on x � while g 	 	 depends
only on x 	 .

Because of the way the teacher weights occur in (2.4), the metric for different teachers
looks like the one depicted in figure 2.1, but with the widths and heights of the boxes globally
scaled by 1 � ỹ �

1 	 ỹ � respectively.

In textbooks on general relativity, one sometimes finds the curvature of space depicted as
a potential plot: with the potential of a test particle plotted on an extra axis, the bending of
trajectories is beautifully illustrated. Unfortunately, this option is not available here, since there
exists no potential field that corresponds to the metric (2.4).

14 THE N � 2 BIT GENERATOR

2.3 Natural gradient descent learning

In the limit of infinite training sample size, the training error (which then equals the general-
ization error) may be computed as the probability that the student incorrectly predicts a spin
from the teacher sequence, as in the case N � 1 (cf (1.10)):

Eg �
1
2 � 1

2 lim
n � ∞ ∑

σ̃n � 2 � σ̃n � 1

p(input) � σ̃n 	 2 � σ̃n 	 1 � �

� ∑̃
σn

px̃ � σ̃n � σ̃n 	 2 � σ̃n 	 1 � ∑
σn

px � σn � σn 	 2 � σ̃n 	 2 � σn 	 1 � σ̃n 	 1 �

�
1
2
� 1

4 � � x̃ � x � � x̃ 	 x 	 � �
ỹ �

1 � ỹ 	 � x̃
� x � � x̃ 	 x 	 � 	 � (2.5)

Taking the derivatives with respect to x
�

is trivial, so the evolution of x
�

can now be computed:

dxτ

dt
� � α ∑

τ � gττ �

x � ∂Et

∂xτ � �
1
2 αx̃τ � 1 � � xτ � 2 � �

This is easily solved:
xτ � t � � tanh � 12 αx̃τ � t � tτ

0 � � � (2.6)

where the integration constants t
�

0 incorporate the initial values of x
�

. Note, by the way, that
the evolution of x � and x 	 are completely independent.

Combining (2.6) with (2.5) gives the error as a function of learning time. For large t this
function approaches

Eg � t ��� E∞ � A � e 	 α � x̃ � � t � A 	 e 	 α � x̃ � � t � (2.7)

where

E∞ �
1
2
� 1

4

�
1 �

ỹ �
1 � ỹ 	 � � x̃ � � � 1

4

�
1 � ỹ �

1 � ỹ 	 � � x̃ 	 � �

�
1
2

�
1 � 1 � x̃ 	

2 � � x̃ � � x̃ 	 � � x̃ � � � 1 � x̃ �
2 � � x̃ � � x̃ 	 � � x̃ 	 � �

is the global minimum of (2.5) for fixed teacher weights, and A �
�

1
�

x̃ �
2 	

x̃ � � x̃ � � � x̃ � � eα � x̃ � � t �
0 . The

error approaches its minimum value exponentially fast.
The asymptotic behaviour of Eg is depicted in figure 2.2. The general shape of the left hand

side picture is due to the fact that a very noisy teacher (small weights, so both x̃ � and x̃ 	 small)
cannot be emulated very well. On the right it can be seen that the learning time is governed by
the smaller of x̃ � and x̃ 	 .

NGD learning times should be compared with the result of ordinary gradient descent, which
we compute next.

2.4 N � 2 bit generator with ordinary gradient descent

Even though we have to find the evolution of the error governed by

dwi

dt
� � α

∂Et

∂wi � (2.8)

2.4 N � 2 BIT GENERATOR WITH ORDINARY GRADIENT DESCENT 15

Figure 2.2: The asymptotic generalization error (left) and characteristic learning time (right) for NGD
learning of the N � 2 bit generator. (The characteristic time is the constant τ in Eg

� E∞
� e � t

�
τ .)

we still choose to work in terms of x
�

, since (2.5) provides such a simple expression for the
generalization error in terms of the parameters. The resulting differential equations

dxτ

dt
� � α ∑

τ � ∑
i

∂xτ

∂wi

∂xτ �
∂wi

∂Et

∂xτ � �
1
2 αβ2 � 1 � � xτ � 2 � 2

x̃τ
�

1 � τ
ỹ �

1 � ỹ 	 �
can be integrated:

αβ2x̃τ
�

1 � τ
ỹ �

1 � ỹ 	 � � t � tτ
0 � �

xτ

1 � � xτ � 2 � atanh xτ �
but this does not yield closed expressions for xτ in terms of t. However, we may proceed by
expanding in uτ � 1 � sgn � x̃τ � xτ . In terms of u

�
, we may write the error (2.5) as

Et � E∞ �
1
4 ∑

τ

�
1 � τ

ỹ �
1 � ỹ 	 � � x̃τ � uτ � (2.9)

With � 1 � � xτ � 2 � 2
� 4 � uτ � 2 � O � � uτ � 3 � , we find that u

�
evolve according to

duτ

dt
� � 2αβ2 � x̃τ � � 1 � τ

ỹ �
1 � ỹ 	 � � uτ � 2 � O � � uτ � 3 � � (2.10)

which is easily solved. Inserting the solution into (2.9) yields

Et � t ��� E∞ �
1

4αβ2t
(2.11)

to lowest order.
As in the case N � 1, natural gradient descent dramatically outperforms ordinary gradient

descent when the learning rates are chosen in such a way that the initial steps are of comparable
size. (i.e. setting αβ2 �� OGD � αNGD.)

16 THE N � 2 BIT GENERATOR

2.A Calculations

The calculations that were skipped in � 2.1 are presented here.

2.A.1 The expectation value of σ̃m

Dropping the tildes for the moment, we have

E
�
σm � �

� � n � 1

∏
j � 3
� 1 � σ jσ j 	 1xσ j � 1σ j � 2 �

�
σm �

σ3 � � � � � σm

�

where x
�

and σ1, σ2 are free parameters.
It is clear that the averages over σ j’s with j larger than m can be performed straight away.

After explicit summation of σm we are left with

E
�
σm � �

� � m 	 1

∏
j � 3
� 1 � σ jσ j 	 1xσ j � 1σ j � 2 �

�
σm 	 1xσm � 1σm � 2 �

σ3 � � � � � σm � 1

�

Summing out σm 	 1 as well yields

E
�
σm � � y � �

xσm � 2σm � 3σm 	 2

m 	 2

∏
k � 3

� 1 � σkσk 	 1xσk � 1σk � 2 � �
σ3 � � � � σm � 2

�

� y 	
�

σm 	 2

m 	 2

∏
k � 3

� 1 � σkσk 	 1xσk � 1σk � 2 � �
σ3 � � � � σm � 2

�

where y
�

�
1
2 � x � � x 	 � was introduced for convenience. We note that the second term contains

E
�
σm 	 2 � , while the first can be expanded recursively. Thus we arrive at

E
�
σm � � y 	 m 	 2

∑
k � 2

� y � � m 	 2 	 kE
�
σk � � σ2xσ1σ2 � y � � m 	 3 � (2.12)

To solve this recursion relation, we first introduce fm � � y � � 	 mE
�
σm � so we are left to solve

fm � a1

m 	 2

∑
k � 2

fk � a2 �

where a1 �
y �

y � � 2 and a2 �

σ2xσ1σ2

y � � 3 . Then we introduce gm � ∑m 	 2

k � 2 fm (so fm � gm � 2 � gm � 1), to
obtain the much easier recursion relation

gm � 2 � gm � 1 � a1gm � a2 � (2.13)

The annoying constant a2 can be absorbed by introducing hm � gm � a2
a1

. The resulting hm � 2 �

hm � 1 � a1hm can be solved using the Ansatz hm � cm (that’s c to the power m): this gives
c2

� c � a1, so c �
1
2 � 1

2 � 1 � 4a1, where we define � a � i � � a for negative real a. The full
solution must be a linear combination of these two. Therefore we have

hm � A � 1
2 � 1

2 � 1 � 4a1 � m
� B � 1

2 � 1
2 � 1 � 4a1 � m

�

2.A CALCULATIONS 17

where A and B are to be computed from the initial conditions, which can be written as g3 � 0
and g4 �

σ2

y � � 2 .

If one does the algebra carefully, one finds

E
�
σm � �

1
2 σ2xσ1σ2 � y � � m 	 3 � � 1

2 � 1
2 η � m 	 3 � � 1

2 � 1
2 η � m 	 3 �

� 1
2 σ2

�
xσ1σ2 � 2

y 	
y � � � y � � m 	 3

η
� � 1

2 � 1
2 η � m 	 3 � � 1

2 � 1
2 η � m 	 3 � � (2.14)

where η ��� 1 � 4 y �

y � � 2 , in which we still use � a � i � � a for negative real a. It should be noted

that although η may be imaginary if 4y 	 � � � y � � 2, the resulting value for E
�
σm � is always real,

since the first ‘square bracket’-term yields only even powers of η, while the second one yields
only odd powers, which cancel the η in the denominator.

Another property of (2.14) which may be slightly less obvious, is that for large E
�
σm �

vanishes for large m: this is seen from the fact that�� y � � 1
2 � 1

2 η � ���� 1 �
for any possible value of � x � ��� � � 1 � � 1 � 2, with equality only if x �

� 1 or x 	 � � 1. Thus
limn � ∞

1
n ∑n 	 1

m � 0 E
�
σ̃m � vanishes irrespective of σ1 and σ2 for any finite w.

2.A.2 The expectation value of σ̃mσ̃m 	 1

With the same notation as above we may write

E
�
σmσm 	 1 � �

� � m

∏
j � 3

� 1 � σ jσ j 	 1xσ j � 1σ j � 2 �
�

σmσm 	 1 �
σ3 � � � � � σm

�

Again, averages over σ j’s with j larger than m can be performed straight away. This time
explicit summation of σm leaves us with

E
�
σmσm 	 1 � �

� � m 	 1

∏
j � 3
� 1 � σ jσ j 	 1xσ j � 1σ j � 2 �

�
xσm � 1σm � 2 �

σ3 � � � � � σm � 1

�

The rest is easy: starting at j � m � 1 each σ j may be summed out in turn, and we end up with

E
�
σmσm 	 1 � � y � 1 � � y 	 � m 	 3

1 � y 	 � � y 	 � m 	 3xσ1σ2 �
For finite weights the second term falls of to zero as m grows, so

lim
n � ∞

1
n

n 	 1

∑
m � 0

E
�
σ̃mσ̃m � 1 � �

y �
1 � y 	 �

independent of initial conditions.
Finally, reinstating tildes and inserting the results in (2.2) yields

p(input) � σ1 � σ2 � �
1
4

�
1
4

σ1σ2
ỹ �

1 � ỹ 	 �
(Recall that ỹ

�
�

1
2 � x̃ � � x̃ 	 � , where x

�
� tanh β � w̃1 � w̃2 � and w̃i are the teacher weights.)

As expected, the result is independent of the teacher’s initial values.

CHAPTER 3

PREDICTING FURTHER INTO THE FUTURE FOR N � 2

3.1 Generalized definition of training error

Until now the student’s task was to learn how to predict a single future bit from knowledge
about the past. More generally, we may be interested in a system that can give predictions for
a larger number of future bits, where we may attach a different weighting to each of those
predictions. Training such a system can be done by gradient descent on the following error
measure:

Eg
�
w; w̃ � �

1
2 � 1

2 ∑
σ1 � � � ��� σN

p(input) � σ1 � ����� � σN � ∑
σN � 1 � � � ��� σN � n

pw � σN � 1 � ����� � σN � n � σ1 � ����� � σN � �

� ∑
σ̃N � 1 � � � ��� σN � n

pw̃ � σ̃N � 1 � ����� � σ̃N � n � σ1 � ����� � σN �
n

∑
k � 1

akσN � kσ̃N � k � (3.1)

where ∑ak must equal one for proper normalization. We shall only consider ak � 1 � n, and stick
to N � 2. Even in this regime the error function is a lot more complex than for n � 1 as studied
in the previous chapter.

Whereas the generalization error for n � 1 (2.5) only has one minimum, which is located
at the corner of x

�
-space closest to the teacher parameters, (3.1) can have several local minima

depending on the value of the teacher weights. Additionally, the global minimum may not lie
at a corner for certain combinations of teacher weights. Figure 3.1 shows in which regions of
teacher weight space these phenomena occur for n � 2.

The presence of non-global minima complicate the learning process considerably, as we
shall see below. It is worth noting that the global minimum always lies at a corner of � x � � x 	 � -
space, that is both student weights grow without bounds, totally suppressing any noise —
except when one of x̃

�
is near zero. The latter case corresponds to a teacher with w̃1 ��� w̃2.

(x̃
�

remains zero even for low temperature if w̃1
��� w̃2.)

Figure 3.1: The generalization error for
N � 2, n � 2 has local minima for most
combinations of teacher weights (grey ar-
eas in LHS picture). The grey patches
in the RHS picture indicate areas where
the global minimum is found at an edge
rather than at a corner of x

�
-space.

18

3.2 METRIC FOR n
� 1 19

3.2 Metric for n � 1

When n future bits are being predicted, we must clearly define the metric as the Fisher infor-
mation on the probability distribution pw;w̃ � σ1 � σ2;σ3 � ����� � σ2 � n � :

g

x;n �

ττ � � ∑
σ1 � σ2

p(input)
w̃ � σ1 � σ2 � ∑

σ3 � � � � � σ2 � n

pw � σ3 � ����� � σ2 � n � σ1 � σ2 � �

� ∂ log pw � σ3 � ����� � σ2 � n � σ1 � σ2 �
∂xτ

∂ log pw � σ3 � ����� � σ2 � n � σ1 � σ2 �
∂xτ � � (3.2)

After a tedious calculation which is included as an appendix at the end of this chapter this
leads to

g

x;n �

ττ � �
δττ �

1 � � xτ � 2 � n2
�

1 � τ
y �

1 � y 	 � �
τ
2

�
ỹ �

1 � ỹ 	 � y �
1 � y 	 � 1 � � y 	 � n

1 � y 	 	 � (3.3)

(Recall that y
�

and ỹ
�

are just shorthands: y
� � 1

2 � x � � x 	 � ; ỹ
� � 1

2 � x̃ � � x̃ 	 � .)
In figure 3.2 I attempt to visualize this metric for several values of n and teacher weights.

The projection technique is the same as for figure 2.1.

3.3 Simulations

I simulated NGD and OGD learning for the N � 2 bit generator for a wide range of teacher
weights. In each case the student was initialized with very small random weights. The results

Figure 3.2: Metrics for bit
generators with N � 2. Top
row: predicting two spins.
Bottom row: predicting four
spins. The left hand side pic-
tures show the metric for
teachers (x̃

�
��� 9, x̃ � � 0).

On the right the teachers are
(x̃
�

� � � 9, x̃ � ��� 9).

20 PREDICTING FURTHER INTO THE FUTURE FOR N � 2

are shown in figures 3.3 through 3.6. For NGD learning, I fitted the achieved error as a function
of learning time to Eg � t � � E∞ � c0e 	 t � τ . The characteristic time τ is shown in the figures.
OGD learning achievements were fitted to Eg � t � � E∞ � � t � T � 	 a. Both the exponent a and the
characteristic time T are shown in the figures. E∞ is the the same as for NGD, except in areas
where either of the students gets stuck in a local minimum (see below).

As for n � 1 it is clear that NGD learning of noisy teachers (centre of the pictures) is more
difficult than when the teacher is almost noise free (near the corners). However, the character-
istic time is no longer simply inversely proportional to the smaller of x̃

�
.

Perhaps more interesting is the fact that for some values of the teacher eights, a local min-
imum occurs in the generalization error at x̃ 	

� � 1, x̃ �
� � 1. Depending on the extent of the

domain of attraction this minimum, there can be two effects: either the student may get stuck
in it, or it may take a long time hovering on the boundaries. For example, figure 3.7 shows
an NGD student poised on the edge of the local minimum while trying to mimic a teacher
with x̃ �

� � � 85 and x̃ 	
� � � 99. It is worth noting that both before and after the ‘plateau’, the

generalization error decreases exponentially with time.
For slightly larger values of x̃ � , the NGD student actually gets stuck in the local minimum

(figure 3.8). In this area, the OGD student does find the global minimum, and thus outperforms
the NGD student in the limit of infinite learning time, although the small difference between

Figure 3.3: Asymptotic error and characteristic time for N � 2 bit generator predicting 2 future spins
using NGD learning. The white line through the centre is due to numerical instability at x̃

�
� � x̃ � . The

areas enclosed by black curves are those where the student does not find the global minimum. The near
invisibility of the jump on the edges of this area indicates that the difference between the true minimum
and the achieved error is quite small. In areas where local minima exist, but the student did find the
global minimum, the plotted characteristic learning time (right) may not be very meaningful: the fit is
rather poor due to the plateau phase (see figure 3.7). This is especially true in regions where the local
minimum was only barely avoided (eg. along the white curves near the bottom left and near the top right
of the RHS picture). Note that the grey scale on the right hand side is logarithmic, unlike the one in
figure 2.2.

3.3 SIMULATIONS 21

Figure 3.4: Typical learning time (left, see text) and exponent for N � 2 bit generator predicting 2 future
spins using OGD learning. Again, the white lines through the centre are not physical. The large white
patches near the edges are caused by the student needing a lot of time to avoid the local minimum —
see figure 3.8. The precision of the simulations is insufficient to establish that the asymptotic exponent
is different from one. The black lines indicate areas of teacher weight space for which the student fails
to find the true minimum.

Figure 3.5: Asymptotic
error and critical time
for N � 2 bit genera-
tor predicting 4 future
spins using NGD learn-
ing. Comments below
figure 3.3 apply.

Figure 3.6: Typical
learning time (far left,
see text) and exponent
(right) for N � 2 bit
generator predicting 4
future spins using OGD
learning.

22 PREDICTING FURTHER INTO THE FUTURE FOR N � 2

the local and the global maximum means the for intermediate values of learning time the NGD
student still does better. This can be seen from the graph in figure 3.8: the generalization error
of the NGD student relative to the optimal error E∞ is shown in grey, with the time scales

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 50 100 150 200 250 300 350
R

el
at

iv
e

er
ro

r
Time

NGD barely escapes

Figure 3.7: The path of an NGD student may pass close by a local minimum (left). In the plot of
log � Eg

� E∞ � versus learning time (right) this results in a plateau. Once the plateau has been left, expo-
nentially fast learning resumes. The arrows in the LHS picture show the direction of NGD only. Their
lengths have been normalized to one.

Figure 3.8: For x̃
�

� � � 5, x̃ � � � � 99 the NGD
student gets stuck in a local minimum (above).
The OGD student does not get stuck (above
right), but does spend a lot of time in the vicin-
ity of the local minimum (right). (The point
in the graph where the error starts decreas-
ing quickly again corresponds to the moment
when to student starts moving to the left in� x ��� x � � -space.) Note the time axis is logarith-
mic unlike the one in figure 3.7.

1e-05

0.0001

0.001

0.01

0.1

1

0.1 1 10 100 1000 10000

R
el

at
iv

e
er

ro
r

Time

OGD escapes, NGD gets stuck

OGD
NGD

3.A CALCULATIONS 23

set according to αNGD � αβ2 �� OGD. It is important to note that the time scales can be varied
arbitrarily by changing the learning rates: setting αNGD to a lower value reduces the time during
which NGD has a lower error. Conversely, it is possible to increase αNGD up to a point where
NGD does better for small values of time as well.

For larger values of x̃ � the OGD student does not find the global minimum at x̃ �
� x̃ 	 � � 1

either. In the graphs 3.3 through 3.6 black curves are drawn around areas in teacher weight
space in which students get stuck in the local minimum.

The existence of teacher weight values for which OGD finds

Figure 3.9: Two minima with
the boundary between their do-
mains of attraction. Deforming
the space (changing the metric)
moves this boundary.

the global minimum while NGD does not, may seem somewhat
surprising, but can be understood as follows: the boundary be-
tween two domains of attraction is the curve of steepest ascent
from the saddle point that separates them. (See figure 3.9.) With
a different choice of metric, local concepts of distance change,
and therefore so does the notion of steepness. This means that
boundaries between domains of attraction shift under such a
change. In our case, these changes work out such that NGD
students are more easily trapped in the local minimum, but we
have no evidence as to whether this is a more general property
of natural gradient descent: in other cases it could just as well
be the other way round. The important lesson is that NGD and
OGD do not necessarily prescribe the same trajectories through
weight space.

3.A Calculations

The calculations that were skipped in the main text are presented here.

3.A.1 The metric for N � 2 and general n

The following calculation leads to (3.3).
Insert (2.3) and (1.5) with (2.1) into (3.2). This yields:

g

x;n �

ττ � �

� �
1 � σ1σ2

ỹ �
1 � ỹ 	 � �

�

���� n � 2

∑
m � 3

� n � 2

∏
k � 3

� 1 � σkσk 	 1xσk � 1σk � 2 �
� �

σmσm 	 1δσm � 1 � τσm � 2

1 � σmσm 	 1xτ � 2

δτ � τ � �

���� ∑
3 � l � m � n � 2

� n � 2

∏
k � 3

� 1 � σkσk 	 1xσk � 1σk � 2 �
� σlσl 	 1δσl � 1σl � 2 � τ

1 � σlσl 	 1xτ
σmσm 	 1δσm � 1σm � 2 � τ �

1 � σmσm 	 1xτ � �

� � τ 	 τ
� ��
��
��� �

σ1 � � � ��� σ2 � n

�

24 PREDICTING FURTHER INTO THE FUTURE FOR N � 2

As before, any factors with k � m can be summed out directly. Thus the second and third
terms vanish all together, since the factor 1

1 � σmσm � 1xτ � is cancelled by the k � m factor of the

product, after which only one occurrence of σm remains, and obviously � σm � � 0. Thus we
have established:

gττ � �

n � 2

∑
m � 3

� �
1 � σ1σ2

ỹ �
1 � ỹ 	 � � m 	 1

∏
k � 3

� 1 � σkσk 	 1xσk � 1σk � 2 �
� δσm � 1σm � 2 � τ

1 � σmσm 	 1xτ �
σ1 � � � ��� σm

δτ � τ � � (3.4)

The averaging over σm can be performed:�
1

1 � σmσm 	 1xτ �
σm

�
1

1 � � xτ � 2 �

Next we compute for m � 4:� � m 	 1

∏
k � 3

� 1 � σkσk 	 1xσk � 1σk � 2 �
�

δσm � 1σm � 2 � τ �
σ3 � � � ��� σm � 1

�

�
1
2

�
m 	 2

∏
k � 3

� 1 � σkσk 	 1xσk � 1σk � 2 � �
σ3 � � � ��� σm � 2

�
τ
2

�
xσm � 2σm � 3

m 	 2

∏
k � 3

� 1 � σkσk 	 1xσk � 1σk � 2 � �
σ3 � � � � � σm � 2

�

The first term can be summed out, leaving just 1
2 . The second term can be computed iteratively:�

xσmσm � 1
m

∏
k � 3

� 1 � σkσk 	 1xσk � 1σk � 2 � � � y � � y 	
�

xσm � 1σm � 2
m 	 1

∏
k � 3

� 1 � σkσk 	 1xσk � 1σk � 2 � �
�

�����
� y � m 	 3

∑
k � 0

� y 	 � k � � y 	 � m 	 2
xσ1σ2 �

where we have defined ∑m 	 1
k � m

����� � 0.
Inserting these results into (3.4) we find

gττ � �
δττ �

1 � � xτ � 2
� �

1 � σ1σ2
ỹ �

1 � ỹ 	 � �

�

�
δσ1σ2 � τ �

n � 1
2

�
τ
2

2 � n

∑
m � 4

�
y � m 	 5

∑
k � 0

� y 	 � k � � y 	 � m 	 4xσ1σ2 � � �
σ1 � σ2

�

Using
n

∑
k � 0

xk
�

1 � xn � 1

1 � x
and

n

∑
k � 0

k

∑
i � 0

xi
�

n � 1
1 � x

� x � 1 � xn � 1 �
� 1 � x � 2 �

this leads to (3.3).

CHAPTER 4

THE ROAD TO LARGER N

For N larger than two, the method used to explicitly calculate the metric and generalization
error no longer works. One could introduce new parameters x � � tanh β � w1 � w2 � ����� � wN � � ,
but there will be more xτ’s than wi’s, which will lead to a metric that has less than full rank.
The inverse metric will then be ill-defined.

We shall perform the first few steps of the calculation of the metric in w-space to find out
where the trouble starts, and then consider various possible ways to proceed and the problems
connected with each. No concrete results have so far been obtained for N larger than two.

4.1 The metric in w-space

From the general expression (1.3) with

pw ��� � � p(input) � σ1 � ����� � σN � pw � σN � 1 � ����� � σN � n � σ1 � ����� � σN �

and (1.5) with (1.6) we obtain

g

w;n �

i j � β2 ∑
σ1 � � � � � σN

p(input) � σ1 � ����� � σN � �

�

�
N � n

∑
k � N � 1

N � n

∑
l � N � 1

� N � n

∏
m � N � 1

eβσmhm

cosh βhm

�
σkσlσk 	 iσl 	 j

e 	 βσkhk

cosh βhk

e 	 βσlhl

cosh βhl
�

σN � 1 � � � ��� σN � n

�

where we used the relation 1 � tanhx �
ex

cosh x and introduced hm
� ∑N

i � 1 wiσm 	 i.
Any factors with m

�
k and m

�
l can be averaged out to unity straightaway. Splitting the

remaining sum into terms with k � l and k �� l, we see that the latter vanish: suppose that k � l.
No factors with m � k remain. The factor e 	 βσkhk cancels against the factor with m � k in the
product. This leaves just one occurrence of σk in the entire expression. Thus the average over
σk can be taken, annihilating the entire expression.

Exchanging the roles of k and l in the above argument, it becomes clear that the only
surviving terms are those for which k � l. After averaging σk out as well, we are left with:

g

w;n �

i j � β2 ∑
σ1 � � � ��� σN

p(input) � σ1 � ����� � σN � �

�
N � n

∑
m � N � 1

� � m 	 1

∏
k � N � 1

eβσkhk

cosh βhk

�
σm 	 iσm 	 j

1

cosh2 βhm
�

σN � 1 � � � � � σm � 1

� (4.1)

25

26 THE ROAD TO LARGER N

The next step would be to calculate p(input) � σ1 � ����� � σN � , but the analogue of (2.2) for general N
contains expectation values of products of up to N spins, and the recursion relations encoun-
tered while computing these are far more tricky than the ones in appendix 2.A: not only are the
polynomials of higher order, but the scalar equation (2.13) is replaced by a matrix equation as
well.

The averaging over σN � 1 . . . σN � n poses additional problems, and the calculation of the
generalization error again involves computing the expectation value of various spins. Straight-
forwardly performing all these calculations without approximations seems to be out of the
question.

4.2 Alternative approaches

Several alternatives are worth considering, and I shall briefly list some of them here. I have
scarcely given any of them the amount of attention they deserve, and there is plenty of scope
for future work here.

4.2.1 High temperature approximation

It is possible to compute the metric in a high temperature approximation, but this is of limited
value, since the learning process will inevitably lead to large values of the parameters wi, as zero
error is attained only in the limit where some of the wi’s become infinite. The high temperature
limit becomes more relevant if the learning task is altered by imposing ∑ � wi � 2 � 1.

4.2.2 Only one output bit

If we limit ourselves to n � 1, (4.1) reduces to the metric for a single stochastic binary neuron
(with a somewhat unusual input distribution). Although it is not easy to obtain analytic results
because of the difficulties in computing the input distribution, various approximation schemes
could be tried. It is a considerable advantage that the output conditional distribution can be
calculated exactly, because this makes it possible to guarantee that the approximation of the
metric is invertible.

4.2.3 Large n limit

Another possibility would be to consider the large n limit for finite temperature. However,
for both N � 1 and N � 2 the generalization error trivializes in this limit, making learning
irrelevant, and there does not seem to be much reason to assume that for larger (but finite) N
this will be any different.

4.2.4 Large N limit

The large N limit is certainly interesting, but highly non-trivial, since it involves infinite dimen-
sional Riemann spaces.

4.2 ALTERNATIVE APPROACHES 27

4.2.5 Calculation of E in terms of other variables

One could attempt to generalize the method used for N � 2: although the space spanned by
x

τ �

� tanh β � w1 � w2 � ����� � wN � has dimension 2N 	 1 and is therefore degenerate for N larger
than two, this does not stop us from trying to express the error in terms of these variables. For
N � 3 I was able to obtain a recursion relation similar to (2.12), but it resulted in a third order
polynomial equation with matrix valued coefficients instead of the quadratic scalar equation
derived from (2.13). These equations will thus have to be solved numerically, but this might be
feasible.

4.2.6 Approximation of error and metric by simulation

One could try to approximate the generalization error simply by letting the student (and teacher)
generate a large number of bit sequences according to their respective probability distributions,
and compute an expectation value for the generalization error from the results. Some prelimi-
nary tests of this approach showed that a very large number of measurements must be taken to
obtain a reasonably accurate estimate.

It is not clear whether it is worthwhile spending a lot of effort at each time step just to get
a rather poor estimate of the error.

4.2.7 Online learning

This leads us to the final possibility: not to attempt to get a good estimate of the generalization
error at all, but just use the error obtained from a single example and a single run of the student
network, in other words, do online gradient descent. It will be interesting to see if even in this
case using a rough approximation of the metric — possibly based on the same online data as
the estimate of the error — offers improvement of learning times over OGD online learning. A
good starting point might be the n � 1 regime since this allows a relatively safe approximation
for the metric.

CONCLUSIONS AND OUTLOOK

We have investigated whether natural gradient descent (NGD) learning as proposed by Amari
[2] offers a substantial improvement in terms of learning times over ordinary gradient descent
(OGD) learning for Kanter’s bit generator, a time series generator that constructs an infinite
stream of bits from a small number of initial values, each successive bit being the output of a
stochastic binary neuron presented with the previous N bits as input. For one output bit and one
or two input bits, we have shown analytically that the achieved generalization error decreases
exponentially with time for NGD learning, while OGD learning yields a generalization error
that decreases linearly with one over the learning time. These results hold for any value of the
teacher weights, independently of noise levels.

For two input bits and more than one output bit, we were able to calculate the metric
exactly, and we used computer simulations to find the evolution of the training error with time.
For generic values of the teacher weights, NGD was again found to yield exponential decay of
training error, while OGD gave power law decay. The simulations indicate that the exponent
of the latter varies between 0 � 95 and 1 � 05 in the bulk of teacher weight space, but we do not
have enough evidence to conclude that this exponent actually differs from one (the value found
analytically when predicting only one future bit). In some areas of teacher weight space the
generalization error function was found to contain local minima. In part of these areas learning
was slowed down considerably, as the student spent time hovering on the edge of the domain of
attraction of that minimum. In other parts the students actually ended up in the local minimum.
For a small region of teacher weight space the OGD student escaped to the global minimum,
while the NGD student did not. This perhaps unexpected result is possible because a change of
metric induces a shift in the boundaries between domains of attraction, which can theoretically
put either OGD or NGD at an advantage.

Considering more than two input bits makes the calculations substantially more difficult,
and in fact we could not find a simple expression for the metric in this case. Several options for
proceeding beyond two input bits are described in the last chapter. It would be most interesting
to compare NGD with OGD in an online learning scenario. The first regime to be considered
should be a student that predicts only one output bit, since this would allow for comparison
with results obtained for stochastic binary neurons [4]. An important question would be how
much effort should be invested in obtaining an estimate for the metric relative to the amount of
effort invested in the estimate of the generalization error. A priori it is uncertain whether a poor
guess of the metric is better than no guess at all, but our findings indicate that NGD learning
could offer huge time savings.

29

BIBLIOGRAPHY

[1] S. Amari, Differential-geometrical methods in statistics, Lecture notes in statistics,
Springer-Verlag, Berlin, 1985.

[2] A. Fujiwara and S. Amari, Gradient systems in view of information geometry, Physica
D 80 (1995) 317.

[3] S. Amari, Natural gradient works efficiently in learning, Neural Computation 10 (1998)
251.

[4] M. Rattray and D. Saad, Transients and asymptotics of natural gradient learning, Sub-
mitted to ICANN 98, 1998.

[5] A. C. C. Coolen, Information theory in neural networks, lecture notes of course G31/NN4,
available from KCL Math. dept., July 1998.

[6] E. Eisenstein, I. Kanter, D. A. Kessler, and W. Kinzel, The bit generator and time-series
prediction, cond-mat/9502102.

[7] A. Priel, I. Kanter, and D. A. Kessler, Noisy time series generation by feed-forward net-
works, cond-mat/9803267.

[8] R. d’Inverno, Introducing Einstein’s relativity, Clarendon Press, Oxford, 1992.

[9] D. A. Wagenaar, Information geometry for neural networks, Thesis for KCL Math. dept.,
available from author, April 1998.

[10] J. M. Corcuera and F. Giummolè, A characterization of monotone and regular diver-
gences, Accepted by Annals of the Institute of Statistical Mathematics, 1998.

30

