
Navigating a 2D world using a 1D compound eye

— project report for CNS 186: “Vision” —

Daniel Wagenaar, March 2002

An artificial fly is developed that navigates a two dimensional maze
using a one dimensional eye to avoid obstacles. Biologically plausible
spatiotemporal filters are constructed as the basis for optic flow esti-
mation. Flow is subsequently calculated using a modified population
vector algorithm. Equations are derived for optic flow in an infinite
tunnel and when approaching an infinite wall. These equations are
used to construct a cell that chooses appropriate evasive maneuvers
based on estimated optic flow. The model can be extended easily to in-
clude goal seeking behavior, and the results of the first attempt at such
an extension are included.

Introduction

“How on earth do they do it?” — This is a question that drives a lot of neuroscientific research in
insects. True, an even larger body of research focuses on how we do it, but the relative simplicity
of insect nervous systems make them an attractive subject. In this project, I’ll consider how simple
biologically plausible control systems can navigate through a maze without crashing into the walls.
I will not attempt to follow the architecture of any particular insect, but I will use only processing
elements in my design that biology could easily implement.

To reduce the amount of CPU time needed for experiments I will use a one dimensional eye to
navigate a two dimensional world, rather than attempting the more realistic 2D eye in 3D world
case. This will simplify some of the mathematics, while still retaining much of the flavor of the
problem. Most importantly, it will greatly simplify visualizing the motion of the creature — which
I shall henceforth refer to as ‘fly’, even though it is obviously much simpler than a real fly. Also, I
shall use the word ‘retina’, simply because it is so much shorter than the more correct ‘photoreceptor
array’.

Engineering

From retinal input to flow

I’ll operate under the assumption that it is necessary to have an estimate of optic flow in most parts
of the visual field in order to do navigation. This may not in fact be the case, and it would be

1

interesting to study the performance impact of using (far) fewer processing elements.

The most mathematically straightforward way to estimate optic flow, is a gradient method: if
����������

is the intensity of light impinging on the retina, we can estimate flow 	 as:

	 ���
���
��� ������
(I will use

�
exclusively to denote retinal coordinates.)

This method is not necessarily the most attractive one though. Computationally, stability issues oc-
cur in areas with little contrast, and physically, the underlying assumption — the intensity reflecting
of an object staying constant — may not always be true.

An alternative class of flow estimators, which I shall use here, employs spatiotemporal filters that
are tuned to a particular spatial and temporal frequencies � and � . The outputs ��� of a collection of
such filters can then be used to estimate flow using a population vector approach:

	 ���
����� � ��� ���
� ����� ���� � ��� ���
� �
(In fact, as I will show below, while this approach may work for narrowly tuned filters, a slightly
more sophisticated combination of outputs is required for broadly tuned filters.)

In silicon, one could easily construct spatiotemporal Gabor-like kernels:!#"%$ � &' (#)+*-,,/.103254 � �76 ��8:9<; =?>@BA @C @ =?>@<D @E @�F
which give beautiful spatiotemporal impulse responses (Figure 1).

However, implementing arbitrary spatiotemporal filters biologically is not easy. Luckily, it is pos-
sible to approximate these filters by cleverly combining simple spatial filters with temporal filters
[Adelson and Bergen, 1985]. They observe that combining a pair of spatial filters such as sine and
cosine patches with a pair of temporal filters of different time constant yields spatiotemporal filters
much like the ones depicted above in a biologically plausible way. I shall follow that approach,
though I will use slightly different filters.

Spatial filters

To avoid phase dependency, it is preferable to use a quadrature pair of filters: two orthogonal spatial
kernels GIH and G = whose impulse response quadratically adds to a Gaussian:GKJH 6 GKJ= � ! J �
The most straightforward choice for a quadrature pair of spatial filters would be a sine and a cosine
modulating a Gaussian:

GKLH � &M N O<P)+*-, 4�QSRP 9 ;<T >@+U @C @ GVL= � &M N O<P ,W.10 4BQSRP 9 ;XT >@YU @C @ F
2

θ

t

θ

t
Figure 1: An array of gabor filters tuned for spatial and temporal frequency could be used to estimate
local optic flow. These mathematically perfect space-time responses cannot be obtained in biology
quite so easily though.

where Q � N �Y�Y��� roughly defines how many positive and negative lobes the filter has.

However, these have the unwelcome property that G LH responds to DC stimuli as well as to gratings,
because � G H�� R�����

. So, I decided to choose an alternative pair that does not suffer from this
problem.

Consider the family of filters:

G
	���
H � &M N O<P)+*-,�� Q�RP � & 6�� R J ��� ; T >@ U @C @ G
	���
= � &M N OSP ,W.10�� Q�RP � & 6�� R J ��� ; T >@ U @C @ �
By varying

�
, it is possible to balance � G�	���
H � R ���

, at least if Q�� N ��� . Results are shown in
Figure 2.

As always, there is a price to be paid. In this case, the spatial frequency response curve of the
filter is slightly broadened. This broadening is likely to reduce the S/N ratio of estimators based on
these filters, but informal tests showed that the effect was negligible compared to the advantage of
DC-tolerance.

I used
P

values of 1.5 to 6 photoreceptor distances.

Temporal filters

In keeping with my aim of biological plausibility, I explored the possibilities of filters that can be
built simply from passive dendrites. If a dendrite is modelled as a sequence of low-pass RC filters,

3

Figure 2: Impulse responses of the spatial filters G H andG = . Also plotted is the quadrature sum � G JH 6 G J= ,
showing that the envelope of the two filters is in-
deed a Gaussian. For reference, the unbalanced fil-
ters � ,/.10 F)+*-,�� � QSR � P �����	�3��
 R J � N P J � are also shown
(dashed curves). −1 −0.5 0 0.5 1

K
+

K
−

sum
cos
sin
sum

the output � of a dendritic delay line obeys the following differential equation if driven by input R :� & 6 ��
 ���8 ����� � � R F
where

 �����
and � is the number of elements. In the limit ����� this reduces to a perfect delay

line, but I’ll stick to low � . I wanted to have a pair of filters with impulse responses that produce
a smooth curve without any local extrema when added in quadrature. Denoting the � -th order low
pass filter with time constant

as G 	��
� , I found that the following pair fits the requirements:

G�� � G�	��

 G�	!�
"#" G%$ �'& & �(G
	!�
" L
 & �& � & & �(G
	!�
"*) F
where + and , refer to short and long. Figure 3 demonstrates that these filters produce a reasonably
smooth envelope when added in quadrature.

In the following,

values of 1.5 to 6 timesteps will be used, and a timestep will be taken to cor-
respond to 1 ms. (Although this means that the simulation cannot be run in real-time, it is still
preferable to larger timesteps which could easily lead to temporal aliasing when the fly moves
through the world at reasonable velocities.)

Spatiotemporal filters

Multiplying G $
against G�$.- � yields the separable spatiotemporal filters shown in Figure 4. By

subtracting and adding pairs of these filters, a set of approximations to gabor patches is obtained
(Figure 5). These are the basic velocity detecting filters I shall use in the following experiments.

Pre-filtering: spatial antialiasing

When images projected onto a real eye contain very high spatial frequencies, the result is a blur,
because of refraction in the lens and eyeball. This is actually a very important feature, because if

4

Figure 3: Impulse response of G $ and G � . For

reference, the quadrature sum � G J$ 6 G J� is
also plotted, showing that the filters produce a
smooth envelope.

0 5 10 15 20 25 30 35 40 45 50
Time

F
ilt

er
 o

ut
pu

t

short
long
sum

K
short

 K
+

K
short

 K
−

K
long

 K
+

K
long

 K
−

Figure 4: Combining the spatial filters G $ ���
�
with the temporal filters G $.- � � 8 � results in four

separable spatiotemporal filters.

K
short

 K
+
 − K

long
 K

−
K

short
 K

−
 − K

long
 K

+
K

long
 K

+
 + K

short
 K

−
K

long
 K

−
 + K

short
 K

+

Figure 5: The separable filter responses shown in Figure 4 can be combined to yield velocity tuned
responses. The left moving pair is in approximate quadrature as is the right moving pair.

5

Input
from
world

Spatial
anti-aliasing

(low pass filter)

Sampling
("retina")

Quadrature
sums for

left- and right-
movers

Temporal
filtering

(10 filters per
pixel)

Flow
estimator

Spatial filtering
for every pixel
(10 filters per

pixel)

Figure 6: Schematic of optic path and early visual system. For a 180 pixel eye (1 pixel per degree,
spanning &�� ���), 5 spatial filter pairs and 5 temporal filter pairs per pixel, there are a total of &�� ��� � �N

neurons involved in spatial filtering, followed by &�� ��� � � � � N neurons to calculate the quadrature
sums after the temporal filters (which are implemented by the neurites between the spatial filters and
the quadrature sum calculators).

frequencies higher than half the inverse separation between adjacent photoreceptors were allowed to
reach the photoreceptor array, spatial aliasing would result, which cannot be removed in subsequent
processing stages. The result would be confusion, because the aliased pattern might move with a
very different velocity than the object generating it. I therefore apply a low pass filter to the image
before feeding it into the retina.

The big picture

A schematic of the optical system presented above is given in Figure 6. The final result is a set of
spatiotemporal filters as follows:G $ " ��� F 8 ����� G � � 8 � GIH ���
�
 G $ � 8 � G = ���
�
	���
I���
� F

G%$ J ��� F 8 ����� G�� � 8 � G = ���
�<6 G%$ � 8 � G H ���
�
	���
I���
� F
G�� " ��� F 8 ��� � G � � 8 � GIH ���
�
 G $ � 8 � G = ���
� 	 ��
I���
� F
G�� J ��� F 8 ��� � G � � 8 � GIH ���
�
 G $ � 8 � G = ���
� 	 ��
 ���
� F

where

refers to the spatial filter implemented by the eye: anti-aliasing and sampling, and , and�
refer to left- and right-moving.

To obtain phase-free outputs from these, I take low-pass filtered the image
�

and compute the
quadrature sums:� 	 $
 � � G $ " � 	 J 6 � G $ J � 	 J�� � 	 �
 � � G�� " � 	 J 6 � G�� J � 	 J �
Estimating flow from filter outputs

Of course there isn’t just a single � 	 $.- �
 pair for each position in the visual field; there are several,
one each for a range of spatial and temporal wavelength

P
and

. To make the system sensitive to a

wide range of spatiotemporal frequencies, I chose a logarithmically distributed set of values:P � � & ��� � N ��� J for � � � � ��� �
�� � & ��� � N � � J for � � � � �����
6

Figure 7: Example training
movie. Notice the course an-
gular resolution. Retinal position θ (deg)

T
im

e

−40 −20 0 20 40

20

40

60

80

100

120

140

160

180

200

I experimentally determined the spatial frequency � � � and temporal frequency � � � of the peak of
each filter �-� - � and calculated the peak velocity ��� � ����� �� � � , rather than relying on the zeroth order
estimate ��� ���
	 �� � .

To do this, I generated a large number of training stimulus movies such as the one shown in Figure 7,
with a fixed and well-known spatal and temporal frequencies � , � . I generated 10 such movies at
each of 29 values of � and 21 values of � . The result of training is shown in Figure 8.

A simple population vector approach for estimating flow at a given retinal position
�

would now be:

	 L ���
��� � � � 4 � 	 �
� �
 � 	 $
� � 9 � � �� � � 4 � 	 �
� � 6 � 	 $
� � 9 �
However, this turns out to be strongly bias in favor of intermediate values of flow, since each filter
is rather broadly tuned. To counter this bias, I attempt to find a better estimator in the family:

	 ���
��� Q � 	 L ���
�
� � �
(This particular equation works well to stretch the range back to reality because the individual filters
are positioned logarithmically in velocity space.)

The system was calibrated using the same set of stimuli used for determining the peak locations,
resulting in Q � (������� & ��� N F �V� N ��� ��� � � & N �
(Quoted uncertainties are based on splitting the training set in 10 different ways.)

The results of calibration are shown in Figure 9.

7

0.016 0.031 0.062 0.125 0.250 0.500
0.004

0.008

0.016

0.031

0.062

0.125

0.250

0.500

T
em

po
ra

l f
re

qu
en

cy
 ω

Spatial frequency k
0.125 0.250 0.500

0.016

0.031

0.062

0.125 1.5:1.5

 1.5:3

 1.5:6

 3:1.5

 3:3

 3:6

 6:1.5

 6:3

 6:6

Spatial frequency k

T
em

po
ra

l f
re

qu
en

cy
 ω

Weighted peak locations

Figure 8: The tuning curve for one of the filters (left; black is strongest response) and the peak
locations of all � � � filters (right). Selected filters have been labeled by their parameters in the formP��

, measured in photoreceptor distances and timesteps respectively. (The white trangles are an
artifact introduced jointly by matlab and my printer. Sorry.)

Using flow for collision avoidance

I want to use the estimated optic flow to make the fly avoid hitting walls. Therefore, it is necessary
to know how moving past simple shapes generates flow. That information can then be used to
construct decision-making cells that integrate (part of) the flow field against a suitable kernel.

0.5

1

1.5

2

2.5
Actual phase frequency (pix/step)

Spatial frequency k

T
em

po
ra

l f
re

qu
en

cy
 ω

0.0160.0310.0620.1250.2500.500
0.004

0.008

0.016

0.031

0.062

0.125

0.250

0.500

0.5

1

1.5

2

2.5
Results on test set (pix/step)

Spatial frequency k

T
em

po
ra

l f
re

qu
en

cy
 ω

0.0160.0310.0620.1250.2500.500
0.004

0.008

0.016

0.031

0.062

0.125

0.250

0.500

−0.2

0

0.2
Absolute test error (pix/step)

Spatial frequency k

T
em

po
ra

l f
re

qu
en

cy
 ω

0.0160.0310.0620.1250.2500.500
0.004

0.008

0.016

0.031

0.062

0.125

0.250

0.500

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Relative test error

Spatial frequency k

T
em

po
ra

l f
re

qu
en

cy
 ω

0.0160.0310.0620.1250.2500.500
0.004

0.008

0.016

0.031

0.062

0.125

0.250

0.500

Figure 9: Results of SVM calibration. Leftmost panel shows actual phase velocities (� � �). Second
panel shows the phase velocities extracted from test movies at various values of � and � . These
movies were not in the training set. The final two panels show the calibration errors, in absolute
terms (third panel), and as a fraction of the real velocities (rightmost panel). Calibration is seen to
work well for velocities up to two pixels per timestep.

8

Figure 10: Moving through a
straight tunnel.

φ v

θ

w w

x

P
O

-v

v’

r

Moving through a straight tunnel

Assume the fly is moving through an infinite tunnel, as shown in Figure 10. The motion is not
necessarily parallel to the tunnel, nor is the fly located in the center of the tunnel.

Noticing that for parts of the eye that view the right wall:�
 R� �)+*-, ����� �
��%
 �
��� ,/.10 ���36 ��� F
one finds: 	 ������� ���� � ��
 R ,/. 0 ��� 6 �
� ,/.10 �

for
�
	
�� �

Similarly, one obtains:

	 ���
���
 �� 6 R ,/.10 ���36 �
� ,/.10 �
for

�
�
�� �
The aim of the game is to obtain a robust estimate of R and

�
from the observed 	 ���
� , or rather, an

estimate of �
 R
 �
?,/. 0 � , the estimated distance from the wall some time

in the future. There
doesn’t seem to be a direct way of doing this, so I tried several integration kernels to search for a
useful indicator. Specifically, I considered:

��� ��� = �=�� 	�� � �76�� �
� 	�� � �

for � � & , � � ,/.10 �
and � �)+*-, �

and various values of Q � � � � �Y�Y� &�� � � , and
�V� � � �Y�Y� Q .

I found that a robust signal that determines which wall is most immediately dangerous can be ob-
tained using � � & , Q ����� �

,
�K� � � � . Figure 11 shows that

� " is generally positive when crashing
into the right wall is imminent, or negative if crashing into the left wall is imminent.

9

Figure 11: The value of
the danger detector

� " as
a function of position R � �
and heading

�
. The black

line marks the ‘safe’ head-
ing for a given position.
The white lines mark the
edge of the region where
the correction signal grows
monotonically with head-
ing. Only when approach-
ing one of the walls al-
most head-on does

� " give
a false sense of security.

−1.5

−1

−0.5

0

0.5

1

1.5

x/w

φ
(d

eg
)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−80

−60

−40

−20

0

20

40

60

80

Moving towards a flat wall

Since the tunnel following signal becomes unreliable at large deviations
�

, another signal must be
computed to deal with looming walls. In the situation depicted in Figure 12, the flow as a function
of retinal position is: 	 ���
��� � ,W.10 ��

)+*-, ���
 �X�)+*-, � �
In this situation it is useful to calculate

� � ��� �=�� 	�� � � F
with kernels � as before.

For any value of Q , one finds

� "�� � = "���� 0 � �	��

� � � = " �
Thus,

����

�
is a useful indicator of impending head-on collisions, and the sign of

� " or
� " may be used

to choose which way to turn to avoid that collision. It seems reasonable to pick Q � � � � , because
that way the estimate is not too sensitive to walls on the side, and the interference between tunnel
and head-on warning detectors is minimal. (Much smaller values would be bad, because optic flow
near the center of expansion is very small leading to very noise estimates.)

Motor control

At every timestep,
� " and

� ��

�
are calculated. The results are average over 7 timesteps for added

stability. Unless the average
����

�

is larger than a critical value,
� " is passed through a sigmoid to

10

Figure 12: Moving towards a
flat wall.

φv
θr

P

O

determine the desired correction to heading:

� � ��� ��� 0�� � Q � " � F
where

� � � � � and Q is manually tuned to obtain reasonable behavior. The correct is applied
instantaneously, and for the next 30 timesteps the optic flow is ignored because it is known to be
polluted by ego-rotation. (Correcting for this pollution would be a straightforward improvement of
the algorithm.) The result is saccadic motion, not unlike a real fly’s: straight stretches interspersed
with sudden changes of heading. Of course, it would be more realistic to control angular accelera-
tion rather than angle directly, but that would make the control harder, because ego-rotation cannot
be ignored in that scheme.

If
�	��

�

does exceed a critical value, the fly is apparently in immediate danger of crashing into a wall,
and a much stronger escape maneuver is initiated:

� � ��� � ��� 0�� � Q � � " � F
where

� � � � � � and Q � � � Q .

Experiments

Maze navigation based on perfect flow estimation

Before applying the object avoidance functions
� " and

�	��

�
to the difficult problem of navigation

based on estimated optic flow, I shall test them on a simpler problem: motion based on a perfect
estimate of flow. Since my fly moves about in a computer generated world, presenting it with the
true velocity map is trivial. Figure 13 shows motion through a typical maze. It is seen that the
navigation is consistent and appropriate. Figure 14 demonstrates stability of trajectories.

To test robustness of the method, I added Gaussian noise to the velocity map with the noise power
equal to the signal power. This barely affected the trajectory followed (Figure 15). Even adding
Gaussian noise to the motor output (

P � & � � at every decision point) did not cause the fly to crash
into walls, although the trajectory is now more erratic (Figure 16).

11

Figure 13: Maze navigation based on perfect flow estimation. Decision points are marked by black
dots and enumerated by blue numbers. The fly is seen to follow the center of local tunnels quite
well, except when a wall is approached from the sharp side (decision points 40–44). As observed by
Abbott [1884], sharp edges are dangerous, because they are essentially invisible. As soon as the fly
notices the sharp wall, a panic reaction (red dot at 45) is initiated, which takes it away from the wall.
A number of other panic reactions also occurred (red dots). These are less obviously appropriate.

12

Figure 14: The trajectory resulting
from another starting point. After a
single loop through the world a sta-
ble limit cycle is reached.

Figure 15: Maze navigation based
on perfect flow estimation polluted
by noise of equal power. The noise
hardly affects the trajectory at all
(cf Figure 13). This is probably the
result of the integration involved in
calculating

� " as well as the averag-
ing over several timesteps.

13

Figure 16: The same polluted flow estimation as in Figure 15, with added noise in the output stage:
Adding & � � worth of Gaussian noise to the heading corrections

� �
does affect the trajectory, but it

doesn’t prevent the fly from avoiding walls, although the number of panic reactions is significantly
increased. Unsurprisingly, the trajectory is rather more erratic.

14

Figure 17: Estimated optic flow
(top, red) and actual velocity
field (black) while the fly nav-
igates the maze. While the es-
timate roughly matches reality,
it is clear that the noise is sub-
stantial. The retinal image at
the time this estimate was made
is shown below the graph. The
result of anti-alias filtering is
clearly visible in the blurring
of the perceived patterns com-
pared to Figure 7. Retinal co-
ordinates are

6 ��� �
at the ex-

treme left through

 ��� �

at the
extreme right.

−80−60−40−20020406080
Retinal position θ (deg)

A maze with randomly patterned walls

Finally, I let the fly loose in a world where it had to rely on its own flow estimation. The walls in
the worlds used in Figures 17 sqq are decorated with the same kind of random block patterns used
for training the detectors (Figure 7), with 250 blocks per line segment.

Unlike in the real world, flying through walls is not actively prevented by the physics of my sim-
ulation. It would perhaps be more realistic to have the fly bounce, like real flies do on windows,
but I didn’t want to waste CPU time on external collision detection. Thus, in the following runs,
violations of walls happen occasionally.

Discussion

Overall, the fly manages to avoid walls reasonably well. In straight sections of tunnels, the flow
based algorithm performs adequately. In narrow spots the fly tends to panic and fly through walls,
and it also has a tendency to see sharp edges too late. In wide open areas the fly tends to lose its
sense of direction. This is not as big a problem as the other two, because it can be attributed to the
fly not having any goal in mind except avoiding walls. Buzzing around in circles is an acceptable
response to that challenge.

Tests with God-given perfect flow values showed that my simple navigation algorithm is quite robust
against (white) noise in the flow estimate, as well as in the motor output. Noise robustness was not
tested with estimated flow, because the noise in flow data was already quite large (Figure 17).

15

Figure 18: Maze navigation based on realistic flow estimation. The fly is considerably more panicky,
and has more trouble with pointy edges. In fact, it is seen to disrespect walls more than once in this
short sequence as a result of approaching a sharp angle. One other violation (near decision point 87,
see overlay) can be understood by noticing that the immediately preceding panic rotation (86) was
not strong enough to take the fly away from the wall. Since the wall’s texture has no power at very
high frequencies, it appears (nearly) uniform at extreme proximity, causing the velocity estimators
to fail miserably.

16

Figure 19: This is what the fly saw
while performing the navigation de-
picted in Figure 18: slide a ruler
from bottom to top to view this graph
as the movie it really is. (Because we
are used to seeing more flow below
us than above us, I found it easier
to view this “1D movie” with time
flowing upwards, hence the change
of convention.) Retinal position θ

D
ec

is
io

n
po

in
t n

um
be

r

−80−60−40−20020406080

10

20

30

40

50

60

70

80

90

100

110

17

Figure 20: Another run with the
same parameters (but differently pat-
terned walls). In straight tunnels the
fly does quite well, but it has severe
trouble with sharp points and in nar-
row spots. In wide open areas the
motion is quite erratic. If the fly had
a goal in mind, its motion might be-
come straighter

Figure 21: Increasing the threshold
for panic behavior while increasing
the high-frequency content of the
wall patterns does not make for an
obvious change in trajectories (but
the number of panic responses is re-
duced signigificantly).

18

Stumbling blocks

When I first proposed this project, I had much higher levels of behavior in mind: I would have liked
to replicate behaviors described by Kern et al. [1997], Srinivasan et al. [1999] and Srinivasan et al.
[2000]. However, it turned out that even constructing a flow estimator good enough for navigation
was a significant challenge, so I focused on that. More goal oriented behaviors would be an exciting
follow-up. Below, I will highlight some of the problems I ran into.

Sinusoidal worlds

The first generation of flow detectors I constructed were trained on sinusoidal patterns. They looked
extremely promising, exhibiting very linear responses over a wide range of velocities. However,
when I tried them on a world with richer frequency contents, such as random patterns, I found that
they failed miserably.

Gaussian patterns: 2D vs 3D

Before settling on sharply defined patterns with anti-aliasing filters on the fly, I considered walls
patterns that were low-pass filtered white noise. These proved to be very hard to navigate, because
at large distances spatial aliasing did kick in, while at short distances the walls showed too little
texture for the filters to latch on to. In a way, this problem is exacerbated in 2D compared to 3D,
since 1D gratings have a much larger risk of exhibiting low-energy patches than 2D patterns do.
Thus, as for gradient methods, a 3D implementation might actually be easier to get to work than
this 2D one.

Directions and musings

Fewer processing elements

It is well known that real flies use rather few neurons in the highest stages of optic flow balancing,
culminating in a single identified cell, H1. My construction seems extremely clunky in comparison,
and yet the fly performs much better. It would be interesting to test whether having far fewer filters
has a negative performance impact on object avoidance. The smoothness of the estimated flow
depicted in Figure 17 suggests that this might not be the case.

Higher level behaviors

It would be attractive to add simple goal seeking to the present model. This could easily be done
by modifying the panic response to looming stimuli: if the looming object is attractive, fly towards
it rather than away, otherwise perform the evasive action currently implemented. A crude version
of this approach works, as evidenced by the trajectory and retinal movie shown in Figure 22, where
the fly has been given an innate liking for red things.

19

Retinal position θ

D
ec

is
io

n
po

in
t n

um
be

r

−50050

10

20

30

40

50

60

70

80

90

Figure 22: A trajectory of a fly with an innate liking for redness. It behaves the same as the flies
studied before, except when the majority of the central part of its visual field is filled by a red
object — in that case it turns towards the object rather than away from it. Blue crosses mark points
along the trajectory where such goal seeking dominated the behavior. Since the fly was closer to
a blue–green wall than to the target when the second target came within view, it lands right at the
edge: whenever it is flying towards the red, it turns towards the nearest wall as per its simplistic
goal seeking algorithm, and when it finds itself flying towards that wall, it panics and rotates away
from it. Etc. The decision points at which the targets were reached (36 and 97)stand out clearly in
the movie by the stretching of the pattern.

20

Biology vs software, simulation of physics

Once again, I had to learn the hard way that the world is very good at representing itself, and that
simulating it takes a lot of effort. It turns out that the majority of CPU time taken by this project was
used to do things that physics does automatically for real flies: spatial anti-aliasing and temporal
delay filters. Studies of the sort described here would be a lot easier with hardware that takes care
of physics more naturally. Efforts to equip robots with compound eyes ought to have a big impact
on the modelling community.

References

E. A. Abbott. Flatland. 1884.

E.H. Adelson and J.R. Bergen. Spatio-temporal energy models for the perception of motion. J. Opt.
Soc. Am., A2:284–299, 1985.

R. Kern, M. Egelhaaf, and M.V. Srinivasan. Edge detection by landing honeybees: Behavioural
analysis and model simulations of the underlying mechanism. Vision Res., 37(15):2103–2117,
1997.

M.V. Srinivasan, S.W. Zhang, J. Berry, K. Cheng, and H. Zhu. Honeybee navigation: linear percep-
tion of short distances travelled. J. Comp. Physiol. A, 185(3):239–245, 1999.

M.V. Srinivasan, S.W. Zhang, J.S. Chahl, E. Barth, and S. Venkatesh. How honeybees make grazing
landings on flat surfaces. Biol. Cybern., 83(3):171–183, 2000.

21

