FSMEM for MoG

Daniel Wagenaar, June 2000

FSMEM, or free split/merge expectation maximization, is a modification of the SMEM algorithm
presented by Ueda et al in [1]. Unlike SMEM, FSMEM can modify the number of clusters
dynamically. To compare likelihoods across solutions with different number of clusters, a
minimal description length term is used.

I will be using the FSMEM algorithm exclusively for optimizing mixture of Gaussians,
although the algorithm can be applied equally to other clustering problems. The following
symbols will be used:

K refers to the number of clusters. k is a dummy index enumerating clusters.

N refers to the number of data point. n enumerates data points.

D refers to the dimensionality of the space.

Vectors in data space will be denoted ¥ = (x!,...,xP). Inner product notation will be
used whenever convenient:

X-ZX= Z xh Zdldzxdz.
dy,dy

1 Mixture of Gaussians and EM

Mixture of Gaussians models a probability density function of the form

p(X) = Y Tip(X;0%),
k

where 7 are non-negative and sum to one, and 6, = {[i, %} are the parameters for a
Gaussian:

p(X;0f) = ; —les-ly

/@D dets

The standard EM learning algorithm for MoG consists of iterating the following steps:

1. Calculate responsibilities:

o)
" Sk T p(¥;Op)
2. Update parameters:
! ZH Rknfn
Ijk ZH Rkn
s — ZH Rkann(fn - H]I()(fn — H]I()T
g Zn Rkn
TG = Z Rkn-

These steps are to be iterated until the log likelihood L = ¥, p(¥}) converges.

1

2 SMEM by Ueda et al

This is the original SMEM algorithm by Ueda et al:

Initialize parameters as for EM.
Run EM until convergence.
repeat
Collect a list of merge candidates: pairs of clusters with their merge merits, and a list
of split candidates: clusters with their split merits.
Sort these lists, then
for all promising triplets {ky, , ku,;ks} do
Perform the split and merge operations.
Reinitialize the affected clusters.
Run partial EM on the affected clusters until convergence.
Run full EM on all clusters until convergence.
if the likelihood is better than before the merge/split then
Ignore the other candidates, and go back to the candidate collection step.
else
Restore parameters.
until no candidate produced better result than old one

The split candidates are ordered by their split merit:
fi(®)

]]((split) _ / dffk(x)logm,

where
n 5(9?_ J?n)Rkn
Zrl Rkn '
JPlit) js a measure of the KL distance between the local observed distribution f(¥) and the
model distribution p(X; ©).
Similarly, merge candidates are ordered by their merge merit:

Jilx) =

]]((I];I;lerge) = Z Rin Ryrn-
n

Note that split and merge merits are measured on different scales, so it is not possible to
sort split and merge candidates together. Ueda et al state that it is only necessary to test
about 5 promising candidates at each iteration, but they do not specify how they weigh
split and merge merits together.

Initialization of parameters after a merge is as follows:

— 1 — —
g'= 5+ k)
1
=S+
m=T1§+Tb.

Note that no attempt is made to weight the parameters.

2

Initialization of parameters after a split is as follows:
o= H+ Vi,
where Vj is a small noise term. I choose to pick V from G(0, X).
3 ,=0,

where 0? is the largest eigenvalue of . Ueda et al use 0% = (det)!/P, but I had problems
with that approach in cases where = possessed some very small eigenvalues.

1
7-[-1’2 = E TL.
Partial EM is defined as EM acting on a subset K’ of clusters. The equations are the
same as for EM, except

T p(X; O) ©0)
kn?

R - —
o Skek T p(Xy; O)

where R;gl) are the responsibilities just after the split or merge. This modification ensures
that ek Rin remains constant during the partial EM, thus preserving normalization.

3 FSMEM

The proposed new FSMEM algorithm is subtly different:

Initialize parameters as for EM.
Run EM until convergence.
Let state be MERGE.
Let fail be zero.
repeat
if state = MERGE then
Collect a list of merge candidates.
Sort this list.
for all promising pairs {ky,, ,km, } do
Perform the merge operation. {This reduces K by 1.}
Reinitialize the affected cluster.
Run partial EM on the affected cluster until convergence.
Run full EM on all clusters until convergence.
if the MDL likelihood is better than before the merge then
Ignore the other candidates, let fail be zero again, and go back to the outer loop.
else
Restore parameters.
Let state be SPLIT.
Increment fail by one.
else
{So state = SPLIT}

Collect a list of split candidates.
Sort this list.
for all promising candidates k; do
Perform the split operation. {This increments K by 1.}
Run partial EM on the affected clusters until convergence.
Run full EM on all clusters until convergence.
if the MDL likelihood is better than before the merge then
Ignore the other candidates, let fail be zero again, and go back to the outer loop.
else
Restore parameters.
Let state be MERGE.
Increment fail by one.
until fail equals two.
Thus split and merge operations can now be executed independently. The algorithm starts
by looking for merge candidates, and continues to do that until it doesn’t find any. Then it
looks for split candidates, and continues to do that until there aren’t any successful ones.
Then it returns to scanning merge candidates, and so on until neither split nor merge finds
an improvement in the MDL likelihood

1 1

The second term here expresses the entropy in the parameters, and corrects for the scaling
of L with number of parameters.

4 Stability issues

4.1 Numerical

In several equations I found that numerical problems occurred when p(X) was so small it
was rounded to zero in the computer algorithms. This caused trouble when none of the
clusters was near a particular point. I solved these problems by adding a vanishingly small
constant € = 107 to some equations.

4.2 Fundamental

There is another, more fundamental stability issue identified by Ueda et al.: there are global
optima in parameter space corresponding to the appearance of clusters with vanishing
variance. To avoid being sucked into those, they suggest the following alternative for the
update step for the variance matrix:

ZI — Zrl Rkn(fn - “]i)(fn - u]I()T +A I.
k 271 Rkn+)\

(In their paper the A in the denominator is replaced by 1, but I believe that to be a misprint.)
I found good results for A ~ .01.

5 Results on artificial data

The SMEM algorithm was able to correctly find clusters in many cases where plain EM was
trapped in a local optimum. It could not always correctly reconstruct clusters that were so
much on top of each other that taking them apart didn’t yield much of an improvement in
log likelihood.

The FSMEM algorithm did just as well, with the added bonus that it could determine
the correct number of clusters automatically. Predictably, this worked best if the target
clusters were well-separated.

5.1 Two dimensional data

To gain some preliminary insight in the performance of the SMEM, I performed some runs
on two dimensional data. The original data are shown below together with the log likeli-
hoods! found by the various algorithms and the number of iterations they took. All results
based on five runs per source. Reported are mean and spread, even though the distribu-
tions are far from Gaussian.

h L L L L L L L _ L L L L L L L L L
-3 -25 -2 -15 -1 -05 0 05 1 15 -35 -3 -25 -2 -15 -1 -05 0 05 1 15

EM SMEM EM SMEM
logl: | —205+£32 | —182+0 logl: | —95+154 160
iters: | 40+26 338 +£37 iters: | 2512 | 379+203

IModified by the MDL term discussed above for easy comparison with FSMEM results.

EM SMEM
logl: | —1450+154 | —1278 £132
iters: 24+17 269 +149

L L L L L
-1 -05 0 05 1

L L L
15 2 25 3

EM SMEM
logl: | 526 £165 | 613 +58
iters: | 21+14 | 114431

It is seen that SMEM does better than simple EM in all cases, and moreover produces much
more predictable results. However, there is a price to pay: the number of iterations is
much higher. (Iteration counts include iterations made in discarded steps.) These data sets
were generated using mog_gendata(2,1000,5, .3),i.e. D=2, N=1000, K =5 and typical
cluster size .3 spread over a typical area of size 1.

5.2 Four dimensional data

After these tests, a more extended test series was done on four dimensional data, for EM,
SMEM and FSMEM together. In all cases FSMEM was able to find the correct number of
clusters, whether started from K =5 (the correct number of clusters), K =1 or K = 10.
These were the log likelihoods found in 5 runs for each of 10 sources:

Run EM SMEM FSMEM Kp =1 | FSMEM Ky =5 | FSMEM Ky = 10
01 376.48 £55.70 417.244+0.02 417.21+0.09 417.21+0.09 417.21+0.09
02 782.42+£294.98 | 969.08 £280.43 | 1094.50£0.00 | 1094.50 £ 0.00 1094.50 £ 0.00
03 29.59 +238.59 173.50+0.00 173.50+0.01 173.50+0.01 173.50+0.01
04 —197.61+£48.78 | —161.98+0.00 | —162.00+0.01 | —162.00+£0.01 | —162.00+0.01
05 406.12+150.98 | 570.17£0.00 570.124+0.04 570.124+0.04 570.12+0.04
06 136.20+£297.57 | 471.60+0.00 471.58+0.04 471.58 £0.04 471.58 +0.04
07 471.46 +252.24 708.11+0.00 708.11+0.00 708.11+0.00 708.11+0.00
08 90.66 £131.87 323.93+0.00 323.93+0.00 323.93+0.00 323.93+0.00
09 104.33 £98.83 175.02+0.00 175.02+0.00 175.02+0.00 175.02+0.00
10 225.83 +81.66 262.40+0.03 262.20+0.16 262.20+0.16 262.20+0.16

It is seen that FSMEM is at least as proficient than SMEM in avoiding local optima. Moreover,
its run-time is much more predictable: these are the iteration count statistics:

Run EM SMEM FSMEM Ko =1 | FSMEM Ko =5 | FSMEM K, = 10
01 376.48 £ 55.70 140.8+29.7 289.0+27.7 289.0+27.7 289.0+27.7
02 782.42+£294.98 | 179.41+44.2 206.6 £24.6 206.6 £24.6 206.6 £24.6
03 29.59+238.59 | 351.0+149.5 263.4+19.4 263.4+19.4 263.4+£19.4
04 —197.61+£48.78 | 509.0+104.5 275.4+36.9 275.4+36.9 275.4+36.9
05 406.124+150.98 | 381.0£200.4 228.2+44.8 228.2+44.8 228.2+44.8
06 136.20£297.57 | 259.8+£57.5 225.6+22.1 225.6+22.1 225.6+£22.1
07 471.46+£252.24 | 141.8+21.0 194.6 £21.5 194.6 +£21.5 194.6 £21.5
08 90.66+131.87 | 321.6+105.4 229.6+£21.5 229.6+£21.5 229.6 £21.5
09 104.33 £98.83 184.8+89.3 227.2+17.3 227.2+17.3 227.2+17.3
10 225.83+81.66 | 239.0+148.2 233.0+37.0 233.0£37.0 233.0+37.0

6 Results on real data

For a real test of the SMEM and FSMEM algorithms, I took a dataset of 15000 recorded action
potentials from a multi-electrode array with 60 electrodes and several thousand neurons
growing on them. These recordings consist of the electric potential measured over a period
from 1 ms before to 2 ms after the peak of the action potential. Each electrode typically
records from one to three neurons. MoG clustering can potentially be used to classify the
recorded spikes according to responsible neuron.

Here are a few examples of clustering results. For each, the clusters found are displayed
in two forms: a plot of yg vs y_s, i.e. the voltage right at the peak vs the voltage .2 ms
earlier, and a plot of spike width versus spikes height. Results for EM and SMEM are not
shown, because those algorithms are not able to judge the extract the number of clusters.

50

2400

a5
2200
40t
2000
35}
1800
30t
1600
25}

1400
20+

1200

1000} I

800 o 1 sk

600 L L L L L 0 L L L L L L L L L
1200 1400 1600 1800 2000 2200 2400 =70 -60 -50 -40 -30 -20 -10 0 10 20 30

Log likelihood: —40204 + 66. Iterations: 73 +22. Number of clusters: 3.

2300

2200 . e s 1 12} - -
2100+

2000

1900
1800 -

1700

1600

1500 L L L L L L L L
1750 1800 1850 1900 1950 2000 2050 2100 2150 2200

Log likelihood: —20170 + 34. Iterations: 44+ 11. Number of clusters: 2.

35

2 L L L L L L L
-25 -20 -15 -10 -5 0 5 10 15

2300

2200 sor

2100 251
2000 -
201
1900 -

1800

1700

1600

1500 L L L L L L L 0 L L L L L L L
1500 1600 1700 1800 1900 2000 2100 2200 2300 -30 -25 -20 -15 -10 -5 0 5

Log likelihood: —97930 4+ 15. Iterations: 68 +12. Number of clusters: 3. (The blob on the
left consists of two, partially overlapping, clusters.)

In a few cases the algorithm found different number of clusters on different runs (not
shown).

Whether this way of clustering spike data is really useful will require some further
study. For example, I suspect that in many cases the spikes with positive height (rightmost
cluster in the righthand column) may not be physical, while some spikes detected wuth
very low height are a noise artifact.

7 The code

This section presents all the matlab code written for this project. Electronic versions are
available upon request.
The outer loop for SMEM:

1 function y = mog_smem(X,K,epsi,lambda)

2 % MOG_SMEM performs Ueda et al split/merge EM algorithm for mixture

3 % of gaussians.

4+ % Input: X: DxN data

5 % K: nr of clusters

6 % epsi: relative change of log likelihood used for termination

% lambda: fudge parameter to prevent zero—variance attractor
% Output: structure with members

% p: 1xK vector of mixing coefficients

% mu: DxK matrix of means

% sig: K cell vector of DxD matrices of variances

% likelies : successive local optima of log likelihood.

% iters : succesive iteration counts of em runs: even numbers

% refer to partial em runs. Discarded runs are included.

% Some constants:

max_iter = 100;

max_cands = 5;
split_init_epsi = .1;

par = mog_init(X,K);
likelies = zeros (0,1);
iters = zeros (0,1);

par = mog_fullem(X,par, epsi ,lambda);
iters = cat(1, iters , par. iters);

FIG =1;

fprintf (1, ’First run converged after %i iterations\n’,par.iters);
figure (FIG);
plot_mog (par, X);

for iter =1:max_iter;
FIG =3 - FIG;
figure (FIG);
fprintf (1, 'mog_smem: major iteration %i\n’, iter);
merits = mog_merits(X,par);

likelies = cat(1, likelies , par. likely);

for c=1:max_cands

m1 = merits. [merge(c ,2);
m2 = merits. [merge(c ,3);
for d=1:K

s = merits. Jsplit (d ,2);

if ((s = ml) & (s "= m2))

break; % found a candidate

end
end
% So now m1,m2,s are a merge/split triplet
disp(m1); disp(m2); disp(s);
para = mog_mergeinit(par , ml, m2);
para = mog_splitinit (para, s, m2, split_init_epsi);

fprintf (1, ' Trying candidate Z%i:\n’,c);
plot_mog(para, X);

59 para = mog_partialem(X,para, epsi ,lambda,[m1,m2,s]);
60 iters = cat(l, iters , para. iters);

6 fprintf (1, 'Partial EM converged after %i\n’ para.iters);
63 plot_mog(para,X);

65 para = mog_fullem(X,para, epsi ,lambda);
66 iters = cat(l, iters , para. iters);

68 fprintf (1, "Full EM converged after %i\n’ para.iters);
6 plot_mog(para,X);

7 if (para. likely > par. likely)

72 fprintf (1, " Improvement found from candidate %i\n’,.c);
73 break; % out of candidate test loop
74 end

75 end % for candidates
76 if (para. likely <= par. likely)

77 fprintf (’No more improvements available after %i major iters\n’,iter);
78 break; % out of main loop: split/merge didn’t produce better results

7% end

8 par = para;

s1 end

82

®
&)

fprintf (1, ’Final result:\n’);
st plot_mog(par,X);

85

8 Yy=par;

&7 y. likelies = likelies ;

88 Y. iters = iters;

The outer loop for FSMEM:
1 function y = mog_fsmem(X,K,epsi,lambda)

2 % MOG_FSMEMDW performs free split/merge EM: DWs modification of
3 % Ueda et al split/merge EM algorithm for mixture of gaussians.

4+ % Input: X: DxN data

5 % K: nr of clusters

6 % epsi: relative change of log likelihood used for termination

7 % lambda: fudge parameter to prevent zero—variance attractor

8 % Output: structure with members

9 % p: 1IxKvector of mixing coefficients

% mu: DxK matrix of means

% sig: K cell vector of DxD matrices of variances

% likelies : successive local optima of log likelihood.

% iters : succesive iteration counts of em runs: even numbers
% refer to partial em runs. Discarded runs are included.

e <
S S TR S =]

% Some constants:
max_iter = 100;
max_cands = 5;

= e
® N o

10

=

9
20
21
22
23
24
25
26
27
28
29
30

[

1
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

split_init_epsi =1;

par = mog_init(X,K);
likelies = zeros (0,1);
iters = zeros (0,1);

par = mog fullem(X,par, epsi ,lambda);
iters = cat(1, iters , par. iters);
likelies = cat(1, likelies , par. likely);

FIG =1;

fprintf (1, ’First run converged after %i iterations\n’par.iters);
figure (FIG);

next =1;
fail =.5;

for iter =1:max_iter;
plot_mog(par,X);
FIG =3 - FIG;
figure (FIG);
fprintf (1, 'mog_smem: major iteration %i\n’,iter);

merits = mog_merits(X,par);

if (next > 0)

% try to merge

merge_cands = size (merits . Jmerge ,1);

if (merge_cands > max_cands)
merge_cands = max_cands;

end

para. likely =—1e9;

for c=1:merge_cands
m1 = merits. Jmerge(c ,2);
m2 = merits. Jmerge(c ,3);

para = mog_mergeinit(par, m1, m2);
para = mog_truncate(para, m2);

fprintf (1, Trying merge candidate %i [%i %i]:\n’,cml,m2);
plot_mog(para, X);

para = mog_partialem(X,para, epsi ,lambda,[m1]);
iters = cat (1, iters , para. iters);

fprintf (1, ’Partial EM converged after %i\n’ para.iters);
plot_mog(para,X);

para = mog fullem(X,para, epsi ,lambda);
iters = cat (1, iters , para. iters);

11

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
17
118
119
120

fprintf (1, 'Full EM converged after 7%i\n’ para.iters);
plot_mog(para, X);

if (para. likely > par. likely)

fprintf (1, ' Improvement found from merge candidate %i. New K is %i\n’,clength(para.p));

break; % out of candidate test loop
end
end % for merge candidates
if (para. likely > par. likely)
par = para;
likelies = cat(1, likelies , par. likely);

fprintf (1, ’Setting par to para from merge. New K is 7%i\n’ length(par.p));

fail =.5;
else
fail = fail +1;
next = —1;
end
else

% try to split
split_cands = size(merits. Jsplit ,1);
if (split_cands > max_cands)
split_cands = max_cands;
end
for c=1:split_cands
s = merits. Jsplit (¢ ,2);
para = mog_extend(par);
s2 = length(para.p);
para = mog.splitinit (para, s, s2, splitinit_epsi);
fprintf (1, ' Trying split candidate %i [%i]:\n’,;s);
plot_mog(para, X);

para = mog_partialem(X,para, epsi ,lambda,[s,s2]);
iters = cat(l, iters , para. iters);

fprintf (1, ’Partial EM converged after %i\n’ para.iters);
plot_mog(para, X);

para = mog fullem(X,para, epsi ,lambda);
iters = cat (1, iters , para. iters);

fprintf (1, "Full EM converged after %i\n’ para.iters);
plot_mog(para, X);

if (para. likely > par. likely)

fprintf (1, " Improvement found from split candidate %i. new K is Z%i\n’,s2);

break; % out of candidate test loop
end
end % for split candidates
if (para. likely > par. likely)
par = para;

12

121 likelies = cat(1, likelies , par. likely);

122 fprintf (1, ' Setting par to para from split. New K is Z%i\n’ length(par.p));
123 fail =.5;

124 else

125 fail = fail +1;

126 next =1;

127 end

128 end

129

1o if (fail >2)

131 fprintf ('No more improvements available after %i major iters\n’,iter);
132 break; % out of main loop: split nor merge produced better results

133 end

134 end

135

136 fprintf (1,’Final result:\n’);
137 plot_mog(par,X);

138

139 y=par;

uo y. likelies = likelies ;

u1 Y. iters = iters ;

These use the following code for full EM:

1 function y = mog_fullem(X,par, epsi ,lambda)

2 % MOG_FULLEM implements the EM algorithm for mixture of Gaussians.
3 % Input: X: DxN data

+ % par: structure with members:

5 % p: 1xK vector of mixing coefficients

6 % mu: DxK matrix of means

7 % sig: K cell vector of DxD matrices of variances

8 % epsi: relative change of log likelihood used for termination

9 % lambda: fudge parameter to prevent zero—variance attractor

10 % Output: structure with members as par, plus
1 % likely: log likelihood at end of run

12 % Algorithm: Max Welling, in class notes for CS156b
138 % Coding: Daniel Wagenaar, April—May 2000
14

15 % some constants

16 max_iter =100;

17

18 % initialize parameters

19 mu = par.mu;

20 p = par.p;

21 8ig = par.sig;

22

23 N=size(X,2);

2 D=size(X,1);

» K=size(p,2);

26

7 old likely = —1e9;

28

N

13

» for iter =1:max_iter

30

31 lastiter = iter ;

32

33 % E step: compute responsibilities

s« norma = zeros(1,N);

35 R =zeros(N,K); % R(n,k) will be the responsibility of cluster k for point n
3% px = zeros(1,N);

7 for k=1:K

3 % This section is copied verbatim from mog_responsibility.m
3 s = sig{k};

10 siginv = inv(s);

a detsig = det(s);

) dx = X — repmat(mu(:,k),[1 NJ);

43 sdx = siginv * dx;

" expo = —.5x sum(dx . sdx ,1);

45 G = (1/sqrt(2«pixdetsig)) * exp(expo); % a 1xN vector of p(x|k)
46 pG = p(k)*G;

47 px = px + pG;

48 norma = norma + pG;

19 R(:, k)= pG’;

50 % End of copied section

51 end

52 likely = sum(log(px+1e—300));

53

s« if (abs((likely — old_likely)/ likely) < epsi)

55 break;

s end

57 old likely = likely ;

58

s9 for k=1:K
60 R(:;, k)= R(,k)./ (norma+1e—300)’;
61 end

62

6 % M step: recompute mu, sig, p

e for k=1:K

65 sumR = sum(R(:,k));

66 mu(:,k) = (X*R(;,k))./ sumR; % DxN * Nx1 = Dx1

67 dx = X — repmat(mu(:,k),[1 NJ);

68 Rdx = repmat(R(:,k) ",[D 1]) .x dx; % DxN

69 sig{k} = (Rdxxdx’ +lambdaxeye(D))/(sumR+lambda);
70 % sig{k} = (Rdx * dx')/sumR; % DxN x NxD = DxD
n end

7 p=mean(R,1);

73

7 end

75

76 % return parameters

7Yy.p=p

78 Y.MU = M

79 Y.sig = sig;

14

8o y. likely = likely — .5xlog(N)*Kx(1+D+.5%«Dx(D+1)); % Subtract MDL term
81 Y. iters = lastiter ;

82 return;
And this for partial EM:

1 function y = mog_partialem(X,par, epsi ,lambda,idx)

2 % MOG_PARTIAL implements the partial update alg for MoG from Ueda et al

3 % Input: X: DxN data

+ % par: structure with members:

5 % p: 1xKvector of mixing coefficients

6 % mu: DxK matrix of means

7 % sig: K cell vector of DxD matrices of variances

8 % epsi: relative change of log likelihood used for termination

9 % lambda: fudge parameter to prevent zero—variance attractor

10 % idx: index vector specifying which clusters should be updated

11 % Output: structure with members as par

12 % Algorithm: Max Welling, in class notes for CS156b and Ueda et al
13 % Coding: Daniel Wagenaar, April—May 2000

14

15 % some constants

16 max_iter = 100;

17

18 % initialize parameters

19 MUy = par.mu;

20 p = par.p;

21 sig = par.sig;

22

23 N=size(X,2);

u D=size(X,1);

» K=size(p,2);

26

27 % Compute initial responsibilities

28 R = mog_responsibility (X,par);

29 primalR = sum(R(:,idx),2); % Nx1 vector of primary total responsibilities
30

a1 old likely = —1e9;

32

33 for iter =1:max_iter

34

35 lastiter = iter ;

36

37 % E step: compute responsibilities

s norma = zeros(1,N);

3 R =zeros(N,K); % R(n,k) will be the responsibility of cluster k for pointn
0 px =zeros(1,N);

a for k = idx

2 % This section is copied verbatim from mog_responsibility.m
13 s = sig{k};

w“ siginv = inv(s);

45 detsig = det(s);

46 dx = X — repmat(mu(:,k),[1 NJ);

15

47 sdx = siginv * dx;

48 expo = —.5 x sum(dx .x sdx ,1);

49 G = (1/sqrt(2«pixdetsig)) * exp(expo); % a 1xN vector of p(x|k)
50 pG = p(k)xG;

51 px = px + pG;

52 norma = norma + pG;

53 R(:, k)= pG;

s« % End of copied section

55 end

56 likely = sum(log(px+1e—300)); % This is only the "local’ likelihood
57 % within the idx group

58

so if (abs((likely — old_likely)/ likely) < epsi)

60 break;

61 end

e old likely = likely ;

63

64 norma = primalR ./ (norma+1e—300)’;

65 for k = idx

66 R(:;,k)= R(:;, k) .x norma;

o7 end

68

© % M step: recompute mu, sig, p

70 for k = idx

7 sumR = sum(R(:,k));

72 mu(:,k) = (XxR(:,k)) ./ sumR; % DxN * Nx1 = Dx1
73 dx = X — repmat(mu(:,k),[1 NJ);

74 Rdx = repmat(R(:,k) ",[D 1]) .x dx; % DxN

75 sig{k} = (Rdxxdx" +lambdaxeye(D))/(sumR+lambda);
76 % sig{k} = (Rdx * dx')/sumR; % DxN x NxD = DxD
77 p(k) = mean(R(:k));

78 end

79

s0 end

81

82 % return parameters

s Yy.p=p

8 .MU = mu;

85 Y.sig = Sig;

8 Y. iters = lastiter ;

g7 return;

Initialization is done using:
1 function y = mog_init (X, K)
2 % MOG_INIT provides initialization for mixture of Gaussians EM.
3 % Input: X: DxN data
1 % K: number of clusters
5 % Output: Structure that can be passed to mog_fullem
6 % Coding: Daniel Wagenaar, April—May 2000
7
8

16

9 % initialize parameters

10 N=size(X,2);

n D=size(X,1);

12 p = (1/K) * ones(1,K);

13 idx = floor (rand(1,K)xN+1);

14 mu = X(:,idx);

15 datvar = diag(var(X’)); % a DxD diagonal matrix containing the data variance
16 for k=1:K

17 sig{k} = datvar / 40; % This is arbitrary, and not very clever
18 end

19

20 % return parameters

1 Yy.p=r

2 y.mu =muy;

23 Y.8ig = sig;

24 return;

This calculates the split criterion:
1 function | = mog_splitmerit (X,par,R)
2 % MOG_SPLITMERIT computes the split merit matrix for MoG SMEM
3 % Input: X, par: as for mog_fullem
+ % R: NxK responsibility matrix as from mog_responsibility
5 % Output: Kx1 split merit vector
6 % Algorithm: Ueda et al
7 % Coding: DW
8
9

% Jsplit k := int dx f k(x) log (f.k(x)/ p(x|theta k)),
10 % where f_k(x) := (sum_n delta(x—x_n) R_kn) / (sum_n R kn)
1 % This can be re—expressed as
12 % Jsplit_k := sum_n f_kn log (f_kn / p_nk), [1]
13 % where f kn := R kn / sum_m R_km and p_nk = p(x|theta k).
14 % This is not quite true: int dx delta(x—y) log delta(x—y)=f(x) [2]
15 % isn’t quite equal to log f(y), butI suspect Ueda et al haven’t
16 % been careful about this either. Strictly, of course, the integral
17 % [2] diverges. I suspect that the divergent term originates from
18 % the fact that the KL distance between a continuous and a discreet
19 % pdf is necessarily divergent. I hope the above prescription [1] is
20 % the sensible one.
21
2 MUy = par.mu;
23 p = par.p;
24 Sig = par.sig;
25
2% N=size(X,2);
27 D=size(X,1);
28 K=size(p,2);
29
30 [=zeros(K,1);
31
a2 for k=1:K
33 % This section is copied verbatim from mog_responsibility.m

17

34
35
36
37
38
39
40
41
42
43
44
45
46
47

s = sig{k};

siginv = inv(s);

detsig = det(s);

dx = X — repmat(mu(:k),[1 NJ);

sdx = siginv * dx;

expo = —.5 % sum(dx .x sdx ,1);

G = (1/sqrt(2xpixdetsig)) * exp(expo); % a 1xN vector of p(x|k)
% End of copied section

f=R(,k)./ sum(R(,k));

G =G +.00001;

idx = find (f>.00001);

J(k) = sum(f(idx).xlog(f (idx)./ G(idx) *));

end

And this the merge criterion:

1
2
3
4
5
6
7
8
9

function | = mog_mergemerit(X,par,R)

% MOG_MERGEMERIT computes the merge merit matrix for MoG SMEM
% Input: X, par: as for mog_fullem

% R: NxK responsibility matrix as from mog_responsibility

% Output: KxK symmetric matrix of merge merits

% Algorithm: Ueda et al

% Coding: DW

] = R'*R;

These are called through a small wrapper:

1
2
3
4
5
6
7
8
9

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25

function y = mog_merits(X,par)

% MOG_MERITS returns sorted lists of split and merge candidates.

% Input: X, par as per mog_fullem

% Output: structure with members

% Jsplit : Kx2 matrix of [merit; clusterno] rows

% Jmerge: (Kx(K—1)/2)x3 matrix of [merit, clusterno_1, clusterno_2] rows
% By definition clusterno_1 < clusterno_2 for all reported

% candidates.

% Note that split and merge merits cannot be usefully added

% directly: they are unfortunately defined on different scales.

K=size(par.p ,2);
R = mog_responsibility (X,par);

Jm = mog_mergemerit(X,par,R);
Jsplit = mog_splitmerit (X,par,R);

Jmerge = zeros(K«(K—1)/2,3);
idx =1;
for k=1:K
for I=(k+1):K
Jmerge(idx ;) =1[Jm(k,1), k, I];
idx = idx +1;
end

18

26 end
27
8 Jsplit = cat(2, Jsplit ,[1:K]");
29
30 [dummy, idx] = sort(—Jmerge (:,1));
1 y.Jmerge = Jmerge(idx ,2);
a2 [dummy, idx] = sort(— Jsplit (:,1));
s y. Jsplit = Jsplit (idx ,2);
Initialization after a merge is done by:

©w

1 function y = mog_mergeinit(par, k, 1, epsi)
2 % MOG_MERGEINIT (par,k,1,epsi) initializes the parameters for clusters k
3 % and 1 as the merges of cluster k and 1 into one. The result is
1+ % stored in cluster k, and p(1) is set to zero.
5 % Input: par: parameters as for all mog fns
6 Y% k: source cluster 1, also dest. cluster
7 % 1: source cluster 2
8 % Output: structure of updated parameters
9 % Alg: Ueda
10 % Coding: DW
11
12 y=par;
13
u y.p(k) = par.p(k)+par.p(l);
15 y.mu(sk) = (par.mu(,k)+ par.mu(,l))./ 2;
16 y.sig{k} = (par.sig{k} + par.sig{l })./ 2;
17 y.p(l)=0;
And after a split by:
1 function y = mog_splitinit (par, k, 1, epsi)
2 % MOG_SPLITINIT (par,k,l,epsi) initializes the parameters for clusters k
3 % and 1 as the split of cluster k into two. The original cluster 1
4+ % is destroyed. Normalization is lost unless par.p(l) was zero
5 % before the call.
6 % Input: par: parameters as for all mog fns
7 % k: source cluster, also dest. cluster 1
8 % 1: destination cluster 2
9 % epsi: scale of noise to be added to mean
10 % Output: structure of updated parameters
1 % Alg: Ueda/ DW
12 % Coding: DW
13
1 D=size(par.mu,l);
15
16 y=par;
17 y.p(k) = par.p(k)/2;
8 y.p(l) = y.plk);
19
20 [UDD V] =svd(parsig{k});
21 stddev = sqrt(diag(DD));
22
23 % Move centres away according to principal components:

19

u y.mu(s,k) = par.mu(;,k) + epsi xUx(stddev.xrandn(D,1));
5 y.mu(:,l) = par.mu(;,k) + epsi xUx(stddev.xrandn(D,1));
26
27 % Set sigma to maximal component (really primitive, I admit):
28 y.sig{k} = DD(1,1) * eye(D);
2 y.sig{l} = y.sig{k};
Helper functions to change the number of clusters are

1 function y = mog_extend(par)

2 % y=MOG_EXTEND(par) returns par unchanged, except that a new cluster
3 % with p=0, mu=0, sig=1 is added.
4 % Input: par: as for mog_fullem
5 % Output: as input
6 % Coding: DW

7

8

9

K =length(par.p);
D = size(par.mu,1);
10 y.p = cat(2,par.p [0]);
u y.mu = cat(2,par.mu,zeros(D,1));

1 for k=1:K

13 y.sig{k} = par.sig{k};

14 end

15 y.sig{K+1} = eye(D);
and

1 function y = mog_truncate(par ,k0)

2 % y=MOG_TRUNCATE(par,k0) returns par unchanged, except that all
3 % information pertaining to cluster k0 is removed.

4+ % Input: par: as for mog_fullem

5 % kO: cluster to be removed

6 % Output: as input

7 % Coding: DW

8 % Note: the final cluster is renumbered as k0.

9

10 K =length(par.p);

1 Knew = K—1;

12 y.p = par.p (;,1: Knew);

13 y.mu = par.mu (:,1: Knew);
1 for k =1: Knew

15 y.sig{k} = par.sig{k};
16 end

17 if (kO<K)

18 y.p(;, k0) = par.p (:, K);
19 y.mu(,k0) = par.mu(:,K);
20 y.sig{k0} = par.sig{K};
21 end

This calculates the responsibilities for use outside the inner loops:

1 function R = mog_responsibility (X par)

2 % MOG_RESPONSIBILITY performs the e step of mog. Using this
3 % function within a loop will be slow. However, it is nice and easy
4+ % to use for non—looping calcs e.g. at the start of partialem and

20

© o N o o’

38

% when calculating split/merge merits.
% Input: X, par as for mog_fullem

% Output: R: NxK responsibility matrix
% Algorithm: Max Welling

% Coding: DW

mu = par.mu;
p = par.p;
sig = par.sig;

N=size(X,2);
D=size(X,1);
K=size(p,2);

norma = zeros(1,N);
R = zeros(N,K); % R(n,k) will be the responsibility of cluster k for pointn
px = zeros(1,N);
for k=1:K
s = sig{k};
siginv = inv(s);
detsig = det(s);
dx = X — repmat(mu(:,k),[1 NJ);
sdx = siginv * dx;

expo = —.5 % sum(dx .x sdx ,1);
G = (1/sqrt(2«pixdetsig)) * exp(expo); % a 1xN vector of p(x|k)
pG = p(k)xG;
px = px + pG;
norma = norma + pG;
R(:, k)= pG’;
end
for k=1:K
R(;, k)= R(,k)./ (norma+1e—300)’;
end

This makes a graphical representation of the current stage, and prints various parameters
as well:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

function plot_mog(y,X)
% PLOT_MOG(y,X) plots the MoG results in y. Use y=em_mog(X,K) to
% fill y. The plotis a projection onto the first two axes.

K =length(y.p);

displ (X,K,y.mu,y.sig); % see below
%return;

disp(y.p);

disp(y.mu);

sigs = zeros(size(y.mu,1),0);

for k=1:K
sigs = cat(2,sigs , y.sig{k});
end

21

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

disp(sigs);

fprintf (1, 'Press enter to continue...\n’);
pause;

return;

function displ (X,K,mu,sig)

% DISPL(X,K,mu,sig) is a helper function for plot_mog to
% plot the distribution.

% X: DxXN

% K: 1x1

% mu: DxK

% sig: K cells of DxD

plot(X (1,5), X (2,), 'b.7);
hold on;
for k=1:K
s = sig{k};
plotGauss(mu(1,k),mu(2,k),s (1,1),s (2,2), s (1,2));
end
hold off;
drawnow;
return;

And finally, this generates a test data set:

1
2
3
4
5
6
7
8
9

10
1
12
13
14
15
16
17
18

function y =mog_gendata(D,N,K,sig)

% y=MOG_GENDATA(D,N,K,sig) generates DxN data points from a mixture of
% K gaussians with typical variance set by sig.

% y.Xis the DxN data

% y.par contains the parameters:

% p:1xK

% mu: DxK

% sig: { K} DxD

X=zeros(D,0);
NO=1;
Nr=N;
Kr=K;

MEAN=zeros(D,0);
P=zeros(1,0);

for k=1:K

% Compute variance matrix

Rot = eye(D);

for d=1:D

for e=(d+1):D

theta = rand (1) * 2xpi;
rot = eye(D);
rot (d,d) = cos(theta);

22

27 rot (e,e) = cos(theta);

28 rot (d,e) = sin(theta);
29 rot (e,d) = —sin(theta);
30 Rot = rotxRot;

31 end

2 end

33 Rot = sigxRotxdiag(randn(D,1) + 1);
s SIG{k} = Rot*Rot’;

35 % So now SIG is a randomly rotated covariance matrix
36 Mean = randn(D,1);

37 MEAN = cat(2, MEAN,Mean);

33 Nk = floor ((rand (1)+1.5)x(.5%«Nr/Kr));
s if ((Nk>Nr)| (Kr==1))

0 Nk = Nr;

2 end

© P =cat(2,P,Nk/N);

1 X = cat(2, X,Rotxrandn(D,Nk)+repmat(Mean,1,Nk));
44 Nr=Nr— Nk

55 Kr=Kr-1;

36 end

47

a8 par.mu=MEAN;

1w par.sig = SIG;

50 par.p = P;

s1 figure (3);

52 plot_mog(par,X);

5 y. X=X

5 Y.par = par;

8 References

[1]

23

