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Abstract. This paper is concerned with nonlinear filtering of the
coefficients in asset price models with stochastic volatility. More
specifically, we assume that the asset price process S = (St)t≥0 is
given by

dSt = m(θt)Stdt+ v(θt)StdBt,

where B = (Bt)t≥0 is a Brownian motion, v is a positive function,
and θ = (θt)t≥0 is a cádlág strong Markov process. The random
process θ is unobservable. We assume also that the asset price St
is observed only at random times 0 < τ1 < τ2 < . . . . This is an
appropriate assumption when modelling high frequency financial
data (e.g., tick-by-tick stock prices).

In the above setting the problem of estimation of θ can be ap-
proached as a special nonlinear filtering problem with measure-
ments generated by a multivariate point process (τk, logSτk). While
quite natural, this problem does not fit into the “standard” diffu-
sion or simple point process filtering frameworks and requires more
technical tools. We derive a closed form optimal recursive Bayesian
filter for θt , based on the observations of (τk, logSτk)k≥1. It turns
out that the filter is given by a recursive system that involves only
deterministic Kolmogorov-type equations, which should make the
numerical implementation relatively easy.

1. Introduction

In the classical Black-Scholes model for financial markets, the stock
price St is modelled as a Geometric Brownian motion, that is, with
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diffusion coefficient equal to σSt, where “volatility” σ is assumed to
be constant. The volatility parameter is of great importance in ap-
plications of the model, for example for option pricing. Consequently,
many researchers have generalized the constant volatility model to so-
called stochastic volatility models, where σt is itself random and time
dependent. There are two basic classes of models: complete and incom-
plete. In complete models, the volatility is assumed to be a functional
of the stock price; in incomplete models, it is driven by some other
source of noise that is possibly correlated with the original Brownian
motion. In this paper we study a particular incomplete model in which
the volatility process is independent of the driving Brownian motion
process. This has the economic interpretation of the volatility being
influenced by market, political, financial, and other factors that are
independent of the “systematic risk” (the Brownian motion process)
associated with the particular stock price under study. Option traders,
investment banks, economic analysts and others depend on modeling
future volatility for their trading, economic forecasts, risk management,
and so on.

Estimating volatility from observed stock prices is not a trivial task
in either complete or incomplete models, in part because the prices are
observed at discrete, possibly random time points. Since volatility it-
self is not observed, it is natural to apply filtering methods to estimate
the volatility process from historical stock price observations. Nev-
ertheless, this has only recently been investigated in continuous-time
models, in particular by Frey and Runggaldier [5]. See Runggaldier
[26] for an up-to-date survey. See also Elliott et al [2] for a discrete-
time approach with equally spaced observations, Gallant and Tauchen
[6] for an approximating algorithm in continuous time, Malliavin and
Mancino [21] for a nonparametric approach, as well as Fouque et al.
[3], Rogers and Zane [23], and Kallianpur and Xiang [13] for still other
approaches. There is also a rich econometrics, time-series literature on
ARCH-GARCH models of stochastic volatility, that presents an alter-
native way to model and estimate volatility; see Gourieroux [8] for a
survey.

Our paper was prompted by Frey and Runggaldier [5]. Like that
paper, we assume that the asset price process S = (St)t≥0 is given by

dSt = m(θt)Stdt+ v(θt)StdBt,

where B = (Bt)t≥0 is a Brownian motion, v is a positive function,
and θ = (θt)t≥0 is a cádlág strong Markov process. The ”volatility”
process θ is unobservable, while the asset price St is observed only at
random times 0 < τ1 < τ2 < . . . This assumption is designed to reflect
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the discrete nature of high frequency financial data such as tick-by-
tick stock prices. The random time moments τk can be interpreted as
“instances at which a large trade occurs or at which a market maker
updates his quotes in reaction to new information” (see Frey [4] ).
Hence, it is natural to assume that {τk}k≥1 might also be correlated
with θ.

In the above setting the problem of volatility estimation can be re-
garded as a special nonlinear filtering problem.

Frey and Runggaldier [5] derive a Kallianpur-Striebel type formula
(see e.g. [12]) for the optimal mean-square filter for θt based on the
observations of Sτ1 , Sτ2 , ... for all τk ≤ t and investigate Markov Chain
approximations for this formula. We extend this result in that we
derive the exact filtering equations for θt that allow us to compute
the conditional distribution of θt given Sτ1∧t, Sτ2∧t, . . . . Moreover,
our framework includes general random times of observations, not just
doubly stochastic Poisson processes.

We remark that while being natural, the Frey and Runggaldier model
adopted in this paper does not quite fit into the “standard” diffusion
or simple point process filtering frameworks (cf. [19], [15], [24]) and
requires more technical tools. In particular, the general filtering the-
ory for diffusion processes requires that the diffusion coefficient of the
observation process does not depend on the state process, while in our
case the presence of θt in the diffusion coefficient is crucial. The “stan-
dard” filtering theory for point processes is also not applicable in the
present setting since the observation process (τi, Sτi)i≥1 is a multivari-
ate process (see also Remark 2).

It turns out that the resulting filtering equations are simpler than
their counterparts in the case of continuous observations. In the latter
case, the nonlinear filters are described by infinite dimensional stochas-
tic differential equations. For example, if θt is a diffusion process, the
filtering equations (e. g., Kushner filter or Zakai filter) are given by
stochastic partial differential equations (see, e.g., [24]). In contrast, in
our setting, the filtering equation can be reduced to a recursive system
of linked deterministic equations of Kolmogorov type. Therefore, the
numerical implementation of the filter is much simpler (see the follow
up paper [1]).

We describe the model in section 2, state the main results and ex-
amples in section 3, provide the proofs in section 4, and present more
detailed examples in section 5.
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2. Mathematical model

2.1. Risky Asset and Observation Times. Let us fix a probability
space (Ω,F ,P) equipped with a filtration F = (Ft)t≥0 that satisfies the
“usual” conditions (see, e.g. [20]). All random processes considered in
the paper are assumed to be defined on (Ω,F ,P) and adapted to F.

It is assumed that there is a risky asset with the price process S =
(St)t≥0 given by the Itô equation

dSt = m(θt)Stdt+ v(θt)StdBt, (2.1)

where B = (Bt)t≥0 is a standard Brownian motion and θ = (θt)t≥0

is a cádlág Markov jump-diffusion process in R with the generator
L. To simplify the discussion, it is assumed that m(x) and v(x) are
measurable bounded functions on R, the initial condition S0 is constant,
and v(x) and S0 are positive.

The process (θt)t≥0 is referred to as the volatility process. It is un-
observable, and the only observable quantities are the values of the
log-price process Xt = log St taken at stopping times (τk)k≥0, so that
τ0 = 0, τk < τk+1 if τk <∞, and τk ↑ ∞ as k ↑ ∞.

In accordance with (2.1), the log-price process is given by

Xt =

∫ t

0

(
m(θs)− 1

2
v2(θs)

)
ds+

∫ t

0

v(θs)dBs.

For notational convenience, set Xk := Xτk .Thus, the observations are
given by the sequence (τk, Xk)k≥0.

Remark 1. (Note on the reading sequence.) The reader interested
primarily in applying our results to real data can focus her attention
on Example 3.1, which appears to be the most practical model to work
with. That example provides self-contained formulas for estimating the
conditional (filtering) distribution of the volatility process. We report
on the numerical results related to this example in the follow-up paper
[1].

Clearly, the observation process (τk, Xk)k≥0 is a multivariate (marked)
point process (see, e.g. [11], [16]) with the counting measure

µ(dt, dy) =
∑

k≥1

I{τk<∞}δ{τk,Xk}(t, y)dtdy,

where δ{τk,Xk} is the Dirac delta-function on R+ × R.
We introduce two filtrations related to (τk, Xk)k≥0: (G(n))n≥0 and

(Gt)t≥0, where
- G(n) := σ{(τk, Xk)k≤n},
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- Gt := σ(µ([0, r] × Γ) : r ≤ t,Γ ∈ B(R)), where B(R) is the Borel
σ-algebra on R.
It is a standard fact (see III.3.31 in [11]) that

Gτk = G(k), k = 0, 1 . . . , (2.2)

and {τk} is a system of stopping times with respect to (Gt)t≥0.

Remark 2. Although Gτk contains all the relevant information car-
ried by the observations obtained up to time τk, the filtration

(Gt
)
t≥0

provides additional information between the observation times. To elu-
cidate this point on a more intuitive level, we note that the length of the
time elapsed between τk and τk+1 carries additional information about
the state of θt after τk. Specifically, if the frequency of observations is
proportional to the stock’s volatility v(θt), t ∈ [[τk, τk+1]] , the larger
values of t− τk might indicate lower values of v(θt).

2.2. Volatility process. A more precise description of the volatility
process is in order now. Let (R,B(R)) and (R+ × R,B(R+) ⊗ B(R))
be measurable spaces with Borel σ-algebras. The volatility process
θ = (θt)t≥0 is defined by the Itô equation

dθt = b(t, θt)dt+ σ(t, θt)dWt +

∫

R
u(θt−, x)(µθ − νθ)(dt, dx), (2.3)

where Wt is a standard Wiener process and µθ = µθ(dt, dx) is a Poisson
measure on (R+ × R,B (R+)⊗ B (R)) with the compensator νθ(dt, dx) =
K(dx)dt, whereK(dx) is a σ−finite non-negative measure on (R,B (R)).
We assume that Eθ2

0 <∞, the functions b(t, z), σ(t, z), and u(z, x) are
Lipschitz continuous in z uniformly with respect to other variables, and

|b(t, z)|2 + |σ(t, z)|2 +

∫

R
|u(z, x)|2K(dx) ≤ C(1 + |z|2).

It is well known that under these assumptions (2.3) possesses a unique
strong solution adapted to F, and Eθ2

t <∞ for any t ≥ 0.
The generator L of the volatility process is given by

Lf(x) := b(t, x)f ′(x) +
1

2
σ2(t, x)f ′′(x)

+

∫

R

(
f(x+ u(x, y))− f(x)− f ′(x)u(x, y)

)
K(dy).

Before proceeding with the assumptions and main results we shall
introduce additional notation. Set

a(s, t) =

∫ t

s

(
m(θu)− 1

2
v2(θu)

)
du, (2.4)
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and

σ2(s, t) =

∫ t

s

v2(θu)du . (2.5)

For simplicity, it is assumed that v2(s, t) is bounded away from zero.
Let us denote by ρs,t(y) the density function of the normal distribution
with mean a(s, t) and the variance σ2(s, t):

ρs,t(y) :=
1√

2πσ(s, t)
e
− (y−a(s,t))2

2σ2(s,t) (2.6)

Clearly, ρ is the conditional density of the stock’s log-increments Xt −
Xs given θ.

Let Fθ∞ = (F θt )t≥0 be the right-continuous filtration generated by
(θt)t≥0 and augmented by P-zero sets from F . Denote by Gθ

k the con-
ditional distribution of τk+1with respect to1 F θ∞ ∨ G (k) . That is, Gθ

k

is the distribution of the time of the next observation, given previous
history, and given θ:

Gθ
k (dt) = P

(
τk+1 ∈ dt|F θ∞ ∨ G (k)

)
(2.7)

Without loss of generality we can and will assume that Gθ
k (dt) is the

regular version of the RHS of (2.7).
Let N = (Nt)t≥0 be the counting process with interarrival times:

τ0 = 0, (τk − τk−1)k≥1 , that is

Nt =
∑

k≥1

I(τk ≤ t) (2.8)

2.3. Assumptions. The following assumptions will be in force through-
out the paper:

A.0: For every G-predictable and a.s. finite stopping time S,

P(NS −NS− 6= 0|GS−) = 0 or 1.

A.1: The Brownian motion B is independent of
(
θ,N

)
.

A.2: For every k, there exists a G (k)-measurable integrable random
measure Φk on B (R+) so that for almost all ω ∈ Ω, Φk ([0, τk (ω)]) = 0
and Gθ

k is absolutely continuous with respect to Φk .
Denote by φ (τk, t) = φ (θ, τk, t) the Radon-Nikodym derivative of

Gθ
k (dt) with respect to Φk (dt) , i.e. for almost every ω,

1Here and below F1 ∨F2 stands for the σ-algebra generated by the σ−algebras
F1 and F2.
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φ (τk, t) :=
dGθ

k ((τk, t])

dΦk ((τk, t])
(2.9)

Assumption A.0 is not essential for the derivation of the filter. How-
ever, under this assumption the structure of the optimal filter is sim-
pler, and in the practical examples important for this paper, this as-
sumption holds anyway. In particular, A.0 is verified if the condi-
tional distribution Gθ

k = P
(
τk+1 ≤ t|F θ∞ ∨ G (k)

)
is absolutely contin-

uous with respect to the Lebesgue measure2 or if the arrival times τk
are non-random.

The following two simple but important examples illustrate the as-
sumption A.2.

Example 2.1. Let (τk)k≥0 be the jump times of a doubly stochastic
Poisson process (Cox process) with the intensity n(θt). In this case,

P(τk+1 ≤ t|Fθ∞ ∨ G (k)) =

{
1− e−

R t
τk
n(θs)ds , t ≥ τk

0 , otherwise.

Then, one can take Φk (ds) = ds and φ(τk, s) = n(θt) exp
(
− ∫ s

τk
n (θu) du

)
.

If n(θt) = n is a constant, one could also choose

Φk (ds) = n exp {n (τk − s)} ds and φ(τk, s) = 1.

Example 2.2. If the filtering is based on non-random observation times
τk (e.g., τk = kh where h is a fixed time step) then a natural choice
would be Φk (ds) = δ{τk+1} (s) ds and φ(τk, s) = 1.

For practical purposes, Φk (ds) must be known or easily computable
as soon as the the observations (τi, Xi)i≤k become available. In con-
trast, the Radon-Nikodym density φ (τk) is, in general, a function of
the volatility process and is subject to estimation.

We note that A.2 could be weakened slightly by replacing Gθ
k by a

regular version of the conditional distribution of τk+1with respect to
Fθτk+1−∨G (k) . The latter assumption would make the proof a little bit
more involved and we leave it to the interested reader.

2More generally, it holds if the compensator of the counting process Nt is a
continuous process.
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3. Main results and introductory examples

3.1. Main result. For a measurable function f on R with E|f(θt)| <
∞, define the conditional expectation estimator πt(f) by

πt(f) := E
(
f(θt)|Gt

)
=

∫

R
f(z)πt(dz), (3.1)

where πt(dz) := dP(θt ≤ z|Gt) is the filtering distribution. (Note that
we omit the argument θt of f in the estimator πt(f)). In the spirit of
the Bayesian approach, it is assumed that the a priori distribution

π0(dx) = P (θ0 ∈ dx)

is given.

Let σ{θτk} be the σ-algebra generated by θτk . For t > τk, let us
define the following structure functions :

ψk(f ; t, y, θτk) := E
(
f(θt)ρτk,t(y −Xk)φ(τk, t)

∣∣σ{θτk
} ∨ G (k)

)
,

(3.2)

and its integral with respect to y

ψk(f ; t, θτk) :=

∫

R
ψk (f ; t, y, θτk) dy = E

(
f(θt)φ(τk, t)

∣∣σ{θτk
} ∨ G (k)

)
,

(3.3)

where ρ and φ are given by (2.6) and (2.9), respectively.
If f ≡ 1, the argument f in ψ and ψ̄ is replaced by 1.
Write

Φk({τk+1}) :=

∫ ∞
0

I(t = τk+1)Φk(dt),

i.e. Φk({τk+1}) is the jump of Φk(dt) at τk+1.
Finally, for t ≥ τk and a bounded function f , define

Mk (f ; t, πt) :=
πτk
(
ψ̄k (f ; t)

)− πt−(f)πτk
(
ψ̄k (1; t)

)
∫∞
t
πτk
(
ψ̄k (1; s)

)
Φk (ds)

whenever the numerator is not zero. If the numerator is zero, set
Mk (f ; t, πt) to be equal to zero.

The main result of this paper is as follows:

Theorem 3.1. Assume A.0-A.2. Then for every measurable bounded
function f in the domain of the generator L such that

∫ t
0
E|Lf(θs)|ds <

∞ for any t ≥ 0, the following system of equations holds:
1) For every k = 0, 1 . . . ,
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πτk+1
(f) =

πτk(ψk(f ; t, y))

πτk(ψk(1; t, y))
∣∣∣
{
t=τk+1
y=Xk+1

} −Mk (f ; t, πt)∣∣{t=τk+1}
Φ ({τk+1})

(3.4)

2) For every k = 0, 1 . . . and t ∈]]τk, τk+1[[,

dπt(f) = πt(Lf)dt−Mk (f ; t, πt) Φk(dt). (3.5)

3.2. Remarks.

- 1. Equations (3.4), (3.5) form a closed system of equations for the
filter πt(f). It is often convenient and customary (see e.g. [24], [25] and
the references therein) to write a differential equation for a measure-
valued process Ht (dx) in its variational form, i.e. as the related system
of equations for Ht (f) for all f from a sufficiently rich class of test
functions belonging to the domain of the operator L. In our setting,
such a reduction to the variational form is a necessity, since in some
cases the filtering measure πs (dx) = P (θs ∈ dx|Gs) may not belong to
the domain of L. However, in the important examples discussed below,
there is no need to resort to the variational form. The interested reader
who is unaccustomed to the variational approach might benefit from
looking first into the examples at the end of this section and in Section
5, where the filtering equations are written as equations for posterior
distributions.

- 2. The system (3.4) simplifies considerably if

Mk (f ; t, πt)∣∣{t=τk+1}
Φ ({τk+1}) = 0 for all k. (3.6)

Obviously, (3.6) holds if for all k, Φk (dt) is continuous at t = τk+1

as in the case when Nt is a Cox process. In fact, (3.6) holds true in
many other interesting cases, even when Φk (dt) has jumps at all τk+1,
as in the case of fixed observation intervals (see Example 5.3 below).
We note then that the following separation principle holds.

Corollary 1. Assume (3.6). Then the filtering at the observation
times {τk}k≥1 does not require filtering between them; it is done by the
Bayes type recursion:

πτk+1
(f) =

πτk(ψk(f ; t, y))

πτk(ψk(1; t, y))
∣∣∣
{
t=τk+1
y=Xk+1

}. (3.7)

- 3. Note that for high-frequency observations, even if condition
(3.6) is not met, for all practical purposes, it may suffice to compute
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the volatility estimates only at the observation times. In that case,
one would only use the relatively simple recursion formula (3.4), and
disregard equation (3.5).

- 4. Clearly, the “structure functions” ψ and ψ̄ are of paramount
importance for computing the posterior distribution of the volatility
process. We would like to stress that these do not involve the obser-
vations and could be pre-computed “off-line” using just the a priori
distribution. Then, “on-line”, when the observations become available,
one needs only to plug in the obtained measurements (τk, Xk), and to
compute πt(f) by recursion. This feature is important for developing
efficient numerical algorithms.

- 5. Note also that for almost every ω ∈ Ω, filtering equation (3.5)
is a linear deterministic equation of Kolmogorov’s type, rather than a
nonlinear stochastic partial differential equation. The latter is typical
of the nonlinear filtering of diffusion processes. The well-posedness and
the regularity properties of equation (3.5) are well researched in the
literature on second order parabolic deterministic integro-differential
equations (see e.g. [18], [22], [14] and the references therein).

Example 3.1. (Volatility as a Markov Chain.) Let us now assume that
the counting process is a Cox process with intensity n(θt), and take

φ(τk, s) = n(θt)e
− R sτk n(θu)du

and Φk (ds) = ds. Also assume θ = (θt)t≤T
is a homogeneous Markov jump process taking values in the finite al-
phabet {a1, . . . , aM} with the intensity matrix Λ = ||λ (ai, aj) || and
the initial distribution pq = P(θ0 = aq), q = 1, . . . ,M . (This is one of
the two models of the state process discussed in [5].) In this case,

Lf (θs) =
∑
j

λ (θs, aj) f (aj) .

Denote by θjt the process θt starting from aj, and

pji (t) := P (θt = ai|θ0 = aj) , πj(t) = P
(
θt = aj

∣∣Gt
)
,

rji (t, z) := E
(
e−

R t
0 n(θju)duρj

0,t
(z)|θjt = ai

)
,

where ρj
0,t

(z) is obtained by substituting θjs for θs in ρ0,t(z). It follows

from Theorem 3.1 ( for details see Example 5.1 ), with f (θt) := I{θt=ai},
that

πi(τk) =
n (ai)

∑
j rji (τk − τk−1, Xk −Xk−1) pji (τk − τk−1)πj(τk−1)∑

i,j n (ai) rji (τk − τk−1, Xk −Xk−1) pji (τk − τk−1) πj(τk−1)
.

(3.8)
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This recursion can be easily computed, once one computes (“off-line”)
the values rij. This example is also treated in more detail in Section 5.

4. Proofs

In the proof of the main result we want to show that

dπt(f) = πt(Lf)dt+ dMt

where Mt is a martingale, and then we find a (integral) martingale
representation of Mt with respect to the measure µ − ν, where ν is a
compensator of µ. We first find the compensator.

4.1. (Gt)-compensator of µ. Denote by P(G) be the predictable σ-
algebra on Ω× [0,∞) with respect to G and and set

P̃(G) = P(G)⊗ B(R).

A nonnegative random measure ν(dt, dy) on P̃(G) is called a P̃(G)

-compensator of µ if for any P̃(G)-measurable, nonnegative function
ϕ(t, y) = ϕ(ω, t, y),

(i)

∫ t

0

∫

R
ϕ(s, y)ν(ds, dy) is P(G)-measurable

(ii) E

∫ ∞
0

∫

R
ϕ(t, y)µ(dt, dy) = E

∫ ∞
0

∫

R
ϕ(t, y)ν(dt, dy).

(4.1)

Let Gk (ds, dx) = Gk (ω, ds, dx) be a regular version of the condi-
tional distribution of (τk+1, Xk+1) given G (k) ( it is assumed that
Gk ([0, τk] , dx) = 0):

Gk(dt, dy) = dP
(
τk+1 ≤ t,Xk+1 ≤ y|G(k)

)
. (4.2)

Denote Gk (ds) = Gk (dt,R) , that is, Gk(t) = P(τk+1 ≤ t | G (k)) (with
probability one).

By Theorem III.1.33 [11] (see also Proposition 3.4.1 in [20]),

ν(dt, dy) =
∑

k≥0

I]]τk,τk+1]](t)
Gk(dt, dy)

Gk([t,∞),R)
, (4.3)

We now derive a representation, suitable for the filtering purposes, of

the P̃(G)−compensator ν in terms of the structure functions (3.2),
(3.3), and the posterior distribution of θ .

Lemma 4.1. The P̃(G)−compensator ν admits the following ver-
sion:

ν(dt, dy) =
∑

k≥0

I]]τk,τk+1]](t)
πτk(ψk(1; t, y))∫∞

t
πτk(ψk(1; s))Φk(ds)

Φk(dt)dy. (4.4)
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Proof. By A.1, for t > τk, with probability 1,

P
(
τk+1 ≤ t,Xk+1 ≤ y|F θ∞ ∨ G (k)

)

= E
(

P
(
τk+1 ≤ t,Xk+1 ≤ y|F θ ∨ G (k) ∨ σ (τk+1)

)∣∣F θ∞ ∨ G (k)
)

= E
(
I(τk+1≤t)P

(
Xk+1 ≤ y|F θ∞ ∨ G (k) ∨ σ (τk+1)

) |Fθ∞ ∨ G (k)
)

= E

(
I(τk+1≤t)

∫ y

−∞
ρτk,τk+1

(z −Xk) dz|F θ∞ ∨ G (k)

)

=

∫ t

τk

∫ y

−∞
ρτk,s(z −Xk)dzG

θ
k (ds) ,

(4.5)

where we recall that Gθ
k is a regular version of the conditional distri-

bution of τk+1with respect to F θ∞∨G (k) .Thus, by A.2, for t > τk, with
probability 1,

P
(
τk+1 ≤ t,Xk+1 ≤ y|F θ∞ ∨ G (k)

)
(4.6)

=

∫ t

τk

∫ y

−∞
ρτk,s (z −Xk)φ(τk, s)dzΦk (ds) .

By (3.2), using notation (3.1), we see that

E
(
E
[
φ(τk, s)ρτk,s(z −Xk)|σ{θτk} ∨ G (k)

]|G (k)
)

= πτk(ψk(1; s, z)).

This, together with (4.6), yields, recalling definition (4.2),

Gk

(
ds, dz) = πτk(ψk(1; s, z))Φk(ds)dz. (4.7)

In the same way, for t > τk, with probability 1,

Gk

(
[t,∞],R) =

∫ ∞
t

πτk(ψk(1; s))Φk(ds). (4.8)

This completes the proof. �

Remark 3. If the right hand of (4.8) is zero, then P (τk+1 ≥ t|G (k)) =
0. Hence, I]]τk,τk+1]](t) = 0 with probability 1 and, by the 0/0 = 0 con-
vention, the corresponding term in (4.4) is zero.

4.2. Semimartingale representation of the optimal filter. In
this section we will prove the following result.

Theorem 4.1. For any bounded function f from the domain of the
operator L such that

∫ t
0
E|Lf(θs)|ds <∞ for all t <∞, the differential
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of the optimal filter πs(f) is given by equation

dπs(f) = πs(Lf)ds (4.9)

+

∫

R

(∑

k≥0

I]]τk,τk+1]](s)
πτk(ψk(f ; s, y))

πτk(ψk(1; s, y))
− πs−(f)

)
(µ− ν)(ds, dy).

Proof. It suffices to verify the statement for twice continuously differ-
entiable functions f with f, f ′f ′′ bounded. By Itô’s formula,

f(θt) = f(θ0) +

∫ t

0

Lf(θs)ds+

∫ t

0

f ′(θs)σ(θs)dWs

+

∫ t

0

∫

R

(f (θs− + u (θs−, x))− f (θs−))
(
µθ − νθ) (ds, dx)

Denote

Lt =

∫ t

0

f ′(θs)σ(θs)dWs +

∫ t

0

∫

R
(f(θs− + u(θs−, x)− f (θs−)) (µθ − νθ)(ds, dx).

Then, we have

πt(f) = E
(
f(θ0)|Gt

)

+ E

(∫ t

0

Lf(θs)ds
∣∣∣Gt
)

+ E
(
Lt|Gt

)
.

Set

Mt =
{
E
(
f(θ0)|Gt

)− π0(f)
}

+

{
E

(∫ t

0

Lf(θs)ds
∣∣∣Gt
)
−
∫ t

0

πs
(Lf)ds

}
+ E

(
Lt|Gt

)
.

Obviously, the process E
(
f(θ0)|Gt

)−π0(f) is a Gt-martingale. Process
Lt is a Ft-martingale. Since Gt ⊆ Ft, for t > t′,

E
(
E(Lt|Gt)|Gt′

)
= E

(
E(Lt|Ft′)|Gt′

)
= E(Lt′|Gt′).

Consequently, E(Lt|Gt) is a martingale too. Finally, E
( ∫ t

0
Lf(θs)ds|Gt

)−∫ t
0
πs
(
(Lf)

)
ds is also a Gt-martingale. Indeed, for t > s > t′, we have

E
(
πs
(Lf)

∣∣Gt′
)

= E
(Lf(θs)|Gt′

)
which yields

E

[
E

(∫ t

0

Lf(θs)ds
∣∣∣Gt
)
−
∫ t

0

πs(Lf)ds

∣∣∣∣∣Gt′
]

= E

(∫ t′

0

Lf(θs)ds
∣∣∣Gt′
)
−
∫ t′

0

πs(Lf)ds.
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Thus, Mt is a Gt-martingale. In particular, this means that πt(f) is a
G-semimartingale with paths in the Skorokhod space D[0,∞)(R), so that
πt(f) is a right continuous process with limits from the left. By the
Martingale Representation Theorem ( see e.g. Theorem 1 and Problem
1.c in Ch.4, §8. in [20]),

Mt =

∫ t

0

∫

R
H(s, y)(µ− ν)(ds, dy).

It is a standard fact that P(NS −NS− 6= 0|GS−) = ν({S} ,R+). Hence,
due to assumption A.0, by Theorem 4.10.1 from [20] (see formulae
(10.6) and (10.15)),

H(t, y) = MP
µ

(4M |P̃(G)
)
(t, y) , (4.10)

where 4Mt = Mt −Mt− and the conditional expectation MP
µ

(
g|P̃(G)

)
is defined by the following relation (see, e.g. [20], Ch. 2, §2 and Ch.

10, §1): for any P̃(G)-measurable bounded and compactly supported
function ϕ(t, y),

E

∫ ∞
0

∫

R
ϕ(t, y)gtµ(dt, dy)

= E

∫ ∞
0

∫

R
ϕ(t, y)MP

µ

(
g
∣∣P̃(G)

)
(t, y)ν(dt, dy).

By Lemma 4.10.2, [20],

MP
µ

(
πt(f)

∣∣P̃(G)
)
(t, y) = MP

µ

(
f
∣∣P̃(G)

)
(t, y). (4.11)

Since, πt−(f) is P̃(G)-measurable (which implies MP
µ(π−(f)|P̃(G))(t, y) =

πt−(f) ), by (4.11),

MP
µ

(4M
∣∣P̃(G)

)
(t, y) (4.12)

= MP
µ

(
πt(f)− πt−(f)

∣∣P̃(G)
)
(t, y)

= MP
µ

(
f
∣∣P̃(G)

)
(t, y)− πt−(f).

To complete the proof one needs to show that

MP
µ

(
f (θ.)

∣∣P̃(G)
)
(s, y) =

∑

k≥0

I]]τk,τk+1]](s)
πτk(ψk(f ; s, y))

πτk(ψk(1; s, y))
(4.13)
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To prove (4.13), it suffices to demonstrate that for any P̃(G)-measurable
bounded and compactly supported function ϕ(t, y),

E
∑

k≥0

∫

(τk,τk+1]∩(τk,∞)

∫

R
ϕ(t, y)

πτk(ψk(f ; t, y))

πτk(ψk(1; t, y))
ν(dt, dy)

= E

∫ ∞
0

∫

R
ϕ(t, y)f(θt)µ(dt, dy). (4.14)

By monotone class arguments, we can assume that ϕ (t, x) = v (t) g (x),
where v (t) is a P(G)-measurable process and g (x) is a continuous func-
tion on R. By Lemma III.1.39 [11], since v(t) is P(G)−measurable, it
must be of the form

v (t) = v0 +
∞∑

k≥1

vk (t) I]]τk,τk+1]] (t) , (4.15)

where v0 is a constant and vk (t) are G (k)⊗B (R+)−measurable func-
tions.

Owing to (4.15) and Lemma 4.1, in order to prove (4.14), it suffices
to verify the equality

E

[∫

(τk,τk+1]∩(τk,∞)

∫

R
g(y)vk(t)

πτk(ψk(f ; t, y))

πτk(ψk(1; t, y))
Φk (dt) dy

]

= E
[
vk(τk+1)g(Xk+1)f(θτk+1

)1{τk+1<∞}
]
, (4.16)

The next step follows the ideas of Theorem III.1.33 [11]. We have

E
[
vk(τk+1)g(Xk+1)f(θτk+1

)1{τk+1<∞}
]

= E
[
E
(
vk(τk+1)g(Xk+1)f(θτk+1

)1{τk+1<∞}|G (k) ∨ F θ∞
)]

= E

(∫

(τk,∞)

∫

R
vk(s)g(y)E

[
f(θs)G

θ
k (ds, dy) |G (k)

])

where, as before, Gθ
k (ds, dy) is a regular version of the conditional

distribution of (τk+1, Xk+1) with respect to Fθ∞ ∨ G (k) .
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By Fubini Theorem, and recalling notation (4.2),

E

(∫

(τk,∞)

∫

R
vk(s)g(y)E

[
f(θs)G

θ
k (ds, dy) |G (k)

])
(4.17)

= E

(∫

(τk,∞)

∫

R
vk(s)g(y)

E
[
f(θs)G

θ
k (ds, dy) |G (k)

]

Gk ([s,∞] ;R)

∫

[s,∞]

Gk (du,R)

)

= E

(∫ τk+1

τk

∫

R
vk(s)g(y)

E
[
f(θs)G

θ
k (ds, dy) |G (k)

]

Gk ([s,∞] ;R)

)

By (4.6),

Gθ
k (ds, dy) = ρτk,s(z −Xk)φ(τk, s)Φk (ds) dy. (4.18)

Hence, for s > τk,

E
[
f(θs)G

θ
k (ds, dy) |G (k)

]

= E
(
E (f(θs)ρτk,s(y −Xk)φ(τk, s)|σ {θτk} ∨ G (k))

∣∣G(k)
)

Φk (ds) dy.

= πτk(ψk (f ; s, y))dyΦk (ds)

This, together with (4.8), yields

E

(∫ τk+1

τk

∫

R
vk(s)g(y)

E
[
f(θs)G

θ
k (ds, dy) |G (k)

]

Gk ([s,∞] ;R)

)

= E

(∫ τk+1

τk

∫

R
vk(s)g(y)

πτk(ψk (f ; s, y))dy∫∞
s
πτk
(
ψ̄ (1; t)

)
Φk (dt)

Φk (ds)

)
,

so that (4.16) is satisfied, and the proof follows. �

4.3. Proof of Theorem 3.1. In this section we show that Theorem
3.1 follows from Lemma 4.1 and Theorem 4.1.

Proof. Firstly, we note that the stochastic integral in the RHS of (4.9)
can be written as the difference of the integrals with respect to µ and ν.
Indeed, since f is bounded, this follows from [11], Proposition II.1.28.

By applying Lemma 4.1 and integrating over y one gets that for
t ∈]]τk, τk+1]],

∫

R×(τk,t]

(πτk(ψk(f ; s, y))

πτk(ψk(1; s, y))
− πs−(f)

)
ν(ds, dy)

=

∫

(τk,t]

πτk
(
ψ̄k(f ; s)

)− πs−(f)πτk
(
ψ̄k(1; s)

)
∫∞
s
πτ

k

(
ψ̄k(1;u)

)
Φk (du)

Φk (ds)
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This equation verifies that (3.5) follows from the semimartingale rep-
resentation (4.9), for t between the consecutive observation times.

For the jump part (3.4), we note that
∫ t

0

∫

R
πs− (f)µ (ds, dy) =

∑
τk+1≤t

π(τk+1)− (f) .

and∫ t

0

∫

R

πτk(ψk(f ; s, y))

πτk(ψk(1; s, y))
µ (ds, dy) =

∑
τk+1≤t

πτk(ψk(f ; s, y))

πτk(ψk(1; s, y))
∣∣∣
{ s=τk+1
y=Xk+1

}.

Now, (4.9) can be rewritten as follows:

πt (f) = π0 (f) +

∫ t

0

πs (Lf) ds (4.19)

+
∑
τk+1≤t


πτk(ψk(f ; s, y))

πτk(ψk(1; s, y))
∣∣∣
{ s=τk+1
y=Xk+1

} − π(τk+1)− (f)




−
∑

k≥0

∫

(τk,t∧τk+1]

Mk (f ; s, πs) Φk (ds)

Suppose t ∈]]τk, τk+1[[. Then,

πt (f) = πτk (f)

+

∫ t

τk

πs (Lf) ds−
∫ t

τk

Mk (f ; s, πs) Φk (ds) .

It follows that

π(τk+1)− (f)

= πτk (f) +

∫ τk+1

τk

πs (Lf) ds−
∫ (τk+1)−

τk

Mk (f ; s, πs) Φk (ds) .

Therefore, from (4.19),

πτk+1
(f) =

πτk(ψk(f ; s, y))

πτk(ψk(1; s, y))
∣∣∣
{ s=τk+1
y=Xk+1

} −Mk (f ; t, πt)∣∣{t=τk+1}
Φ ({τk+1}) .

This completes the proof. �

5. Examples

In this Section we consider some important special cases of Theorem
3.1.
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Example 5.1. (Markov chain volatility and Cox process arrivals.) Recall
the setting of Example 3.1 and its notation rij, πj(t), and θj. It follows
from Example 2.1 that in this case Φk ({τk+1}) = 0 for all k. Hence
the second term in the RHS of equation (3.4) is zero. By (3.2), for
f(θt) = 1{θt=ai} and t > τk,

ψk(f ; t, y, θτk) = n (ai)
[
E
(
I{θt=ai}e

− R ts n(θu)duρs,t(y − x)|θs
)]{

s=τk
x=Xk

}

Thus, owing to the homogeneity of θt, for t > τk,

πτk (ψk(f ; t, y))

=
∑
j

n(ai)E
(
I{θt=ai}e

− R ts n(θu)duρs,t(y − x)
∣∣θs = aj

)
{
s=τk
x=Xk

}πj(τk)

=
∑
j

n(ai)E
(
I{θjt−s=ai}e

− R t−s0 n(θu)duρj0,t−s(y − x)
)
{
s=τk
x=Xk

}πj(τk)

=
∑
j

n(ai)E
[
I{θjt−s=ai}E

(
e−

R t−s
0 n(θu)duρj0,t−s(y − x)

∣∣θjt−s
)]
{
s=τk
x=Xk

}πj(τk)

=
∑
j

n(ai)rji (t− τk, y −Xk) pji (t− τk)πj(τk).

Similar formula holds for the denominator of the first term of the RHS
of the equation. Now equation (3.8) follows from (3.4).

Mimicking the previous calculations and using the notation

r̄ji (t) := E
(
e−

R t
0 n(θju)du|θjt = ai

)
,

it is readily checked that, for t > τk,

πτk
(
ψ̄k(1{θt=ai}; t)

)
= n (ai)

∑
j

πj(τk)r̄ji(t− τk)pji (t− τk)

and

πτk
(
ψ̄k(1, t)

)
=
∑
i,j

πj(τk)n (ai) r̄ji(t− τk)pji (t− τk) ,

which are needed in computing (3.5). It is easily verified that in the
setting of this example, equation (3.5) reduces to the following:

dπi(t) =
∑
j

λ (aj, ai) πj(t)dt+ D̄ (τk, t)πi(t)dt+Di (τk, t) dt (5.1)
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where

Di (τk, t) = − n (ai)
∑

j r̄ji(t− τk)pji (t− τk)πj(τk)∫∞
t

∑
i,j n (ai) r̄ji(s− τk)pji (s− τk)πj(τk)ds

D̄ (τk, t) =

∑
l,j n (al) r̄jl(t− τk)pjl (t− τk)πj(τk)∫∞

t

∑
i,j n (ai) r̄ji(s− τk)pji (s− τk)πj(τk)ds

Note that equation (5.1) is considered for a fixed ω and t > τk (ω) .
Therefore, τk and π·(τk) should be viewed as known quantities.

Example 5.2. (Poisson arrivals.) Let θ be still the same as in Example
5.1. Suppose that the interarrival times between the observations are
exponential with constant intensity n(θ) ≡ λ. In other words, Nt is
Poisson process with constant parameter λ. In this case, the volatility
process θ is independent of Nt. Then, on the interval τk < t < τk+1,
equation (5.1) reduces to

dπi(t) =
∑
j

λ (aj, ai) πj(t)dt (5.2)

− λ(
∑
j

pji (t− τk) πj(τk)− πi(t))dt.

On the other hand, owing to the independence of N and θ, it is readily
checked that on the interval τk < t < τk+1,

πi(t) =
∑
j

pji (t− τk)πj(τk)

Therefore, the filtering equation (5.2) is simply the forward Kol-
mogorov equation for θ.

A similar effect appears also in the following example.

Example 5.3. (Fixed observation intervals.) Assume for simplicity that
the Markov process θt is homogeneous. Also assume that τk = kh,
where h is a fixed time step. Notice that

Gt = G (k) for any t ∈ [[τk, τk+1[[. (5.3)

Denote by P (t, x, dy) the transition probability kernel of the process θt,
given that θ0 = x, and let Tt denote the associated transition operator.

In accordance with Example 2.2, one can take φ(τk, t) ≡ 1 and
Φk(dt) = δ{τk+1}(t)dt. Thus, we get

ψk (f ; t, y, θτk) = E
[
f(θt)ρτk,t(y −Xk)

∣∣σ {θτk} ∨ G (k)
]
, (5.4)

ψ̄k (f ; t, θτk) = Tt−τkf (θτk) :=

∫
f(y)P (t− τk, θτk , dy) . (5.5)
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Since Φk(dt) = 0 on [[τk, τk+1[[, (3.5) is reduced to the forward Kol-
mogorov equation

∂t
∂t
πt(f) = πt(Lf)

subject to the initial condition πτk(f). The unique solution of this equa-
tion is given by πt(f) = πτk(Tt−τkf), t < τk+1. Hence,

πτk+1−(f) = πτk (Thf) (5.6)

Since φ(τk, t) ≡ 1, the denominator of Mk is equal to 1 when t = τk+1.
This together with the formula Φ({τk+1}) = 1 yields

Mk(f; t, πt)|t=τk+1
Φ({τk+1}) = πτk (Thf)−πτk+1−(f). (5.7)

Owing to (5.7), we get Mk(f; t, πt)|t=τk+1
Φ({τk+1})= 0.

This yields the following recursion formula:

πτk+1
(f) =

πτk (ψk (f ; t, y))

πτk (ψk (1; t, y))
|t=τk+1,y=Xτk+1

=

∫
RE (f(θt−τk)ρ0,t−τk(y − z)|θ0 = z)πτk (dz)∫

RE (ρ0,t−τk(y − z)|θ0 = z)πτk (dz) t=τk+1
y=Xτk+1

.
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