A FILTERING APPROACH TO TRACKING
VOLATILITY FROM PRICES OBSERVED AT
RANDOM TIMES
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ABSTRACT. This paper is concerned with nonlinear filtering of the
coefficients in asset price models with stochastic volatility. More
specifically, we assume that the asset price process S = (S;)i>0 is
given by

dSt = m(@t)Stdt + U(Qt)StdBt,

where B = (By);>0 is a Brownian motion, v is a positive function,
and 0 = (0;)¢>0 is a cddlag strong Markov process. The random
process 6 is unobservable. We assume also that the asset price .Sy
is observed only at random times 0 < 71 < 70 < .... This is an
appropriate assumption when modelling high frequency financial
data (e.g., tick-by-tick stock prices).

In the above setting the problem of estimation of # can be ap-
proached as a special nonlinear filtering problem with measure-
ments generated by a multivariate point process (7%, log S, ). While
quite natural, this problem does not fit into the “standard” diffu-
sion or simple point process filtering frameworks and requires more
technical tools. We derive a closed form optimal recursive Bayesian
filter for 6, , based on the observations of (7x,log S, )k>1. It turns
out that the filter is given by a recursive system that involves only
deterministic Kolmogorov-type equations, which should make the
numerical implementation relatively easy.

1. Introduction

In the classical Black-Scholes model for financial markets, the stock
price S; is modelled as a Geometric Brownian motion, that is, with
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diffusion coefficient equal to 0.5;, where “volatility” o is assumed to
be constant. The volatility parameter is of great importance in ap-
plications of the model, for example for option pricing. Consequently,
many researchers have generalized the constant volatility model to so-
called stochastic volatility models, where o, is itself random and time
dependent. There are two basic classes of models: complete and incom-
plete. In complete models, the volatility is assumed to be a functional
of the stock price; in incomplete models, it is driven by some other
source of noise that is possibly correlated with the original Brownian
motion. In this paper we study a particular incomplete model in which
the volatility process is independent of the driving Brownian motion
process. This has the economic interpretation of the volatility being
influenced by market, political, financial, and other factors that are
independent of the “systematic risk” (the Brownian motion process)
associated with the particular stock price under study. Option traders,
investment banks, economic analysts and others depend on modeling
future volatility for their trading, economic forecasts, risk management,
and so on.

Estimating volatility from observed stock prices is not a trivial task
in either complete or incomplete models, in part because the prices are
observed at discrete, possibly random time points. Since volatility it-
self is not observed, it is natural to apply filtering methods to estimate
the volatility process from historical stock price observations. Nev-
ertheless, this has only recently been investigated in continuous-time
models, in particular by Frey and Runggaldier [5]. See Runggaldier
[26] for an up-to-date survey. See also Elliott et al [2] for a discrete-
time approach with equally spaced observations, Gallant and Tauchen
[6] for an approximating algorithm in continuous time, Malliavin and
Mancino [21] for a nonparametric approach, as well as Fouque et al.
3], Rogers and Zane [23], and Kallianpur and Xiang [13] for still other
approaches. There is also a rich econometrics, time-series literature on
ARCH-GARCH models of stochastic volatility, that presents an alter-
native way to model and estimate volatility; see Gourieroux [8] for a
survey.

Our paper was prompted by Frey and Runggaldier [5]. Like that
paper, we assume that the asset price process S = (S5¢):>0 is given by

dSt = m(@t)Stdt + ’U(et)StdBt,

where B = (By);>0 is a Brownian motion, v is a positive function,
and 0 = (0;);>0 is a cadldg strong Markov process. The ”volatility”
process 6 is unobservable, while the asset price S; is observed only at
random times 0 < 7y < 7 < ... This assumption is designed to reflect
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the discrete nature of high frequency financial data such as tick-by-
tick stock prices. The random time moments 7, can be interpreted as
“instances at which a large trade occurs or at which a market maker
updates his quotes in reaction to new information” (see Frey [4] ).
Hence, it is natural to assume that {7;},., might also be correlated
with 6. -

In the above setting the problem of volatility estimation can be re-
garded as a special nonlinear filtering problem.

Frey and Runggaldier [5] derive a Kallianpur-Striebel type formula
(see e.g. [12]) for the optimal mean-square filter for §; based on the
observations of S;,,5,,, ... for all 7, <t and investigate Markov Chain
approximations for this formula. We extend this result in that we
derive the exact filtering equations for #; that allow us to compute
the conditional distribution of 6; given Sy a¢, Sont, ... . Moreover,
our framework includes general random times of observations, not just
doubly stochastic Poisson processes.

We remark that while being natural, the Frey and Runggaldier model
adopted in this paper does not quite fit into the “standard” diffusion
or simple point process filtering frameworks (cf. [19], [15], [24]) and
requires more technical tools. In particular, the general filtering the-
ory for diffusion processes requires that the diffusion coefficient of the
observation process does not depend on the state process, while in our
case the presence of 6, in the diffusion coefficient is crucial. The “stan-
dard” filtering theory for point processes is also not applicable in the
present setting since the observation process (7;,.Sr,),~, is a multivari-
ate process (see also Remark 2). -

It turns out that the resulting filtering equations are simpler than
their counterparts in the case of continuous observations. In the latter
case, the nonlinear filters are described by infinite dimensional stochas-
tic differential equations. For example, if #; is a diffusion process, the
filtering equations (e. g., Kushner filter or Zakai filter) are given by
stochastic partial differential equations (see, e.g., [24]). In contrast, in
our setting, the filtering equation can be reduced to a recursive system
of linked deterministic equations of Kolmogorov type. Therefore, the
numerical implementation of the filter is much simpler (see the follow
up paper [1]).

We describe the model in section 2, state the main results and ex-
amples in section 3, provide the proofs in section 4, and present more
detailed examples in section 5.



4 JAKSA CVITANIC, ROBERT LIPTSER, AND BORIS ROZOVSKII

2. Mathematical model

2.1. Risky Asset and Observation Times. Let us fix a probability
space (2, F,P) equipped with a filtration F = (F;);>o that satisfies the
“usual” conditions (see, e.g. [20]). All random processes considered in
the paper are assumed to be defined on (2, F,P) and adapted to F.

It is assumed that there is a risky asset with the price process S =
(St)t>0 given by the It6 equation

dSt = m(ﬁt)Stdt + U(@t)StdBt, (21)

where B = (By);>0 is a standard Brownian motion and 6 = (6;);>0
is a cadlag Markov jump-diffusion process in R with the generator
L. To simplify the discussion, it is assumed that m(z) and v(x) are
measurable bounded functions on R, the initial condition S is constant,
and v(z) and Sy are positive.

The process (6;):>0 is referred to as the wvolatility process. It is un-
observable, and the only observable quantities are the values of the
log-price process X; = log S; taken at stopping times (74)x>0, so that
To=0,Tp < Tpp1 if 7 <00, and 7, T oo as k T oc.

In accordance with (2.1), the log-price process is given by

X, = /Ot (m(@s) _ %1}2(08)>ds+/0tv(05)d38.

For notational convenience, set Xj, := X, . Thus, the observations are
given by the sequence (7, Xi)g>o0-

Remark 1. (Note on the reading sequence.) The reader interested
primarily in applying our results to real data can focus her attention
on Example 3.1, which appears to be the most practical model to work
with. That example provides self-contained formulas for estimating the
conditional (filtering) distribution of the wvolatility process. We report
on the numerical results related to this example in the follow-up paper

[1].

Clearly, the observation process (7x, Xi)r>o is a multivariate (marked)
point process (see, e.g. [11], [16]) with the counting measure

N(dta dy) = Z I{Tk<()0}5{Tk,Xk}(t7 y>dtdy7

k>1

where d¢, x,} is the Dirac delta-function on Ry x R.

We introduce two filtrations related to (7, Xi)r>0: (G(n))n>o and
(Gt)t>0, where

- G(n) := o{(Th, Xi)k<n},
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-G = o(u([0,7] xT) : r <, T € B(R)), where B(R) is the Borel
o-algebra on R.
It is a standard fact (see I11.3.31 in [11]) that

G-, =G(k), k=0,1..., (2.2)
and {7x} is a system of stopping times with respect to (G;)s>o.

Remark 2. Although G, contains all the relevant information car-
ried by the observations obtained up to time Ty, the filtration (gt)m
provides additional information between the observation times. To elu-
cidate this point on a more intuitive level, we note that the length of the
time elapsed between 1, and T, carries additional information about
the state of 0; after 1. Specifically, if the frequency of observations is
proportional to the stock’s wvolatility v(6;), t € [Tk, Tky1]] , the larger
values of t — 1, might indicate lower values of v(6;).

2.2. Volatility process. A more precise description of the volatility
process is in order now. Let (R,B(R)) and (R} x R, B(R;) ® B(R))
be measurable spaces with Borel o-algebras. The volatility process
0 = (6;):>0 is defined by the It6 equation

df, = b(t,0,)dt + o(t,6,)dW, + /Ru(ﬁt, o) (p? — 0 (dt,dx), (2.3)

where W, is a standard Wiener process and p = p?(dt, dz) is a Poisson
measure on (R, x R, B (R;) ® B (R)) with the compensator 1/ (dt, dx) =
K (dx)dt, where K (dx) is a o —finite non-negative measure on (R, B (R)).
We assume that F62 < oo, the functions b(t, 2), o (t, 2), and u(z, z) are
Lipschitz continuous in z uniformly with respect to other variables, and

b(t, 2)|* + |o(t, 2)|* + /R |u(z, 2) 2K (dz) < C(1 + |2]?).

It is well known that under these assumptions (2.3) possesses a unique
strong solution adapted to F, and E6? < oo for any ¢t > 0.
The generator £ of the volatility process is given by

LF(r) = b(t,2) () + 50%(1, ) ()
+ [ (s utea) = 1) = Faute)) K(dy),

Before proceeding with the assumptions and main results we shall
introduce additional notation. Set

a(s,t) = / t (m(@u) - %122(97)) du, (2.4)
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and
o2(s,4) = / 2(0,)du (2.5)

For simplicity, it is assumed that v?(s,t) is bounded away from zero.
Let us denote by ps+(y) the density function of the normal distribution
with mean a(s,t) and the variance o2(s,t):

( ) 1 _(y—c;((s,w))? (2 6)
s = —— 204 (s,t .
Peily 270 (s, t)

Clearly, p is the conditional density of the stock’s log-increments X; —
X given 6.

Let F2 = (F?)i>o be the right-continuous filtration generated by
(6:);>0 and augmented by P-zero sets from F. Denote by GY the con-
ditional distribution of 7, with respect to' FY Vv G (k). That is, GY
is the distribution of the time of the next observation, given previous
history, and given 6:

G (dt) = P (Th1 € dt|FL V G (k) (2.7)

Without loss of generality we can and will assume that GY (dt) is the
regular version of the RHS of (2.7).

Let N = (N)i>0 be the counting process with interarrival times:
70 =0, (Tg — Th—1),>, , that is

N=) I(m <t) (2.8)

k>1

2.3. Assumptions. The following assumptions will be in force through-
out the paper:
A.0: For every G-predictable and a.s. finite stopping time S,

P(NS — NS_ 7é 0|gg_) =0or 1.

A.1: The Brownian motion B is independent of (9, N )

A.2: For every k, there exists a G (k)-measurable integrable random
measure &5 on B (R,) so that for almost all w € 2, & ([0, 7 (w)]) =0
and GY is absolutely continuous with respect to ®;, .

Denote by ¢ (7x,t) = ¢ (0, 7%,t) the Radon-Nikodym derivative of
GY (dt) with respect to @y (dt), i.e. for almost every w,

Here and below F! v F? stands for the o-algebra generated by the o—algebras
F'and F2
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¢(Tk,t) L dGi ((Tkvt])

= By () (29)

Assumption A.0 is not essential for the derivation of the filter. How-
ever, under this assumption the structure of the optimal filter is sim-
pler, and in the practical examples important for this paper, this as-
sumption holds anyway. In particular, A.0 is verified if the condi-
tional distribution GY = P (7,41 < t|F% V G (k)) is absolutely contin-
uous with respect to the Lebesgue measure? or if the arrival times 7,
are non-random.

The following two simple but important examples illustrate the as-
sumption A.2.

Ezample 2.1. Let (74)r>0 be the jump times of a doubly stochastic
Poisson process (Cox process) with the intensity n(6;). In this case,

t
1 — e Iy > o

0 , otherwise.

P(Tk+1 < t‘foeo VG (k)) = {

Then, one can take @ (ds) = ds and ¢(7x, s) = n(6;) exp (— f:k n (6,) du).

If n(6;) = n is a constant, one could also choose
Oy (ds) = nexp{n(m, —s)}ds and ¢(7y,s) = 1.

Example 2.2. 1f the filtering is based on non-random observation times
T, (e.g., 7w = kh where h is a fixed time step) then a natural choice
would be @, (ds) = 0¢r,,,} (s) ds and ¢(73, 5) = 1.

For practical purposes, ®; (ds) must be known or easily computable
as soon as the the observations (7;, X;),., become available. In con-
trast, the Radon-Nikodym density ¢ (73) is, in general, a function of
the volatility process and is subject to estimation.

We note that A.2 could be weakened slightly by replacing GY by a
regular version of the conditional distribution of 7, with respect to
Fo VG (k). The latter assumption would make the proof a little bit

Tk+1—
more involved and we leave it to the interested reader.

2More generally, it holds if the compensator of the counting process N, is a
continuous process.
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3. Main results and introductory examples

3.1. Main result. For a measurable function f on R with E|f(6;)] <
00, define the conditional expectation estimator m(f) by

m(f) == E(f(6)]G) = /R f(2)mdz), (3.1)

where my(dz) := dP(0; < z|G;) is the filtering distribution. (Note that
we omit the argument 6, of f in the estimator m;(f)). In the spirit of
the Bayesian approach, it is assumed that the a priori distribution

Wo(d%) =P (90 € diL’)
is given.

Let 0{6,. } be the o-algebra generated by 6,. For t > 7, let us
define the following structure functions:

Un(fit9,07) = B(F(0)proaly = Xi)o(ri D] o {0} V G (k) ).
(3.2)

and its integral with respect to y

BlFit) = [ it 00 dy = B(£0)0(m.0lo{6,} v G (1))
(3.3)
where p and ¢ are given by (2.6) and (2.9), respectively.

If f =1, the argument f in ¢ and 1) is replaced by 1.
Write

Du({rin}) = / "It = 700 @e(d),

i.e. ®p({7ks1}) is the jump of Oy (dt) at 74 .
Finally, for t > 7, and a bounded function f , define
Tr, (@k (f;t)) — e (f)7r, (&k (1;t))
I 7 (Wr (155)) @y (ds)
whenever the numerator is not zero. If the numerator is zero, set

M, (f;t, ) to be equal to zero.
The main result of this paper is as follows:

Mk (fa tv 7Tt) =

Theorem 3.1. Assume A.0-A.2. Then for every measurable bounded
function f in the domain of the generator L such that f(f E|Lf(0s)|ds <
oo for any t > 0, the following system of equations holds:

1) For every k =0,1...,



FILTERING RANDOM-TIME OBSERVATIONS 9

Togs () = e CORGTA) ;z%:l} - M, (f;t,ﬂt)‘{tﬂk“} O ({7k41})
(3.4)

2) For every k =0,1... and t €]k, Tka1[,
dri(f) = m(Lf)dt — My (f;t, 7)) Pp(dt). (3.5)

3.2. Remarks.

- 1. Equations (3.4), (3.5) form a closed system of equations for the
filter m.(f). It is often convenient and customary (see e.g. [24], [25] and
the references therein) to write a differential equation for a measure-
valued process H; (dx) in its variational form, i.e. as the related system
of equations for H; (f) for all f from a sufficiently rich class of test
functions belonging to the domain of the operator £. In our setting,
such a reduction to the variational form is a necessity, since in some
cases the filtering measure 7, (dz) = P (6, € dz|Gs) may not belong to
the domain of £. However, in the important examples discussed below,
there is no need to resort to the variational form. The interested reader
who is unaccustomed to the variational approach might benefit from
looking first into the examples at the end of this section and in Section
5, where the filtering equations are written as equations for posterior
distributions.

- 2. The system (3.4) simplifies considerably if

M. (f;t, Wt)‘{t:mrl} O ({7p11}) = 0 for all k. (3.6)

Obviously, (3.6) holds if for all k, ®, (dt) is continuous at t = 75,
as in the case when N, is a Cox process. In fact, (3.6) holds true in
many other interesting cases, even when ®; (dt) has jumps at all 75,1,
as in the case of fixed observation intervals (see Example 5.3 below).
We note then that the following separation principle holds.

Corollary 1. Assume (3.6). Then the filtering at the observation
times {7k tr>1 does not require filtering between them; it is done by the
Bayes type recursion:

() = TR 1 0))

Tr (Vr(1;,9))

. } (3.7)
y=Xk+1

- 3. Note that for high-frequency observations, even if condition
(3.6) is not met, for all practical purposes, it may suffice to compute
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the volatility estimates only at the observation times. In that case,
one would only use the relatively simple recursion formula (3.4), and
disregard equation (3.5).

- 4. Clearly, the “structure functions” v and ) are of paramount
importance for computing the posterior distribution of the volatility
process. We would like to stress that these do not involve the obser-
vations and could be pre-computed “off-line” using just the a priori
distribution. Then, “on-line”, when the observations become available,
one needs only to plug in the obtained measurements (73, X;), and to
compute m;(f) by recursion. This feature is important for developing
efficient numerical algorithms.

- 5. Note also that for almost every w € (2, filtering equation (3.5)
is a linear deterministic equation of Kolmogorov’s type, rather than a
nonlinear stochastic partial differential equation. The latter is typical
of the nonlinear filtering of diffusion processes. The well-posedness and
the regularity properties of equation (3.5) are well researched in the
literature on second order parabolic deterministic integro-differential
equations (see e.g. [18], [22], [14] and the references therein).

Ezample 3.1. (Volatility as a Markov Chain.) Let us now assume that
the counting process is a Cox process with intensity n(6;), and take

O(Tk, 8) = n(@t)e_fjk )t and @, (ds) = ds. Also assume 6 = (0;);<r
is a homogeneous Markov jump process taking values in the finite al-
phabet {ay,...,ap} with the intensity matrix A = || (a;,a;) || and
the initial distribution p, = P(6y = a4), ¢ =1,..., M. (This is one of
the two models of the state process discussed in [5].) In this case,

Lf(0,) = ZA (05, a5) f (aj) -

Denote by 9{ the process 0; starting from a;, and

pji (t) =P (0, = a;lfl = a;) , m;(t) =P (6, = q;|G,) ,

rii (b 2) = Blem lonohgr (2)]6] = a,)

where pJ (z) is obtained by substituting 6 for 0, in p,,(z). It follows
from Theorem 3.1 ( for details see Example 5.1 ), with f (6;) := Itg,=a,1,
that

n(ai) ;i (T — Tr—1, X — Xi—1) pji (Te — To1) 75(Th—1)

Zi,j n (ai) Tji (Tk — Th—1, Xp — Xk—l)pji (Tk - Tk—l) 7Tj<7-k—1).
(3.8)

mi(Ty) =
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This recursion can be easily computed, once one computes (“off-line”)
the values r;;. This example is also treated in more detail in Section 5.

4. Proofs

In the proof of the main result we want to show that
dmy(f) = m(Lf)dt + dM,

where M, is a martingale, and then we find a (integral) martingale
representation of M; with respect to the measure y — v, where v is a
compensator of u. We first find the compensator.

4.1. (Gy)-compensator of . Denote by P(G) be the predictable o-
algebra on Q x [0, 00) with respect to G and and set

P(G) = P(G) @ B(R).

A nonnegative random measure v(dt, dy) on P(G) is called a P(G)
—compensator of u if for any P(G)-measurable, nonnegative function
w(t,y) = plw,t,y),

/ / s,y)v(ds,dy) is P(G)-measurable

[ fstmsar = [ [ somin

Let Gy (ds,dr) = Gj(w,ds,dx) be a regular version of the condi-
tional distribution of (7441, Xgy1) given G (k) ( it is assumed that
Gk ([O,Tk] ,d:B) = O)I

Gk(dt, dy) = dP(Tk_H S t, Xk+1 S y|g(k;)) (42)

Denote Gy, (ds) = Gy (dt,R), that is, Gi(t) = P(me41 <t | G (k)) (with
probability one).
By Theorem II1.1.33 [11] (see also Proposition 3.4.1 in [20]),

dt dy Z I]Tk Tk+ﬂ] G(k[(dt C;?/}%) ) (4'3)

We now derive a representation, suitable for the filtering purposes, of
the P(G)—compensator v in terms of the structure functions (3.2),
(3.3), and the posterior distribution of 6 .

(4.1)

Lemma 4.1. The ﬁ(g)—compensator v admits the following ver-
ston:

7T7'k<¢k<1;t7y))
v(dt, dy) STy p— Ou(dt)dy. (4.
hin) =2 T (1 ) D) - (44
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Proof. By A.1, for t > 7, with probability 1,

P(Tk+1 <t,Xpp < 3/|-7:<fo Vg (k>)
= E(P(Tk—i-l <t Xy <YF'VG (k) Vo (7—’”1))‘}—2@ Vg <k)>
=FE (](Tk+1§t)P (Xk—H < y|foeo \ g (k) Vo <Tk+1>) |f060 v g <k))

Yy
B (fmlgt) [ b = X0 @47 v G <k:>)

t ry
— / / Pros(z — Xp)d2GY (ds),

where we recall that GY is a regular version of the conditional distri-
bution of 7, ;with respect to F2 VG (k) . Thus, by A.2, for t > 73, with
probability 1,

(4.5)

(Th1 < t, Xpep1 < Y|FL VG (K)) (4.6)

/ / Pry.s Xi) ¢(71, 5)dzPy (ds) .
By (3.2), using notation (3.1), we see that
E(E [T, 5)pr.s(z = Xi)lo{0n,} vV G (k) ]G (k) ) = 7 (¥r(15 5, 2)).
This, together with (4.6), yields, recalling definition (4.2),

Gr(ds,dz) = 7, (Y(1; s, 2)) Pp(ds)dz. (4.7)

In the same way, for t > 7, with probability 1,

Gult:oc). B) = [ (By(1:5)) (). (18)
t
This completes the proof. O

Remark 3. If the right hand of (4.8) is zero, then P (1,41 > t|G (k)) =
0. Hence, Iy, r,.,1(t) = 0 with probability 1 and, by the 0/0 = 0 con-
vention, the corresponding term in (4.4) is zero.

4.2. Semimartingale representation of the optimal filter. In
this section we will prove the following result.

Theorem 4.1. For any bounded function f from the domain of the
operator L such that fot E|Lf(8s)|ds < oo for allt < oo, the differential
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of the optimal filter ws(f) is given by equation
drs(f) = ms(Lf)ds (4.9)

-/ (Z it TGS (1) s 0)(ds. ).

Proof. 1t suffices to verify the statement for twice continuously differ-
entiable functions f with f, f'f” bounded. By Ito’s formula,

f(6o) + /L‘f ds+/f

// F o+, 2) = F(0,)) (1 — ") (ds, )

Denote

L= / FOI00)aW.+ [ [ (0 ulba) = £6.00) (" = s do)
Then, we have

m(f) = E(f(60)]G:)

+ E(/Ot LF(0)ds

{E( 90 |gt) —WO(f)}

i {E</0 CF0.)ds gt> —/Otws(ﬁf)ds} + E(LJG).

Obviously, the process FE ( f (00)ygt) —mo(f) is a Gi-martingale. Process
L; is a F;-martingale. Since G, C F;, for t > t/,

B(E(LG)|Gv) = B(E(LF)|Gr) = E(Lu|Go).

Consequently, E(L;|G;) is a martingale too. Finally, E( fo Lf(05)ds|G)—
fg ms((Lf))ds is also a G,-martingale. Indeed, for ¢ > s > ¢/, we have
E(my(Lf)|Gy) = E(Lf(0,)|Gy) which yields

o

E( /0 LF(0,)ds @) - /0 (L f)ds
_ E(/Ot LF(0,)ds gt,> _ /Ot, ro(Lf)ds

gt> + E(Li|G,).

Set

E
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Thus, M; is a G,-martingale. In particular, this means that m(f) is a
G-semimartingale with paths in the Skorokhod space Dy )(R), so that
m(f) is a right continuous process with limits from the left. By the
Martingale Representation Theorem ( see e.g. Theorem 1 and Problem
l.c in Ch.4, §8. in [20]),

Vo= [ [ H) - v, i)

It is a standard fact that P(Ng — Ng_ # 0|Gs_) = v({S},R,). Hence,
due to assumption A.0, by Theorem 4.10.1 from [20] (see formulae
(10.6) and (10.15)),

H(t,y) = M} (AM[P(G))(t,y) . (4.10)

where AM; = M, — M,_ and the conditional expectation M} (g\ﬁ(g))
is defined by the following relation (see, e.g. [20], Ch. 2, §2 and Ch.
10, §1): for any ﬁ(g)—measurable bounded and compactly supported
function ¢(t,y),

E /O - /R p(t, y)gep(dt, dy)
_E// (£, )M (g|P(G)) (£, y)v(dt, dy).

By Lemma 4.10.2, [20],
M ()| P(9)) (1, y) = ML (F|P(9)) (¢, v). (4.11)

Since, m,_ (f) is P(G)-measurable (which implies MP (m_ (HIP©G))(t,y) =
m—(f) ), by (4.11),

ML (AM|P(G))(t,y) (4.12)

= MF (m(f) = m—(f)|P(9)) (¢ 9)
= MP (fIP(G))(t,y) — me—(f).

To complete the proof one needs to show that

P iy WTk(¢k(f;5>y))
MM (f (9) |P(g))( Z[Tk Tk+1 7Trk<wk<1§ 8,3/)) (4'13)
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To prove (4.13), it suffices to demonstrate that for any P(G)-measurable
bounded and compactly supported function ¢(t,y),

o (5 1,)
B3 /< e / Pl Ty )

k>0
= E/ / (t,y)f(0r)u(dt,dy). (4.14)

By monotone class arguments, we can assume that ¢ (¢,2) = v (t) g (),
where v (1) is a P(G)-measurable process and g () is a continuous func-
tion on R. By Lemma II1.1.39 [11], since v(t) is P(G)—measurable, it
must be of the form

v(t)=vo+ > vk (t) Ijrpr ) (1) (4.15)

where vy is a constant and vy, (t) are G (k) ® B (R,) —measurable func-
tions.

Owing to (4.15) and Lemma 4.1, in order to prove (4.14), it suffices
to verify the equality

E

/(Tk Th+1]N(Tk,00) /Rg(y>vk(t> Ty, (¢k(17 t, y)) P (dt) dy

= E [04(7Th41)9(Xps1) f (0 ) Lirsr <00} (4.16)

The next step follows the ideas of Theorem II1.1.33 [11]. We have

E [Uk’<7_k+1) (Xk+1)f(97k+1)1{7k+1<00}]
- E Uk Tk’-i-l (Xk+1)f(eTk+1)1{7'Ic+1<00}|g( ) v :Fgo)]

_E(/W / [£(0.)GY (ds. dy) |G (k ﬂ)

where, as before, G (ds,dy) is a regular version of the conditional
distribution of (7511, Xg+1) with respect to F& vV G (k).
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By Fubini Theorem, and recalling notation (4.2),

(/Tkoo / [£(0:)G} (ds, dy) |G (k )}) (4.17)
- </Tk oo)/ (HG):JZ (,ds ]ﬁgg( ) Am} Gy (du,R)>
—E</”“/w o)

By (4.6

G (ds, dy) = prs(z — Xi)d(7h, 5)®y, (ds) dy. (4.18)
Hence, for s > 74,
E [f(6.)G} (ds, dy) |G (k)]
= E(E (J(0)prs(y = Xi)6(71,9)|0 {02} v G (k) |G (k) ) @y (ds) iy,

= Tr, (¢k (f7 S, y))dyq)k (dS)
This, together with (4.8), yields

/ / [f(0:)G4 (ds, dy) |G (k)]
Gk ([ ) ] 7R)

B L T, (U (f35,9))dy )
=7 (/ / MO o ) ™ )) |

so that (4.16) is satisfied, and the proof follows. O

4.3. Proof of Theorem 3.1. In this section we show that Theorem
3.1 follows from Lemma 4.1 and Theorem 4.1.

Proof. Firstly, we note that the stochastic integral in the RHS of (4.9)
can be written as the difference of the integrals with respect to p and v.
Indeed, since f is bounded, this follows from [11], Proposition 11.1.28.

By applying Lemma 4.1 and integrating over y one gets that for

13 E]]Tk7 Tk+1]]7

/MT 0 CTTZ(( (( 2; WS*U))”(ds’dy)

_ / T (S >) — 7o (f)mn (D13 9))
(Tht] fsoo 7, (¢k(1; u)) Oy, (du)

(I)k (dS)
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This equation verifies that (3.5) follows from the semimartingale rep-
resentation (4.9), for ¢ between the consecutive observation times.
For the jump part (3.4), we note that

/ /7‘('5_ w(ds,dy) = Z T (1) —

Tk4+1> <t

malfis) e (i)
//w Gt )" W = 2 T T |y

Tr1<t y:XIH»l

Now, (4.9) can be rewritten as follows:

0 (f) = 70 (f) + / T (LF) ds )
0
T (VR (f58,9)) -
+ T];t Ty, <¢k(1, S, y)) ;::;—(kktll} (Tht1)— (f)

N Z/ M (f;5,70) @i (ds)

k>0 (Tk,t/\Tk+1}
Suppose t €] 7y, Ti41[. Then,

T (f) = 7 (f)
+/ Ws(ﬁf)ds—/ M (f;s,ms) P (ds) .

Tk

It follows that
Tresn)- (f)

Thk+1 (Tht1)—
=, (f)+/ ws(ﬁf)ds—/ M (f;5,m5) B (ds)

Tk Tk

Therefore, from (4.19),

T, (wk’(fa S, y))

T (f) = 7o, (V(158,9))

— My (ft, ) ‘{t - ({Tk+1})-

S=Tk+1 }
y=Xp41

This completes the proof. O

5. Examples

In this Section we consider some important special cases of Theorem
3.1.
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Ezample 5.1. (Markov chain volatility and Coz process arrivals.) Recall
the setting of Example 3.1 and its notation r;, 7;(t), and 67. It follows
from Example 2.1 that in this case @y ({7x41}) = 0 for all k. Hence
the second term in the RHS of equation (3.4) is zero. By (3.2), for
f((gt) = L{p,=a;} and t > 7y,

¢k<f;t7y70’rk> =n (az) |:E(]{9t a;}€ f pet(y CL’)|08)] { s:Tk}

=X},

Thus, owing to the homogeneity of 0;, for t > 7,
Ty, (W(ft y))
=> n(a)E (f{et aye Oy (g — 2)|0, = aj) {=p }Wj(Tk)
J

=X},

= (@) E (I _pe b Oy =) (i)
. {01 o=ai} (=)

=Xy

= Z:n(aZ [I{at —a Z}E( = Jo 7 n(0u) dupjt J —m)|0g_s>}{ —ry }Wj(Tk)

=X}

= Z n(ai)rji (t — T,y — Xk)sz‘ (t — k) Wj(Tk)-

Similar formula holds for the denominator of the first term of the RHS
of the equation. Now equation (3.8) follows from (3.4).
Mimicking the previous calculations and using the notation

Fii (1) = B (e o m@du| gl — )
it is readily checked that, for ¢t > 7,

7o, (Ur(Lg,=ai}; 1)) = 71 (as) Z i ()5 (t — T)pji (t — 71)

and

7T7'k Z mi(Te)n (@) 755 (t — 7)pji (8 — 7).,

which are needed in computing (3.5). It is easily verified that in the
setting of this example, equation (3.5) reduces to the following:

dmi(t) = > A(aj,a;) wi(t)dt + D (74, t) mi(t)dt + D; (mp t) dt - (5.1)

J
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where
n(a;) 327t — T)pgi (0 — i) m5(7)
ftoo Zz‘,j n(a;) 75i(s — 7i)pji (s — 1) 5 (73 )ds
> (@) Tt — ) (t — 7)) 75 (7k)
I > i (@) Tii(s — T)pji (s — 70) mi(Th ) ds

Note that equation (5.1) is considered for a fixed w and t > 7 (w).
Therefore, 7, and m.(7%) should be viewed as known quantities.

Di (Tk, t) = —

D(Tk,t) =

Ezample 5.2. (Poisson arrivals.) Let 6 be still the same as in Example
5.1. Suppose that the interarrival times between the observations are
exponential with constant intensity n(f#) = A. In other words, N; is
Poisson process with constant parameter A. In this case, the volatility
process # is independent of N;. Then, on the interval 7, < t < 7541,
equation (5.1) reduces to

dmy(t) = Z/\ (a;,a;) m;(t)dt (5.2)
- /\(Zpﬂ (t —7) mj (7)) — mit))dt.

On the other hand, owing to the independence of N and @, it is readily
checked that on the interval 7, <t < 7541,

mi(t) = iji (t —71) mj(7h)

Therefore, the filtering equation (5.2) is simply the forward Kol-
mogorov equation for 6.

A similar effect appears also in the following example.

Ezxample 5.3. (Fixed observation intervals.) Assume for simplicity that
the Markov process 6; is homogeneous. Also assume that 7, = kh,
where h is a fixed time step. Notice that

G, = G (k) for any t € [[74, Tt [[. (5.3)

Denote by P(t,x,dy) the transition probability kernel of the process 6,
given that 0y = x, and let T; denote the associated transition operator.

In accordance with Example 2.2, one can take ¢(73,t) = 1 and
. (dt) = 0gr,,,y(t)dt. Thus, we get
Uk (fit,9,0n) = E [f(00) prs(y — Xi)|o {0,3 VG (k)] , (5.4)

wk (f;tve’%) = ,Tt—ka (em) = /f(y)P (t - Tk797k7dy) : (55)
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Since @y (dt) = 0 on [[7x, Tks1[[, (3.5) is reduced to the forward Kol-
mogorov equation

9y

Eﬁt(f) = 7Tt(£f>

subject to the initial condition 7., (f). The unique solution of this equa-
tion is given by m(f) = 7, (Tr—r. f), t < Tk+1. Hence,

7er+1—(f) = Try (Thf) (56)

Since ¢(7,t) = 1, the denominator of My is equal to 1 when t = 7y,1.
This together with the formula ®({r.1}) =1 yields

Mu(E b )l P }) = 7 (Tof) =77, - (£). (5.7)

Owing to (5.7), we get M(f; t, 7rt)|t:7k+1(I>({Tk+1}): 0.
This yields the following recursion formula:

Tk <f) - Tr, (wk (1’ t, y>) ‘t:Tk+lvy:X7'k+l
Je B ()01 (y = 2)|00 = 2) 77, (d2)
o E o (5 — Mo = )7 (d2) tms

y:XTk+1
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